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Abstract—This research introduces two novel algebraic 

signature algorithms with a hidden group, which are based 

on the computational difficulty of finding a solution of a 

large system of quadratic multivariate equations. Like 

signature algorithms of multivariate cryptography, the 

developed ones represent interest as post-quantum 

cryptoschemes, the latter having a significant merit 

consisting of a 100 or more times smaller size of public key. 

The introduced algorithms represent interest as candidates 

for a practical post-quantum signature standard with small 

sizes for both the signature and the public key. Their 

security is estimated to be vulnerable to direct attacks using 

the known algorithms for solving the systems of many 

quadratic equations. The development of structural attacks 

exploiting properties of the used algebraic support is 

estimated as an independent research task composing the 

next stage of the analysis of the proposed signature 

algorithms on finite non-commutative associative algebras. 

Relatively the known algebraic signature algorithms with a 

hidden group, which are based on the computational 

difficulty of the so called hidden discrete logarithm problem, 

the developed signature algorithms differ in the use of the 

signature verification equations with multiple entry of 

signature. This feature defines a specific technique for the 

signature generation. The next peculiarity is the use of 

algebras of higher dimensions set over the finite fields of 

smaller orders. 

Keywords—computer security, post-quantum cryptography, 

multivariate cryptography, digital signature, finite algebra, 

associativity, non-commutativity, hidden group 

I. INTRODUCTION AND PRELIMINARIES

Information security items are very important in 

telemedicine [1], e-government, the Internet of Things [2], 

cloud computing [3], and fog computing systems [4]. 

Information protection and information authentication 

can be provided by different techniques; some of the 

latter use “blockchain” technology [5, 6], but the most 

flexible and efficient techniques relate to the use of 

algorithms and protocols for public-key cryptography. 

Today, cryptographic schemes based on the 

computational difficulty of the Discrete Logarithm 

Problem (DLP) and the Factorization Problem (FP) have 

found the greatest practical application. The current 

official standards on the public-key cryptographic 

algorithms are also based on the computational difficulty 

of the DLP and FP, although polynomial algorithms have 

been known for more than 20 years [7−9].  

With the appearance of a quantum computer in 

practice, DLP-based and FP-based cryptographic 

algorithms cease to be secure. The possibility of the 

practical use of these algorithms was determined by the 

generally accepted assumption of a negligible probability 

of the appearance in the near future of a practical 

multiqubit quantum computer. However, the 

development of technology for creating quantum 

computers forced the National Institute of Standards and 

Technology (NIST) to declare at the end of 2016 that 

after 2025 a quantum computer could unexpectedly 

appear in practice and to announce a worldwide 

competition for the development of post-quantum 

standards for public-key cryptalgorithms in the following 

two nominations:  

• Public key-agreement and public encryption

algorithms,

• Digital signature algorithms [10].

Despite the fact that about 20 candidates for the post-

quantum signature algorithm were submitted for 

consideration, after three stages of the competition, NIST 

announced the submission of additional candidates for 

the post-quantum signature standard within the fourth 

stage of the competition [11]. This is due to some 

practical issues with the signature algorithms selected as 

finalists. Their disadvantage is the large size of the 

signature and/or public key [12]. 
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Recently proposed algebraic digital signature 

algorithms with a hidden group, based on the 

computational difficulty of so-called hidden DLP [13, 14], 

have fairly small signature and public key sizes. However, 

there are problems justifying their post-quantum security 

associated with the potential possibility of reducing the 

hidden DLP to the usual DLP. At the beginning of 2022, 

another type of hidden-group algebraic algorithm was 

proposed, characterized by the fact that it uses the 

computational difficulty of finding a solution to a system 

of many quadratic equations with many unknowns [15]. 

Taking into account that quantum computers are not 

efficient for solving the latter problem [16, 17], we can 

say that the second type of algebraic algorithm with a 

hidden group is of special interest for developing 

practical post-quantum signature algorithms.  

In 1988, for the first time, the computational difficulty 

of solving systems of many quadratic equations was used 

to construct digital signature and public encryption 

algorithms in [18]. The method used in the paper [18] led 

to the appearance of a new type of cryptosystems called 

Multivariate Public Key Cryptosystems (MPKCs). A 

large number of multivariate signature algorithms are 

currently known [19−21], including Rainbow, which is 

one of the finalists in the NIST competition [22]. A merit 

of the multivariate signature algorithms is the small size 

of the signature. However, their significant drawback is 

the very large size of the public key, which is associated 

with a specific method for constructing them, including 

specifying the public key as a set of power (usually 

square and cubic) polynomials that describe a trapdoor 

one-way mapping of vectors of large dimensions (from 

30 to 200), given over a finite field of comparatively 

small order (from 22 to 216). 

Over the past three decades of research in the field of 

MPKCs, the cryptographic community has well worked 

out the basic methods for constructing MPKCs and 

proposed various algorithms of this type: several versions 

of Rainbow [22−24], Unbalanced Oil and Vinegar (UOV) 

signature schemes [25], Square [26], FLASH [27], 

ZHFE  [28], GeMSS [29], and others. Algorithm 

cryptanalysis methods of the specified type are also well 

worked out. Typically, the following two types of attacks 

are distinguished [16, 19]: (1) direct attacks based on the 

algorithms for solving systems of many power equations 

with many unknowns and (2) structural attacks using the 

structural features of the design of MPKCs. 

The most effective direct attack is the use of 

algorithms for solving systems of many power equations 

based on the calculation of the Gröbner basis [30, 31]. 

Structural attacks use the features of the superposition of 

linear and nonlinear transformations as a public key. 

Several types of structural attacks have been introduced, 

considering attacks on Rainbow [32, 33], Square [34], 

FLASH [35], and the Tame Transformation Signatures 

family [36]. 

A high assessment of the results obtained in the MPKC 

research area is the selection of the Rainbow algorithm as 

one of the finalists and of the GeMSS as one of the 

alternative algorithms in the NIST competition [11] in the 

nomination of post-quantum digital signature algorithms. 

The MPKC algorithms represented the single type of 

signature schemes based on the computational difficulty 

of solving a system of large square equations until 2022 

when an alternative method for constructing algorithms 

based on the said problem was proposed in [15]. That 

paper introduced a novel method for designing digital 

signature algorithms with a hidden group, using Finite 

Non-commutative Associative Algebras (FNAA) as 

algebraic support, and proposed a specific algorithm 

implementing that method, using a verification equation 

with two entries of the signature. A significant merit of 

the method [15] is the small size of both the signature and 

the public key, which provides the potential possibility of 

developing practical post-quantum signature algorithms 

and a post-quantum signature standard. 

However, in Ref. [15], the issues of justification of the 

selection of the dimension of the FNAA used as algebraic 

support and the choice of the 256-bit order of the finite 

field, over which the FNAA is set, had not been 

considered.  

This article discusses the mentioned issues and 

develops two new practical post-quantum algorithms with 

three and four entries of the signature in the verification 

equation. The design of the algorithms allows using the 

FNAAs set over the ground fields GF(p), with the order p 

having a size of 81 to 129 bits. The latter provides a 

smaller public key and signature in comparison with the 

signature algorithm from [15] at the same security level.  

The article is organized as follows: Section II describes 

the used algebraic supports and the main provisions of 

the design concept [15], Sections III and IV introduce 

two new algebraic algorithms with a hidden group, using 

verification equations with three and four entries of the 

signature. Section V discusses the features of the 

proposed algorithms in comparison with MPKC 

algorithms and with algorithms based on hidden DLP, 

Section VI concludes the article. 

The authors hope that the concept [15] and proposed 

two new signature algorithms will attract attention from 

the cryptographic community, and someone will be 

inspired to use the paradigm of the algebraic signature 

algorithms with a hidden group to develop an application 

for submitting to the NIST additional post-quantum 

signature submission call [11]. 

II. FINITE NON-COMMUTATIVE ASSOCIATIVE ALGEBRAS 

USED AS ALGEBRAIC SUPPORT  

Suppose in a finite m-dimensional vector space over a 

finite ground field GF(p) in which a vector multiplication 

operation possessing the property of distributivity at the 

left and at the right relative to the addition operation, is 

defined additionally to the scalar multiplication and 

addition operations. Then the said vector space is called 

m-dimensional algebra. A vector A can be represented as 

an ordered set of its coordinates: A = (a0, a1, …, am−1) or 

as a sum of its components: 

A = a0e0 + a1e1 +… + am−1em−1, where ei (i = 0, 1, …, 

m − 1) are formal basis vectors.  
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Usually, the multiplication of the vectors 
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in which the values ai and bi are multiplied as elements of 

the field GF(p) and every of the products eiej is replaced 

by a single-component vector ek, where   GF(p), 

given in the cell located in the i-th row and in the j-th 

column of a specially constructed table called Basis 

Vector Multiplication Table (BVMT), like Table I in the 

case m = 4 [12] and Table II in the case m = 6 [37]. If  ≠ 

1, then the value  is called the structural constant. If  = 

0, then in the corresponding cell of the BVMT it is 

indicated as zero without any basis vector. A BVMT with 

cells containing zeros is called a sparse BVMT. The use 

of sparse BVMTs to set FNAAs represents a technique 

for reducing the computational complexity of the 

multiplication operation. 

In the algebraic signature schemes with a hidden group, 

the exponentiation operations are used in the signature 

generation and verification procedures. This implies the 

possibility of using a fast exponentiation algorithm, 

therefore, the multiplication operation must be 

associative. From Eq. (1) it can be seen that the vector 

multiplication operation is associative if the BVMT is 

constructed so that the condition: 

(eiej)ek = ei(ejek)                             (2)  

is true for all possible triples of indices (i, j, k). 

A vector E, such that the equalities EV = V and 

VE = V hold true for every element of some FNAA, is 

called a two-sided global unit of the algebra.  

In the framework of some FNAA, one can consider 

different subsets of reversible vectors that compose 

multiplicative groups. A finite set of reversible algebraic 

elements with an associative binary operation (for 

example, multiplication) is called a finite (multiplicative) 

group.  

In FNAAs with global two-sided units, an algebra 

element (vector) V is called reversible, if the algebra 

contains the single element, denoted as V−1, which 

satisfies the equalities VV−1 = E and V−1V = E. All 

reversible elements of the FNAA with the multiplication 

operation compose a group called the multiplicative 

group of the algebra. 

A minimum set of the group elements, products of 

different powers which take on all values in the group, is 

called a minimum generator system (basis) of the group. 

A finite group generated by a single element (the 

generator of the group) is called a cyclic group. A finite 

group with a basis containing two elements of the same 

order is called a group with two-dimensional cyclicity.  

For each of the signature algorithms introduced in 

Sections III and IV, it is assumed that the use of the 

FNAAs of four different dimensions: m = 4, 6, 8, and 10. 

For the case m = 4, the used FNAA is set by a sparse 

BVMT shown in Table I. Using a BVMT with eight cells 

containing the zero structural constants provides a two-

times reduction in the computational complexity of the 

multiplication and exponentiation operations.  

Decomposition of the said 4-dimensional FNAA into 

commutative subalgebras had been studied in detail 

in  [12], where the following results had been obtained: 

• The 4-dimensional FNAA contains p2 + p + 1 of 

commutative subalgebras of the order p2, every 

pair of which intersects exactly in the set of scalar 

vectors {L: L = hE, h = 0, 1, …, 2z − 1}, where E 

= (1, 1, 0, 0) is the global two-sided unit; 

• The order of multiplicative group  of the algebra 

is equal to: 

 = p(p − 1)(p 2 − 1);                      (3) 

• The group  contains p(p + 1)/2 commutative 

subgroups 1 possessing two-dimensional 

cyclicity (i.e., a minimum generator system of the 

subgroup 1 contains two vectors of the same 

order) and having order equal to: 

1 = (p − 1)2;                             (4) 

• The group  contains p(p − 1)/2 commutative 

cyclic subgroups 2 of the order: 

2 = p2 − 1 = (p − 1)(p + 1);                (5) 

• The group  contains p + 1 commutative cyclic 

subgroups 3 of the order: 

3 = p(p − 1);                            (6) 

• The condition of invertibility of the vector  

A = (a0, a1, …, am−1) is given by the non-equality: 

a0a1 ≠ a2a3.                              (7)  

To define the FNAAs of the dimensions m = 6, 8, and 

10, which are suitable for using them as algebraic support 

of the developed signature algorithms with a hidden 

group, we use the unified method [37] for setting FNAAs 

of arbitrary even dimensions. That method consists in 

using the following Eq. (8) for generating BVMTs setting 

non-commutative associative vector multiplication 

operations for arbitrary even values m  6:

                      
mod

mod

mod

, if mod 2 0;

, if mod 2 1, mod 2 0;

, if mod 2 1, mod 2 1.

i j m

i j i j n

i j m

e i

e e e i j

e i j

+

−

−

=

= =

= =




= 



      (8) 

The respective proof is provided in [37], using the 

Eqs.  (1) and (2). For the case of dimensions m  6 we 

have not found a suitable sparse BVMT to provide a 

lower computational complexity for the multiplication 

and exponentiation operations used in the developed 

signature algorithm. 

For the cases m = 6 and m = 8 Eq. (8) gives the 

BVMTs shown in Tables II and III. The structure of the 

FNAAs set by Tables II and III (from the point of view of 

the decomposition into commutative subalgebras) is an 
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open problem, but from [37] it is known that the FNAA 

set by Table II contains commutative groups of the orders 

described by the Eqs. (4) and (5). We have also 

experimentally checked that for the cases m = 8 and m = 

10 the said types (1 and 2) of commutative groups are 

also contained in the FNAAs. Besides, we also use the 

following two experimental facts: 

• A non-scalar vector selected at random in each of 

the said 8-dimensional and 10-dimensional 

algebras with sufficiently high probability (>0.1) 

has order p − 1 for values p having different sizes; 

• A vector selected at random in each of the said 8-

dimensional and 10-dimensional FNAAs with 

sufficiently high probability (>0.1) has order  

p2 − 1 for values p having different sizes. 

At this point, we should note that a more convincing 

justification for a sufficiently high probability of 

choosing vectors with the required order value must be 

based on theoretical consideration. The latter requires 

consideration of the structure of FNAAs for cases of 

dimensions m  8, for example, using the approach [12]. 

However, the study of the decomposition of KNAA into 

commutative subalgebras for the dimensions m  8 is a 

more time-consuming independent study. 

The generation of the hidden group of the 2 type 

consists of selecting a random vector of the order equal to 

p2 − 1. Generation of the hidden group of the 1 type can 

be performed using the following algorithm: 

 

Algorithm 1. Generation of the Basis of a Random 

Commutative Group of the 1 Type 

• Select a random non-scalar vector G of order  

p − 1. 

• Select a random primitive element  in GF(p) and generate 

two random integer values, k < p − 1 and t < p − 1. 

• Compute the vector H = kGt (evidently, vector H has an 

order equal to p − 1). 

• Output the basis <G, H> of a random commutative group 

of the 1-type. 

TABLE I. DEFINING VECTOR MULTIPLICATION OPERATIONS IN THE  
4-DIMENSIONAL FNAA WITH THE TWO-SIDED GLOBAL UNIT 

E = (1, 1, 0, 0) [12] ( ≠ 0) 

 e0 e1 e2 e3 

e0 e0 0 0 e3 

e1 0 e1 e2 0 

e2 e2 0 0 e1 

e3 0 e3 e0 0 

TABLE II. DEFINING VECTOR MULTIPLICATION OPERATION IN THE  
6-DIMENSIONAL FNAA WITH THE TWO-SIDED GLOBAL UNIT 

E = (1, 0, 0, 0, 0, 0) [37] ( ≠ 0) 

∙ e0 e1 e2 e3 e4 e5 

e0 e0 e1 e2 e3 e4 e5 

e1 e1 e0 e5 e4 e3 e2 

e2 e2 e3 e4 e5 e0 e1 

e3 e3 e2 e1 e0 e5 e4 

e4 e4 e5 e0 e1 e2 e3 

e5 e5 e4 e3 e2 e1 e0 

TABLE III. DEFINING VECTOR MULTIPLICATION OPERATION IN THE  
8-DIMENSIONAL FNAA WITH THE TWO-SIDED GLOBAL UNIT  

E = (1, 0, 0, 0, 0, 0, 0, 0) ( ≠ 0) 

  e0 e1 e2 e3 e4 e5 e6 e7 

:e0 :e0 e1 e2 e3 e4 e5 e6 e7 

:e1 :e1 e0 :e7 e6 e5 e4 e3 e2 

:e2 :e2 e3 :e4 e5 e6 e7 :e0 e1 

:e3 :e3 e2 :e1 e0 :e7 e6 :e5 e4 

:e4 :e4 e5 :e6 e7 e0 e1 :e2 e3 

:e5 :e5 e4 :e3 e2 :e1 e0 :e7 e6 

e6 e6 :e7 e0 e1 e2 e3 e4 e5 

e7 e7 e6 :e5 e4 :e3 e2 :e1 e0 

 

The method proposed in [15] for designing algebraic 

signature algorithms with a hidden group implies the use 

of the signature in the form of two elements one of which 

is a number e and the other one is a vector S. The value S 

is used as a multiplier in the signature verification 

equation. Such an occurrence of the value S in the 

verification equation creates prerequisites for signature 

forgery by solving the verification equation concerning 

an unknown value S. To prevent such potential attacks, 

the idea of multiple entries of the vector S is proposed 

in  [15]. 

Namely, the power verification equation is given in a 

non-commutative algebra and includes two or more 

entries of the vector S. To provide the possibility for the 

signer to calculate a signature satisfying the verification 

equation, specific mechanisms for computing the public 

key and generating the signature are proposed. A four-

dimensional FNAAs set by a sparse BVMT over the field 

GF(p) with prime characteristic p = 2q + 1, where q is 

also a prime, is used as algebraic support in [15]. The 

decomposition of the used FNAA into the set of 

commutative subalgebras had also been studied in [15], 

the results similar to [12] had been obtained, i.e., the 

FNAA used in [15] contains a sufficiently large number 

of commutative groups of 1-type.  

To generate a public key, a potential signer generates a 

secret basis <G, H> (where the vectors G and H have the 

same order equal to q) of the hidden group, generates 

random secret pairwise non-permutable vectors A, B, and 

C such that every one of them is non-permutable with G 

and H. Then he calculates the public key in the form of 

the following four vectors: Y1 = AGuB; Z1 = CHA−1; Y2 

= AHwB; Z1 = CGA−1.  

The signature generation procedure includes the 

following steps: 

• Select the random integers k < q and t < q and 

calculate the vector R: 

R = AGkHtA−1. 

• Using a specified hash function f, calculate the 

value e = fH(M, R), where M is a document to be 

signed. 

• Calculate the powers n and r using the following 

Equations: 

;mod
2

2

q
ee

euek
n

+

−−
=
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.mod
2

2

q
ee

ewet
r

+

−−
=  

• Compute the second signature element S: S = 

B−1GnHrC−1. 

Verification of the signature (e, S) is performed as 

follows: 

• Compute the vector R*: 

( ) ( ) .
2

2SZ2Y1SZ1Y*R
ee

=  

• Calculate the value e* = f(M, R*). 

• If e* = e, then the signature (e, S) is genuine. 

Otherwise, the signature is false. 

Thus, the elements of the public key (Y1, Z1, Y2, Z2) 

are calculated in such a way that the right part of the 

verification equation can be presented in the form 

AGaHbA−1, if the signature element has the form  

S = B−1GnHrC−1 and the power values n and r can be 

computed so that a = k and b = t, providing correctness of 

the signature scheme.  

When calculating the public key, the exponentiation 

operations are used as an efficient technique for selecting 

random elements from the hidden group, which improves 

the performance of the signature generation algorithm. In 

the signature generation and verification procedures, 

exponentiation operations are used as a technique for 

calculating the genuine value of the signature element S 

after the signature element e is calculated depending on 

the given document and the random vector R (the latter is 

calculated at the first step of the signature generation 

procedure). Actually, the secret key represents the set of 

vectors G, Gu, H, Hw, A, B, and C (where Gu = G and  

Hw = Hw). 

Suppose |q| denotes the bit size of the value q (the 

order of the vectors G and H). A limitation of the 

algorithm [15] is connected with the fact that the size of 

|q| should be equal to or higher than the size of the used 

256-bit hash function fH. The latter determines the 257-bit 

size of the prime p. In the proposed signature algorithms 

we use the verification equations with two 

exponentiations to independent power degrees e1 and e2 

such that e1||e2 = e = fH(M||R), where || denotes the 

concatenation operation. This technique allows one to use 

the value of |q| which is half the size of the hash value. 

Thanks to the latter, the size of the public key and 

signature is reduced, and the performance of the digital 

signature algorithm is also increased. 

In this paper, we also define the FNAAs over the field 

GF(p) with characteristic p = 2q + 1, where q is a prime. 

The value p is selected depending on the value of the 

dimension m. We specify the use of the characteristic p 

having the size 129 (for m = 4), 97 to 129 (for m = 6), and 

81 to 129 bits (for m = 8 and m = 10). For larger values m 

we have more quadratic equations and unknowns. The 

computational complexity of the direct attacks depends 

slightly on the size of the characteristic p. However, we 

suppose that the security against structural attacks, which 

can appear in the future, will be significantly dependent 

on the values m and p. 

III. THE SIGNATURE ALGORITHM WITH THREE ENTIRES 

OF THE VALUE S 

The secret key is generated in the form of five vectors 

A, B, D, G, H, and three natural numbers u, w, x (1 < u, 

w, x < q). The vectors G and H have order equal to the 

prime q and compose the basis <G, H> of the hidden 

group. The vectors A, B, and D are generated at random 

so that the following non-equalities hold: AB ≠ BA, AD 

≠ DA, AG ≠ GA, BD ≠ DB, BG ≠ GB, DG ≠ GD. 

The public key is computed in the form of five vectors 

Y, Z, Q, U, and T as follows: 

Y = AGB, Z = DHB, Q = AGuD−1, 

U = DGxA−1 and T = B−1HwA−1.                (9) 

Eq. (9) describes the method used for masking the 

vectors contained in the hidden group, with the left and 

right masking multipliers representing the elements of the 

private key. 

A. Signature Generation Procedure 

• Generate at random the natural numbers k and t 

such that 1 < k < q and 1 < t < q and calculate the 

vector R = AG
k
H

t
A−1. 

• Using a specified collision resistant 2|q|-bit hash-

function fH, calculate the value  

e = e1||e2 = fH(M||R), where M is a document to be 

signed and the hash-value e is represented in the 

form of the concatenation of two 128-bit numbers 

e1 and e2. 

• Compute the integer numbers n and d by the 

following Eqs. (10) and (11): 

( )
q

ee

uexeek

n mod

21
2

211

−

++−

=   and          (10) 

( )
q

ee

weet
d mod

212

21

−

+−
= .                (11) 

• Calculate the vector S by the Eq. (12)  

S = B−1GnHdD−1.                        (12) 

The vector S represents the fitting parameter of the 

signature, which is calculated so that the signature 

verification equation will be satisfied. Eqs. (11)−(13) are 

derived from consideration of the algorithm correctness 

proof presented below. 

The signature represents the integer e and the vector S. 

The main contribution to the computational difficulty of 

the signature generation procedure is introduced by four 

exponentiation operations (about 6200 multiplications in 

GF(p) for the case m = 4 and a 128-bit value q). 

B. Signature Verification Procedure 

• Compute the vector R:  

( ) ( ) 21 1 ee
TQSYSZSUR

−=                 (13) 

1234
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with three entries of the vector S and two exponentiation 

operations. 

• Compute the hash-function value e = fH(M||R). 

• Compare the values e and e. If e = e, then the 

signature is accepted as genuine. Otherwise (e ≠ 

e) the signature is rejected as a false one. 

The computational difficulty of the signature 

verification procedure is defined by two exponentiation 

operations (about 3100 multiplications in GF(p) for the 

case m = 4 and a 128-bit value q). 

C. The Correctness Proof of the Signature Scheme 

The signature scheme is correct if the correctly 

computed signature passes the verification procedure as a 

genuine one. Taking into account Eqs. (10)−(13) we have: 

( ) ( )

( )

( )
( )
( )

( ) ( )

.

......

............

tk

weeeeduexeeeen

wedeedeneuenexee

wedeneue

edenexee

ewdnu

exdndn

ee
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IV. THE SIGNATURE ALGORITHM WITH FOUR ENTIRES 

OF THE VALUE S 

The secret key is generated in the form of five vectors 

A, B, D, G, and H, and three natural numbers u, w, x  

(1 < u, w, x < q), where the vectors G and H have order 

equal to the prime q and compose the basis <G, H> of the 

hidden group. The vectors A, B, and D are generated at 

random so that the following non-equalities hold:  

AB ≠ BA, AD ≠ DA, AG ≠ GA, DB ≠ BD, BG ≠ GB, 

DG ≠ GD.  

The public key is computed in the form of vectors Y, Z, 

Q, T, U by the following Eq. (14): 

Y = AGB, Z = DHB, Q = DGxA−1, T = AHwD−1, U = 

B−1GuA−1.                                 (14) 

A. Signature Generation Procedure 

• Generate at random the natural numbers k and t  

(1 < k < q; 1 < t < q) and calculate the vector: 

R = AG
k
H

t
A−1.                          (15) 

• Using a specified collision resistant 2|q|-bit hash-

function fH, calculate the value e = e1||e2 = 

fH(M||R), where M is a document to be signed and 

the hash-value e is represented in the form of the 

concatenation of two 128-bit numbers e1 and e2. 

• Compute the integer numbers n and d by the 

following two Eqs. (16) and (17): 

( )
q

ee

xexeueek
n mod

1121

2121

−+

++++−
=       (16) 

( )
q

ee

ewt
d mod

1121

2

−+

+−
=                     (17) 

• Calculate the vector S by Eq. (18): 

S = B−1GnHdD−1.                        (18) 

The signature represents the pair (e, S). The 

computational difficulty of the signature generation 

procedure is defined by four exponentiation operations 

(about 27700 multiplications in GF(p) for the case m = 6 

and a 128-bit value q). Two exponentiations are 

performed for each of the value’s R and S. 

B. Signature Verification Procedure 

• Compute the vector R: 

( ) ( ) 21 1 ee
YSZSQUTSYSQR

−=           (19) 

with four entries of the vector S and two exponentiation 

operations. 

• Compute the hash-function value e = fH(M||R). 

• Compare the values e and e. If e = e, then the 

signature is accepted as a genuine one. Otherwise 

(e ≠ e) the signature is rejected as a false one. 

C. The Correctness Proof of the Signature Scheme 

The signature scheme is correct if the correctly 

computed signature passes the verification procedure as a 

genuine one. Taking into account Eqs. (14)−(19) we have: 
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In correspondence with the signature verification 

procedure, the latter equality means the correctness of the 

signature described scheme with four entries of the 

signature element S. 

V. DISCISSION 

The multiple entries of the signature element S in the 

verification equation represent a technique for preventing 

signature forging attacks based on using the value of S as 

a fitting parameter. Due to multiple entries of the vector S 

in the verification equation and due to the non-
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commutativity of the multiplication operation, it is 

computationally hard to solve the verification equation 

with the relatively unknown vector S; therefore, the 

mentioned attacks are prevented. Consideration of the 

methods for solving the power equations with multiple 

entries of the unknown, which are given in a FNAA 

represents a specific mathematical task. In the design 

concept of the algebraic signature algorithms with a 

hidden group [15], it is assumed that polynomial 

algorithms for solving the said equations will not be 

developed. One can suppose that the use of the 

verification equations with a larger number  of signature 

entries provides better protection of the signature scheme 

against the mentioned types of forging attacks. Therefore, 

we have proposed the signature algorithms with  = 3 and 

 = 4.  

More realistic attacks on the proposed algorithms 

relate to computing unknown vectors A, B, D, G, and H, 

representing the elements of the public key in the form of 

Eqs. (9)−(14) in the case of algorithms from Sections III 

and IV, respectively. Such an attack can be attributed to a 

direct attack on the algebraic cipher with a hidden group. 

The direct attack is connected with solving a system of 

quadratic vector equations in which the unknowns are 

vectors. Using the BVMTs, one can reduce the system of 

vector equations to the system of scalar equations. 

In line with the design of the algorithms with a hidden 

group, the system of quadratic vector equations is defined 

by the equations used to compute the elements of the 

public key and the conditions of mutual permutability of 

the unknown vectors from the hidden group. For example, 

in the case of the signature scheme with  = 3, the system 

includes five Eq. (9) and the following four equations: 

GH = HG, GGu = GGu, GGx = GGx, GHw = GHw.        

Thus, in the case of the signature scheme from Section III, 

we have a system of 9 vector equations with 8 unknowns: 

A, B, D, G, H, Gu, Gx, and Hw (where Gx = Gx, Gu = Gu, 

and Hw = Hw). When reducing the Eq. (9) in a scalar form, 

each of them gives m scalar quadratic equations. So, we 

have a system of 9m scalar quadratic equations with 8m 

scalar unknowns (coordinates of the unknown vectors).  

Similarly, one can show that in the case of the 

signature algorithm from Section IV, we also have a 

system of 9m scalar quadratic equations with 8m scalar 

unknowns.  

To estimate the security W of the introduced 

algorithms against the direct attack, one can take the 

number of equations  equal to the number of the 

unknowns , and use the recommended minimum values 

of  presented in Table IV for different values of the 

order of the field GF(n) in which the system of quadratic 

equations is given [16]. Since in the proposed signature 

algorithms we use the fields GF(p) with p > n one can use 

the values  corresponding to n = 256. In this case, we 

get overstated requirements for the minimum value, 

however, this overestimation can be considered 

insignificant due to its relatively weak dependence on the 

order of the field.  

TABLE IV. MINIMUM NUMBER OF EQUATIONS PROVIDING A GIVEN 

SECURITY LEVEL TO THE DIRECT ATTACK FOR DIFFERENT FIELDS GF(N) 

IN THE CASE  =  [16] 

W =… 280 2100 2128 2192 2256 

n = 16 30 39 51 80 110 

n = 31 28 36 48 75 103 

n = 256 26 33 43 68 93 

 

The values of W for different versions (differing in the 

dimension of the FNAAs used as algebraic support) of 

the introduced signature algorithms and the algorithm 

from [15] are presented in Table V. A comparison of the 

sizes of the public key and signature in the said versions 

of the signature algorithms is shown in Table VI. From 

Tables V and VI, one can see that the two introduced 

algorithms provide significantly shorter signature and 

public key (at the same or higher security level) than the 

algorithm from [15]. 

TABLE V. SECURITY LEVEL TO THE DIRECT ATTACK OF THE PROPOSED 

SIGNATURE ALGORITHMS FOR DIFFERENT VALUES OF M IN 

COMPARISON WITH THE ALGORITHM FROM [15] 

m =… 4 6 8 10 

Section III 

 = 3 
2100 >2128 2192 >2192 

Section IV 

 = 4 
2100 >2128 2192 >2192 

[15] 

 = 2 
280 <2128 <2192 2192 

TABLE VI. SIZE (IN BYTES) OF THE PUBLIC KEY (SIGNATURE) IN THE 

CASE OF USING FNAAS OF DIFFERENT DIMENSIONS M 

m =… 4 6 8 10 

Section III 

 = 3 

320 

(96) 
480 

(128) 

640 

(160) 

800 

(192) 

Section IV 

 = 4 

320 

(96) 
480 

(128) 

640 

(160) 

800 

(192) 

[15] 

 = 2 

512 

(160) 

768 

(224) 

1024 

(288) 

1280 

(354) 

 

Security to the direct attack is poorly dependent on the 

value of the order of the field GF(p), however, we define 

using different values q (that set different values  

p = 2q + 1), since we expect that the computational 

difficulty of potential structural attacks will be 

significantly dependent on the value p. Currently, there 

are no known structural attacks on the signature 

algorithms with a hidden group, but they can be 

developed in the future. The known structural attacks 

proposed for the crypt algorithms of multivariate 

cryptography are not applicable to the introduced 

algorithms since the design of the latter is significantly 

different. 

Consider two attacks related to forging a signature: i.e., 

to generate a signature without knowing the secret key. In 

the first one, the forger selects arbitrary values of S and 

of e = e1||e2 and, using the signature verification Eq. (13) 

for the algorithm from Section III (or Eq. (19) for the 

algorithm from Section IV) computes the vector R. Then 

the forger calculates the hash value e = e1||e2 = fH(M||R) 

until e1 = e1 and e2 = e2. Due to the use of collision-

resistant 2|q|-bit hash-function fH, the probability of the 

latter event is equal to 2−2|q|. Therefore, the computational 
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difficulty of such an attack can be estimated as O(22|q|), 

where O() is the order notation). 

In the second attack, the forger initiates generating 2128 

different signatures (e(i), S(i)) for documents Mi, where  

i = 1, 2, …, 2|q| (consider, for example, a model of the 

oracle that signs random documents Mi generated by the 

forger). Then he computes the set of hash-function values 

hi = fH(Mi), prepares 2|q| different documents Mi (i = 1, 

2, …, 2|q|), and computes the second set of hash-function 

values hi = fH(Mi). In correspondence with the birthday 

paradox, with a probability equal to 0.5 the first set of 

hash values contains a value hk such that hk = ht for some 

natural number t  2|q|. Due to iterated structure of the 

algorithm for calculating the hash values fH(), the 

signature (e(k), S(k)) is a valid signature to the document 

Mi. The computational difficulty of the second attack 

equals O(2|q|). Note that the security of two developed 

algorithms considered forgery attacks depends mainly on 

the size of the used collision-resistant hash function.  

The main similarity of the proposed signature 

algorithms with the algorithms based on the 

computational difficulty of the hidden DLP [12−14] is 

that both types of algorithms use the same type of 

algebraic support, namely, the FNAAs, and a hidden 

group as an element of the secret key. The other 

similarity items include: 

• Exploiting the exponentiation operations, when 

computing the public key and performing the 

signature generation and verification procedures; 

• Using the left-sided and right-sided 

multiplications as a masking operation, when 

computing the public key. 

The main differences between the compared types of 

algorithms with a hidden group include the following 

points: 

• Their security is based on different 

computationally hard problems; 

• Usually, in the algorithms based on the hidden 

DLP, the signature is computed as a pair of 

numbers, but in the proposed algorithms as a 

number and a vector S; 

• Multiple entries of the signature element S in the 

verification equation are used in the proposed 

algorithm as a technique for preventing forging 

attacks. 

TABLE VII. SIZE (IN BYTES) OF THE PUBLIC KEY AND SIGNATURE IN 

THE ALGORITHMS FROM SECTIONS III AND IV AND FROM [13] AND [14]  

Algorithm 
Signature 

form 

Signature size, 

bytes 

Public key size, 

bytes 

Proposed 

 = 3 (e, S) 128 480 

 = 4 

Hidden [13] (e, s, ) 96 384 

Hidden [14] (e, s, d, )  128 768 

 

Table VII presents a comparison of the introduced 

signature algorithms with some of those based on the 

computational difficulty of the hidden DLP, at the 2128-bit 

security level (the integers s, d, and  are fitting elements 

of the signature in the algorithms based on the hidden 

DLP).  

Table VII shows that the proposed algorithms and 

algorithms based on the hidden DLP provide a 

sufficiently small signature and public key sizes. 

However, the former is preferred because they are free 

from the potential vulnerability to algebraic attacks 

associated with reducing the hidden DLP problem to the 

usual DLP. 

The main similarity of the proposed algorithms with 

the algorithms of multivariate cryptography [16, 18–28] 

is that both types of algorithms are based on the 

computational difficulty of solving large systems of 

quadratic multivariate equations. This determines the 

similarity of the direct attack on these algorithms. 

However, their designs are completely different, defining 

different structural attacks on them. The difference 

includes the following points: 

• In the proposed algorithms the public key 

represents a set of FNAAs elements, whereas in 

the multivariate algorithms the public key is a 

map given by a set of quadratic polynomials (the 

latter causes the very large size of the public key); 

• The signature is computed as a number e and a 

vector S in the algebraic signature algorithms 

with a hidden group, but in the multivariate 

algorithms the signature is computed as a pre-

image of a hash function value; 

• When performing signature generation and 

verification procedures, in the proposed 

algorithms the computations are performed in a 

finite field with a significantly large size of order, 

then in the multivariate signature algorithms. 

Table VIII presents a comparison of some parameters 

of the proposed and known algorithms based on the 

difficulty of finding a solution to a system of many 

quadratic equations with many unknowns.  

TABLE VIII. A ROUGH COMPARISON WITH SOME VERSIONS OF THE 

MPKC SIGNATURE ALGORITHM RAINBOW 

Signature 

algorithm 

Signature 

size, 

bytes 

Public 

key size, 

bytes 
 () 

Order of the 

field in 

which 

quadratic 

equations 

are set 

Rainbow [20] 33 16065 27(33) 28 

Rainbow [22] 

(3 versions) 

66, 

164, 

204 

>150000 

>860000 

>1900000 

64(96) 

- (-) 

128(204) 

24, 

28, 

28 

Moldovyan  

et al. [15] 

(m=4) 

 = 2 

160 512 28(28) >2256 

Proposed 

(m=6) 

 = 3 

104−128 360−480 54(48) 297−2129 

Proposed 

(m=10) 

 = 4 

144−192 500−800 54(48) 281−2129 

 

The multiplicative group of some KNAA with the 

global two-sided unit is actually used as an algebraic 

carrier of the developed algorithms. In the general case, 
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another finite non-commutative group can also be used. 

However, to ensure sufficient performance of signature 

algorithms with a hidden group, the most attractive case 

is the use of the multiplicative group of a suitable KNAA 

as an algebraic support. The use of finite quasigroups as 

an algebraic support for the proposed signature schemes 

does not seem justified, since the associativity of the 

group operation and the reversibility of algebraic 

elements are mandatory properties. In the general case, 

quasigroups do not have such properties. 

In the performed study, the FNAAs defined over the 

ground finite fields GF(p) were considered as algebraic 

supports of the signature algorithms with a hidden group. 

In the future, it is of practical interest to implement the 

considered algorithms on FNAAs set over finite fields 

GF(2s), where s is equal to 81 to 129. The latter will 

potentially provide an increase in the performance of 

signature generation and verification procedures at a 

given security level. 

VI. CONCLUSION  

The introduced algebraic signature algorithms 

represent interest as candidates for practical post-

quantum cryptoschemes. In comparison with the known 

signature schemes based on the computational difficulty 

of solving systems of many quadratic equations with 

many unknowns, their merit is the sufficiently small size 

of the public key. One can expect that the introduced 

signature scheme and the used concept of the design of 

the algebraic signature algorithms with a hidden group 

will attract the attention cryptographic community and 

will lead to numerous studies on the development of 

structural attacks and to a more complete justification of 

their security since the problem of the development of 

practical post-quantum signature schemes is currently a 

significant challenge in the area of cryptography.  

The considered method creates a new direction in the 

development of post-quantum crypto schemes; however, 

it has the following limitations: 

• The method is not applicable for constructing an 

algorithm for the public encryption and public 

key distribution; 

• When the dimension m increases, it is not 

possible to reduce the order of the field to less 

than 280, over which the used FNAA is set; 

• A detailed estimation of the security of 

algorithms of the considered type is associated 

with the study of the decomposition of the FNAA 

into a set of commutative subalgebras, which for 

the case of large dimensions is an independent 

laborious task. 

For future research, the following tasks are important: 

• A detailed study of the decomposition of FNAAs 

into a set of commutative subalgebras for the case 

of dimensions m > 4; 

• Completion of evaluations of software and 

hardware implementation of the proposed EDS 

algorithms; 

• Search for new methods for implementing 

algebraic algorithms based on the computational 

complexity of solving large systems of quadratic 

equations. 
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