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Abstract—Sentiment analysis is a highly valuable tool, 

particularly in the realm of social media, as it enables us to 

understand the public’s opinions regarding specific products 

or topics. However, analyzing short and unstructured texts 

like tweets can present significant challenges. This paper 

explores conventional Machine Learning (ML) approaches 

like Naive Bayes, Logistic Regression, and Support Vector 

Machine to analyze sentiment and compares them against 

Bidirectional Encoder Representations from Transformer 

(BERT). Moreover, we suggest a new preprocessing 

technique for sentiment analysis to enhance the effectiveness 

of these methods. Our findings demonstrate noteworthy 

enhancements in the performance of conventional ML 

models. Interestingly, our study reveals that BERT 

outperforms all aforementioned models, yielding an accuracy 

of about 94%, though incurring a high computational cost. 

Additionally, Logistic Regression performs well with a 

90.35% accuracy rate. With respect to feature extraction, we 

showcase that combining unigram and bigram words 

provides a more thorough comprehension of negation, as 

opposed to solely relying on unigrams. Finally, we propose an 

approach for managing emoticons and emojis that has 

proven to be useful in the fields of sentiment analysis and 

sarcasm interpretation.  

Keywords—natural language processing, machine learning, 

feature extraction, social media, comparative analysis 

I. INTRODUCTION

Social networking services such as Facebook and 

Twitter have become increasingly popular in recent years. 

This is largely due to the platforms’ ability to allow users 

to express themselves freely and openly, sharing their 

opinions, likes, and dislikes with a global audience [1]. As 

of May 2022, approximately 867 million tweets are sent 

per day [2]. Processing these overwhelming online 

customers’ reviews and opinions is of interest to service 

providers/manufacturers and users. This fueled the need 

for Sentiment Analysis (SA), which is an approach in 

Natural Language Processing (NLP). SA studies the 

subjective information in an expression, including 

opinions, appraisals, emotions, and attitudes towards a 

topic, person, or entity. Since 2004, SA has rapidly gained 

momentum and has become a highly active area of 

research [3]. In the literature, three main approaches are 

used for SA: Machine Learning [4] (including deep 

learning), Lexicon-Based [5], and Hybrid approaches [6]. 

Among these, Machine Learning is the most widely 

adopted and established approach. Handling negation [7] 

remains one of the most difficult and unresolved 

challenges in sentiment analysis. For example, sentences 

like, “I couldn’t be prouder”, and “I am not proud” may be 

classified as having negative sentiment, even though the 

sentences express opposite sentiments. In the literature 

negation words (not, never, can’t, etc.) are often included 

in stop-word lists and removed from the text during the 

pre-processing step [3], which we find unjustifiable in SA. 

Another challenge in sentiment analysis is detecting 

sarcasm, which involves using language that signifies the 

opposite to convey contempt. The sentence “Of course, I 

am happy to spend all my money to buy a mobile!” is an 

example of a sarcastic expression.  

Extracting proper sentiment becomes even more 

complex when dealing with short and noisy social media 

texts, that have many peculiarities. In particular, tweets 

have many distinctive features such as, the use of hashtags 

(e.g., “#sad”) to express a feeling; the use of the symbol 

“@” to mention another user in twitter (e.g., “@user123”); 

the use of emoticons like “:)” and emojis like “😞” which 

can change the tweet meaning. For example, “I am 

#speechless🥰” has the opposite sentiment of “I am 

#speechless 💔”. Unfortunately, most of the current 

research does not take those special symbols into 

consideration for SA [8]. 

In this study, we have designed and compared two 

approaches for SA, highlighting the main contributions as 

follows: 

• We explore and compare the performance as well

as the computational cost of traditional Machine

Learning (ML) methods with Bidirectional

Encoder Representations from Transformers

(BERT) models.

• We propose an enhanced preprocessing stage that

includes data cleaning, normalization, and

emoticon and emoji handling to extract relevantManuscript received April 18, 2023; revised May 10, 2023; accepted 

July 13, 2023; published November 16, 2023. 

1206

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

doi: 10.12720/jait.14.6.1206-1213



features. This approach has led to an approximate 

3% improvement in accuracy for traditional ML 

models. 

• We show that handling emoticons and emojis 

significantly enhances sentiment analysis, 

especially in capturing sarcasm and ambiguous 

expressions. 

• We observed that traditional ML models exhibited 

comparable performance to BERT models, but 

with a significantly lower computational cost. 

• We demonstrate that incorporating both unigrams 

and bigrams can improve context understanding, 

particularly in cases involving negation. 

• We show that traditional ML models have 

outperformed the current state-of-the-art 

approaches in SA. 

This paper is organized as follows: Section II describes 

the proposed methodology for both approaches. In 

Section  III, we compare and discuss the results of 

sentiment analysis. The literature in sentiment analysis is 

reviewed and compared with our work in Section IV. 

Finally, in Section V, we present our conclusions. 

II. THE PROPOSED METHODOLOGY 

In this section, we discuss our proposed method, which 

consists of four phases (see Fig. 1): an extensive and novel 

data preprocessing of the tweets, feature extraction, model 

creation and training, model assessment and validation on 

a separate test dataset. 

 

 

Figure 1. Model development process. 

A. Dataset 

We utilized the Kaggle Tweet Sentiment Extraction 

Dataset [9] for our study, which consists of two subsets, 

one for training and one for testing. The training dataset 

consists of 27,481 tweets and includes four fields: textID, 

Text, selected_text, and sentiment. We partitioned the 

training dataset into an 80% training dataset and a 20% 

validation dataset. The test dataset comprises 3534 tweets 

and three columns: textID, Text, and sentiment. The 

sentiment field in both datasets is the class attribute and 

has three labels: negative, neutral, or positive. As we 

focused on binary SA, we removed neutral tweets, 

resulting in a balanced dataset with 47.6% negative and 

52.4% positive tweets. The dataset did not contain any null 

rows, but it was noisy (e.g., Ã Â̄¿) due to the nature of 

social media data, including repeated letters (e.g., wooow) 

and irrelevant parts such as “@users”, emails, website 

links, and numbers. 

B. Data Preprocessing 

Data preprocessing is crucial in this study due to the 

noisy and unstructured nature of the text collected from 

social media websites. Additionally, tweets contain 

various language conventions and peculiarities. This phase 

includes four steps: data cleaning, stop-words removal, 

emoticon and emoji handling, and text normalization. The 

two relevant attributes in this research are the tweets’ “text” 

as input and the “sentiment” as output. We mapped 

positive and negative sentiments to 1 and 0, respectively. 

1) Data cleaning: In this step, regular expressions 

were used to clean the tweets by removing noisy data (e.g., 

Ã Â̄¿Â) and removing repeated letters occurring more 

than twice successively (e.g., “suppper” was replaced by 

“super”). We could have considered replacing a sequence 

of repeated characters by two characters instead of 

removing them, as done by [10], to differentiate between 

the regular usage of the word and the emphasized one. 

However, in our case, we did not have levels of positive 

and negative sentiments, such as extremely positive, 

positive, etc. Emails were simply removed, URL links 

were replaced with the word “link” and user mentions 

“@user” were replaced with “user_mention” to protect the 

privacy of Twitter users. Hashtags were removed but the 

words were kept, and words separated by underscores were 

replaced by whitespace (e.g., “#so_happy” was replaced 

by “so happy”). Numbers and punctuations were removed 

except for emoticons, which were handled separately and 

will be discussed later. Finally, all text was converted to 

lowercase. 

2) Stop-words removal: Stop -words are commonly 

used words in any language that can be safely removed 

from text without sacrificing the meaning of the sentence. 

Removing these words can help the model to focus on more 

relevant words. Although there is no well-defined list of 

stop-words, most researchers remove function words (i.e., 

words that serve to express grammatical relationships with 

other words within a sentence) such as “the”, “at”, and 

“which” [11]. In this study, we used the Natural Language 

Toolkit (NLTK) English stop-words in Python, which 

contains 179 tokens. We removed all the negative words 

(e.g., “mustn’t”, “wasn’t”, etc.) from the stop-words list as 

we believe that the negative form of words absolutely 

affects the sentiment of the tweet. 

3) Emoticons and emojis handling: Despite their 

relevance to sentiment and their popularity on online 

platforms, especially social media websites, the literature 

on graphical emojis and their text-based precursors-

emoticons-, is limited [12]. An emoticon, short for 

“emotion icon” is a combination of punctuation marks, 

numbers, and letters that represent a facial expression such 

as :-) for a smile or :-( for a frown, conveys the writer’s 

intended tone or feelings [13]. Recently, emojis (😊), have 

joined the traditional text-based emoticons. Emoticons and 

emojis are crucial in communicating emotions that are 

difficult to express through words alone, such as sarcasm, 

which can be conveyed using ironic or exaggerated 

emoticons. However, processing emojis can be 
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particularly challenging due to their complex nature. 

Emojis are not standard characters but a combination of 

Unicode characters that can have multiple meanings and 

interpretations depending on the context and the cultural 

background of the users. Therefore, accurately identifying 

and analyzing the sentiment of a tweet that contains emojis 

requires sophisticated techniques that can account for the 

nuances and complexities of these visual symbols. In this 

research, we used the western-style list of emoticons 

from  [14] and replaced each emoticon with its 

corresponding meaning using regular expressions. For 

example, we replaced :) with the word “smiley”. To handle 

emojis, we employed the Emoji module, a Python package 

that represents each emoji by its name. For example, 

demojizin 1         yields: heart_eyes. We removed the 

leading and trailing colons as well as any underscores that 

occur between the words. 

4) Text normalization: Text normalization is the 

process of reducing variations in word forms to their 

common original root or base form. This normalization 

simplifies the modeling process by decreasing the number 

of features, which can improve the performance of the 

model. To achieve text normalization, we utilized two 

techniques: lemmatization and stemming. 

a) Lemmatization: Lemmatization involves 

mapping words to their base form (lemma) based on their 

dictionary definition and part of speech by employing 

vocabulary and morphological analysis of words. For 

example, the words “sang” and “sung” could be 

lemmatized to “sing”. 

b) Stemming: Stemming involves reducing words to 

their root form by removing suffixes and prefixes. It uses 

heuristic rules to strip suffixes according to a predefined 

list of derivational affixes. For example, the words 

“trouble”, “troubled” and “troubles” could be stemmed to 

“troubl”. This may result in misspelled words, but it is 

faster and simpler than lemmatization. 

In this research we used an implementation of Porter 

algorithm for suffix stripping [15] and Wordnet 

Lemmatizer of NLTK for stemming, and lemmatization 

respectively. 

C. Feature Extraction 

Feature extraction is a crucial phase in sentiment 

analysis since the accuracy of the tweet classification 

depends on the features used as input. The first step in this 

phase is text tokenization, which involves breaking down 

a piece of text into smaller units, or tokens. Tokens can be 

words, characters, or sub-words [16]. These tokens are 

then converted into numerical features, commonly known 

as word embeddings in NLP, which the model can process 

efficiently. Fig. 2 illustrates the steps involved in feature 

extraction phase. We used the NLTK word tokenizer, 

which tokenizes at the word level. Remarkably, it also 

tokenizes contractions in an interesting way, such as 

representing “he’s” as “he” and “’s”. Moreover, for 

contractions with negations, like “haven’t”, it tokenizes it 

 
1Converting graphical emoji to its meaning in text. 

into “have” and “n’t”, which is advantageous, as will be 

discussed in Section III.  

 

 

Figure 2. Features extraction phase. 

There are two main types of word embeddings 

commonly discussed in literature: frequency-based 

embeddings and pre-trained word embeddings. In the 

following we will provide an overview of each type. 

1) Frequency based embeddings: vectorize text by 

considering the frequency of word occurrences in the text 

or tweet. These embeddings are typically used with 

traditional NLP methods, such as count vector and Term 

Frequency-Inverse Document Frequency (TF-IDF). 

a) Count vectorization: also known as bag of words 

(BoW), it is a matrix that contains all the distinct words 

in a document and their frequencies of occurrence. The 

order of the words is not important.  

When preprocessing tweets in the training dataset, the 

vocabulary consisted of 18,527 distinct words, which were 

reduced to 11,644 unique words (unigram features). N-

grams are continuous sequences of words or tokens in a 

document, where n is the number of those words. For 

example, the unigrams (n=1) of the sentence “I am not 

good” are [“I”, “am”, “not”, “good”], while the bigrams 

(n=2) are [“I am”, “am not”, “not good”]. A combination 

of both unigrams and bigrams results in [“I”, “am”, “not”, 

“good”, “I am”, “am not”, “not good”]. We explored two 

types of word n-grams, unigram and both unigram and 

bigram, to capture the context of two contiguous words. 

This resulted in 75,846 features. There is a debate in the 

literature as to whether higher-order n-grams are better for 

sentiment classification. While higher-order n-grams may 

help in understanding the context, they can result in a very 

sparse feature space that may not help ML algorithms in 

detecting patterns, and memory can also be a concern. 

b) TF-IDF vectorization: is a statistical measure that 

reflects the importance of a word to a document in a 

collection of documents [17]. In this work, we created two 

separate matrices: one for unigram features and another for 

both unigram and bigram features. As a result, the number 

of features for only unigrams was 11,644, and the number 

of features for both unigrams and bigrams was 75,846. 

2) Pre-trained word embeddings: word embedding is 

a technique used to represent text, in which words that 

have similar meanings are represented by similar vectors 

in a high-dimensional space. To obtain word embeddings, 

a neural network model is trained on a large corpus of text, 

and each distinct word in the corpus is represented with a 

corresponding vector in this space [18]. This approach is 

considered one of the key breakthroughs of deep learning 

in natural language processing. In this study, we explored 

BERT word embeddings. 
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D. Machine Learning Models 

In an effort to find the best model for sentiment analysis, 

we started by exploring traditional classifiers. We then 

turned to transformers, a cutting-edge deep learning 

algorithm that has achieved significant success in NLP. 

1) Traditional ML models: To begin our sentiment 

analysis, we started with the Naïve Bayes (NB) classifier, 

which is a linear probabilistic model based on Bayes’ 

theorem [19]. We chose NB due to its simplicity and 

popularity in sentiment analysis literature. Next, we 

investigated the use of Logistic Regression (LR) as a 

generalized linear model [20]. Finally, we explored 

Support Vector Machines (SVM), which is a non-

probabilistic linear model capable of solving both linear 

and non-linear problems [21]. For all these traditional 

models, we used frequency-based word embeddings, 

specifically count-vectorization and TF-IDF, as inputs. 

Following the pre-processing steps outlined in 

Subsection  II-B, we created four separate input matrices. 

Specifically, we extracted features using count 

vectorization twice: first with only unigram words, and 

then with both unigram and bigram features. We repeated 

this process using TF-IDF as well. To identify the best 

sentiment analysis model, we trained each of the three 

models (NB, LR, and SVM) with four different input 

features: Unigram Count Vectorization (UCV), Unigram 

and Bigram Count Vectorization (UBCV), Unigram TF-

IDF (UTF-IDF), and Unigram and Bigram TF-IDF 

(UBTF-IDF). The performance results for each model and 

input feature combination are presented in Section III. 

2) BERT models: A transformer [22] is a deep learning 

model that leverages the self-attention mechanism to 

assign different weights to each input feature based on its 

importance. This attention mechanism provides context 

for any position in the input sequence, allowing for 

simultaneous processing of the entire input. By 

considering all the surrounding words, the transformer 

enables BERT to better understand the meaning of a word 

in context. In this study, we have fine-tuned BERT [23], a 

pretrained bidirectional transformer model. BERT was 

originally trained on large unlabeled datasets, including 

the Books corpus (with 800 M words) and English 

Wikipedia (with 2,500 M words). These pretrained models 

can be easily fine-tuned in one of the downstream NLP 

tasks in what is known as transfer learning. Fig. 3 shows 

the architecture of the BERT model used for sentiment 

analysis. The first token of each sequence is always a 

special classification token [CLS], and the final hidden 

state corresponding to this token is used as the aggregate 

sequence representation for classification tasks [23]. 

We have examined three architectures of BERT: 

BERTBASE, BERTLARGE, and DistilBERT. DistilBERT is a 

distilled version of BERT that is smaller (40%) and faster 

(60%), while reported to maintain 97% of BERT’s 

performance [24]. 

To preprocess the data in this analysis, we followed all 

the steps outlined in Subsection II-B except for 

lemmatization, stemming, and stop-words removal. With 

transformers, such normalization techniques are not 

necessary, as the BERT tokenizer performs word-piece 

splitting and provides proper word embeddings. 

Additionally, the attention mechanism in BERT eliminates 

the need for stop-words removal. We trained all three 

models for four epochs, which is the recommended 

number by the BERT team. We used Google Colab’s GPU 

to train DistilBERT and BERTBASE with a batch size of 100 

for both training and evaluation. For BERTLARGE, we 

utilized Google Colab’s TPU with eight cores, and used a 

batch size of 20 per core for both training and evaluation. 

The results of the models’ performance are reported and 

discussed in the next section.  

 

 

Figure 3. Sentiment classification using BERT [23]. 

III. RESULTS AND DISCUSSION 

A. Traditional ML Models  

To compare and evaluate the performance of different 

ML models, we used four metrics [25]: accuracy (given by 

Eq. (1)), precision (given by Eq. (2)), recall (given by 

Eq.  (3)), and F1-score (given by Eq. (4)), where TP, TN, 

FP and FN refer to “True Positive”, “True Negative”, 

“False Positive”, and “False Negative” respectively. The 

results are presented in Table I, which compares the 

performance of three traditional ML models on the 

preprocessed test dataset, using various frequency word 

embeddings. All three models performed well, with 

accuracy ranging from 88.17% for Naïve Bayes with UCV 

word embeddings to 90.35% for LR with UBCV word 

embeddings. The training time for the different models 

was relatively short, ranging from 0.01 s to 99.21 s. 

Notably, Naïve Bayes had the shortest training time but 

also the least accuracy, while the best model was LR using 

both unigram and bigram count vectorization.  

accuracy =  
TP + TN

TP + TN + FP + FN
 (1) 

precision =  
TP

TP + FP
 (2) 

recall =  
TP

TP + FN
 (3) 

F1 − score =  
2 × Precision × Recall

Precision + Recall
 

(4) 
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TABLE I. PERFORMANCE COMPARISON OF THE PROPOSED TRADITIONAL ML MODELS USING DIFFERENT FREQUENCY WORD EMBEDDINGS 

Model Word embeddings Accuracy Precision Recall F1-score Training Time (sec) 

Naïve Bayes 

UCV 88.17 88.18 88.17 88.17 0.01 

UBCV 88.97 88.98 88.97 88.97 0.02 

UTF-IDF 87.50 87.55 87.39 87.45 0.02 

UBTF-IDF 88.69 88.82 88.54 88.63 0.03 

LR 

UCV 89.88 89.95 89.88 89.88 65.15 

UBCV 90.35 90.40 90.35 90.36 78.83 

UTF-IDF 89.83 89.86 89.83 89.83 15.40 

UBTF-IDF 89.92 89.93 89.92 89.93 62.53 

SVM 

UCV 89.35 89.55 89.35 89.36 10.81 

UBCV 89.21 89.39 89.21 89.22 30.98 

UTF-IDF 89.69 89.72 89.69 89.69 9.34 

UBTF-IDF 90.07 90.08 90.07 90.07 36.56 

 

Results show that SVM’s performance with unigram 

and bigram TF-IDF features was comparable to the best 

model. Additionally, using both unigram and bigram 

features yielded better results than using only unigrams in 

both count vectorization and TF-IDF across all models, 

with one exception. Specifically, the accuracy of SVM 

when using UCV was slightly better than when using both 

unigrams and bigrams (+0.14%). The input matrix size for 

both UCV and UTF-IF unigrams is 1.15 MB, while it is 

2.12 MB for both unigrams and bigrams features. The size 

of the input matrix could be a concern for larger datasets 

or when considering higher n-grams. To assess the effect 

of preprocessing, we trained the models on the raw dataset 

(without preprocessing) using various frequency word 

embeddings. Fig. 4 shows the performance of the different 

models with and without preprocessing of the test datasets. 

Using the proposed preprocessing led to an improvement 

in performance for all models (around +3%). Additionally, 

the proposed preprocessing reduced the computational 

cost, with an average reduction in training time of 13.70 s. 

 

 

Figure 4. Accuracy comparison among proposed traditional ML models 

using different frequency word embeddings. The orange bars represent 

performance without preprocessing, while the blue bars represent 

performance using preprocessed test dataset. 

Both UCV and UBCV count vectorization gave 

marginally better results than UTF-IDF and UBTF-IDF, 

respectively, when used with the NB and LR models. 

However, the opposite is true for the SVM model. The 

importance of TF-IDF is to minimize the weight of 

commonly occurring words that may not be relevant to the 

classification task. However, since we have already 

removed stop words during the preprocessing phase and 

the dataset is not specific to a particular domain or product, 

we do not have a problem of common words. 

1) Most important features/words: We used the best-

obtained model, namely the LR model, to obtain the most 

important words for negative and positive sentiments 

using only unigrams (Fig. 5) and both unigrams and 

bigrams count vectorization (Fig. 6). It is interesting to 

note that while using only unigrams, the model was able to 

identify the most important words for each sentiment 

correctly. However, using both unigrams and bigrams was 

better in associating the proper negative form of the words 

with the right sentiment. To elaborate, with unigrams 

(Fig.  5), the word “not” was identified as an important 

word for the negative sentiment, which is not always true. 

For example, “not bad” is a positive statement, as evident 

in (Fig. 6). 

 

 

Figure 5. Most important words for negative and positive sentiments 

using unigram count vectorization. 

 

Figure 6. Most important words for negative and positive sentiments 

using LR model along unigram and bigram count vectorization. 

2) Testing LR model with negative form sentences: We 

tested several sentences in the negative form using two LR 

models, one with UCV and the other with both unigrams 

and bigrams count vectorization. Table II shows the 

resulting sentiments, with correct sentiments underlined. 

These results demonstrate that using both unigrams and 
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bigrams count vectorization with the LR model is better at 

understanding context and determining the proper 

sentiment, especially for negative sentences. 

TABLE II. TESTING NEGATIVE FORM SENTENCES USING LR MODEL 

WITH UNIGRAMS ONLY CV AND WITH BOTH UNIGRAMS AND BIGRAMS 

CV 

Sentences in negative 

form 

Using LR with 

UCV 

Using LR with 

UBCV 

I am not happy positive negative 

No problem negative positive 

Not bad, it is beautiful negative positive 
 

B. BERT Models 

Table III presents a summary of the performance results 

of three different versions of the BERT models, namely 

DistilBERT, BERTBASE, and BERTLARGE on the test dataset. 

BERTLARGE achieved the highest accuracy of 94%. 

However, it came at a high computational cost, as it took 

about 30 minutes to train on eight cores Cloud TPU. On 

the other hand, DistilBERT and BERTBASE were trained in 

3.45 min and 7.58 min, respectively, using a single core 

Cloud GPU. As expected, all three types of BERT models 

outperformed the best obtained traditional ML model (LR). 

Refer to Fig. 7 that compares the accuracy of the different 

BERT models with LR model on the test dataset. 

TABLE III. PERFORMANCE COMPARISON OF THE THREE DIFFERENT 

TYPES OF BERT MODELS 

Model Accuracy Precision Recall F1-score 

DistilBERT 92.92 92.92 92.92 92.92 

BERTBASE 93.16 93.18 93.16 93.16 

BERTLARGE 94.01 94.01 94.01 94.01 

 

 

Figure 7. Comparison of accuracy: BERT models vs. Logistic 

Regression. 

1) Negative form sentences and sarcasm: We 

conducted tests on some challenging sentences using the 

best obtained traditional ML model (LR) and the three 

types of BERT models. The resulting sentiments are 

presented in Table IV. As shown in Table IV, for the first 

sentence, all models predicted the correct sentiment, 

except LR, even though we used unigrams and bigrams 

CV. This is because the training dataset does not contain 

“not beautiful”, but rather “beautiful”, which appeared 97 

times, with 92 of them classified as “positive”. On the 

other hand, the different BERT models do not use 

frequency word embeddings but instead use rich 

contextualized pre-trained word embeddings. The fourth 

sentence was correctly classified by all models. Both 

DistilBERT and BERTBASE had the same misclassifications 

for the second, third, and fifth sentences. However, this 

was not the case for BERTLARGE, where all sentences were 

correctly classified, except for the sarcasm (last sentence). 

TABLE IV. AN EXAMPLE OF TESTING SOME SENTENCES USING THE BEST OBTAINED TRADITIONAL ML MODEL (LR), AND THE THREE TYPES OF 

BERT MODELS 

Tweets LR DistilBERT BERTBASE BERTLARGE 

1. It’s not beautiful positive negative negative negative 

2. I don’t dislike horror movies negative negative negative positive 

3. Couldn’t be prouder negative negative negative positive 

4. I am not proud negative negative negative negative 

5. Of course I am happy to pay all my money to buy a mobile! positive positive positive positive 

TABLE V. AN EXAMPLE OF TESTING SOME SENTENCES USING BERTLARGE MODEL WITH AND WITHOUT HANDLING EMOTICONS AND EMOJIS 

Tweets 
Without emoticons and 

emojis handling 

With emoticons and emojis 

handling 

Slept only 1 hour at night, woke up to no coffee, what a great day! :’( positive negative 

Of course I am happy to pay all my money to buy a mobile! 😞 positive negative 

I am speechless 💔 negative negative 

I am speechless 🥰 negative positive 

 

2) Emoticons and emojis handling: Our hypothesis is 

that handling emoticons and emojis can improve the 

model’s ability to understand the context of sentences and 

detect sarcasm. To test this, we evaluated the BERTLARGE 

model, which was the best-performing model in both of 

our approaches, on some tweets that contain emojis and/or 

emoticons. If not handled properly, these special 

characters could be tokenized incorrectly or removed 

during preprocessing. For instance, BERT’s tokenizer 

might replace the 💔     emoji with the unknown token [UNK] 

because it is not available in BERT original vocabulary. 

For emoticons, as they are mixtures of punctuations and 

numbers, if not handled properly, they will be removed 

during the preprocessing method. To address this issue, we 

apply our proposed method for handling emojis that 

replaces them with words that are present in BERT’s 

vocabulary. For example, 😞 would be replaced by 

“disappointed face” which can then be tokenized into 

“disappointed” and “face” both of which have embeddings 

in BERT’s vocabulary. Similarly, the emoticon: (would be 

replaced by “sad cry”. The results of our evaluation are 

presented in Table V. As we can see, the proposed method 
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for handling emojis and emoticons has helped the model 

to detect sarcasm (sentences 1 and 2) and understand 

ambiguous tweets (sentences 3 and 4). 

IV. A COMPARATIVE RELATED WORK 

Numerous traditional machine learning algorithms have 

been explored in the literature for SA, including NB, which 

is one of the most used models for text classification due 

to its simplicity and effectiveness. As a result, researchers 

often use it as a baseline model [26, 27]. In particular, 

Hasan et al. [27] designed a NB model that classifies 

Amazon reviews expressed in English and Bangla 

language without preprocessing for the English dataset. 

When the negation words were removed, the model 

achieved an accuracy of 86.7% on the English dataset. 

Surprisingly, the accuracy dropped to 85.7% when 

negations were considered, which may be attributed to 

using unigrams only. Our research involved investigating 

various types of word embeddings, encompassing both 

unigrams and bigrams as two consecutive words, in 

addition to conducting a thorough preprocessing stage. 

Consequently, we attained an accuracy of 88.97% for the 

Naive Bayes (NB) model. 

SVM has been widely used by many researchers for 

sentiment analysis. Rana et al. [28] applied linear SVM 

and NB to classify movie reviews from the Internet Movie 

Database, which were categorized based on four genres. 

They found that linear SVM performed better than NB, 

with accuracy ranging from 72.50% to 87.50% for 

different movie genres. In our case, our SVM model with 

the proposed preprocessing achieved even higher 

accuracy, of 90.07%. Amrani et al. [29] used a hybrid 

approach that combined SVM and Random Forest 

algorithms to classify Amazon product reviews. They 

show that the hybrid approach outperforms NB and SVM 

models when implemented separately, achieving an 

accuracy of about 83.4%. Poornima et al. [30] used 

bigrams with three different models and found that LR 

outperformed both the multinomial NB and the SVM 

models, with an accuracy of 86.23%. Our proposed 

method, which involved an in-depth preprocessing stage 

and the use of both unigrams and bigrams with LR, 

outperformed all other traditional ML models and 

achieved even higher accuracy, with a score of 90.35%. 

Homaid et al. [31] analyzed the sentiment of Air-Traveller 

using VADER sentiment and LR and found that LR has 

outperformed VADER, with 87% accuracy compared to 

59%. Ragothaman et al. [32] investigated the correlation 

between the tweets’ sentiments and COVID-19 cases and 

deaths. Table VI presents a comparison between our 

proposed method, incorporating a novel preprocessing 

approach, and other research studies that have utilized 

traditional ML models for binary sentiment analysis. The 

results in the table demonstrate that our proposed method 

outperforms all the other models in the literature. 

Recently after BERT was published as a revolutionary 

algorithm of deep learning in multiple tasks of NLP, some 

researchers chose to use BERT in SA. Sousa et al. [33] 

fine-tuned BERTBASE on a corpus of 582 financial news 

articles that were manually labeled as positive, negative, 

or neutral. They have compared BERTBASE with other 

models like NB, SVM, and textCNN. They concluded that 

BERTBASE has outperformed other models with 82.5% 

accuracy. Chiorrini et al. [34] investigated the use of 

BERTBASE model for both sentiment analysis (positive, 

negative, and neural) and emotion recognition of Twitter 

data. The reported results were interesting (92% accuracy), 

however the dataset used for SA is quite small (430 

manually-annotated tweets) for training, validation, and 

test. Delobelle et al. [12] raised the issue of ill-equipped 

models to handle emojis. To overcome this, 3627 emoji 

tokens were added to the vocabulary of the BERT 

tokenizer. In a similar context, Lou et al. [35] proposed 

attention-based network models to improve emoji-based 

sentiment analysis on Chinese microblog posts. 

TABLE VI. COMPARING OUR METHOD WITH THE STATE-OF-THE-ART 

METHODS FOR BINARY SENTIMENT ANALYSIS (POS, NEG) USING 

TRADITIONAL ML MODELS 

Reference Traditional ML Model Best Obtained Accuracy 

[27] NB 86.7% 

[28] Linear SVM, NB 
72.50% to 87.50% for the 

different movie genres 

[29] 
NB, SVM, and hybrid 

(NB + SVM) 
83.4% 

[30] LR, NB, SVM 86.23% 

[31] VADER, LR 87% 

Our method NB, LR, SVM 90.35% 

V. CONCLUSION 

This paper investigates two approaches for sentiment 

analysis. Specifically, we examine conventional machine 

learning algorithms, including Naïve Bayes, LR, and SVM, 

and compare them to Bidirectional Encoder 

Representations from Transformer (DistilBERT, BERTBASE, 

and BERTLARGE). Our study suggests that traditional ML 

models can perform well with appropriate preprocessing 

and feature extraction. We propose a thorough 

preprocessing phase for sentiment analysis that 

significantly improves the results of traditional ML models. 

Regarding feature extraction, our results indicate that 

incorporating both unigrams and bigrams is more effective 

in capturing sentiment, particularly in the presence of 

negation. This approach enhances our understanding of 

sentiment compared to relying solely on unigrams. 

Furthermore, we propose a method for effectively 

managing emoticons and emojis, which has been effective 

in grasping the context of sentences and detecting sarcasm, 

thereby increasing accuracy. 

Future studies can focus on analyzing tweets that 

contain a higher frequency of emoticons and emojis, as this 

can aid in improving the model’s comprehension of their 

nuanced meanings. Additionally, training the model on a 

significantly larger dataset with an increased number of 

instances of sarcastic sentences and negation forms, can 

greatly enhance its proficiency in accurately recognizing 

sentiment in ambiguous sentences. 
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