
Enhancing Sentiment Analysis on Social Media

with Novel Preprocessing Techniques

Khouloud Safi Eljil 1,2,*, Farid Nait-Abdesselam 3, Essia Hamouda 4, and Mohamed Hamdi 2

1 Computer Science Department, Université Paris Cité, France
2 Higher School of Communications, University of Carthage, SUP’COM, Tunisia
3 School of Science and Engineering, University of Missouri, Kansas City, USA

4 Department of Information and Decision Sciences, California State University, San Bernardino, USA

*Correspondence: khouloud.safi-eljil@etu.u-paris.fr (K.S.E.)

Abstract—Sentiment analysis is a highly valuable tool,

particularly in the realm of social media, as it enables us to

understand the public’s opinions regarding specific products

or topics. However, analyzing short and unstructured texts

like tweets can present significant challenges. This paper

explores conventional Machine Learning (ML) approaches

like Naive Bayes, Logistic Regression, and Support Vector

Machine to analyze sentiment and compares them against

Bidirectional Encoder Representations from Transformer

(BERT). Moreover, we suggest a new preprocessing

technique for sentiment analysis to enhance the effectiveness

of these methods. Our findings demonstrate noteworthy

enhancements in the performance of conventional ML

models. Interestingly, our study reveals that BERT

outperforms all aforementioned models, yielding an accuracy

of about 94%, though incurring a high computational cost.

Additionally, Logistic Regression performs well with a

90.35% accuracy rate. With respect to feature extraction, we

showcase that combining unigram and bigram words

provides a more thorough comprehension of negation, as

opposed to solely relying on unigrams. Finally, we propose an

approach for managing emoticons and emojis that has

proven to be useful in the fields of sentiment analysis and

sarcasm interpretation.

Keywords—natural language processing, machine learning,

feature extraction, social media, comparative analysis

I. INTRODUCTION

Social networking services such as Facebook and

Twitter have become increasingly popular in recent years.

This is largely due to the platforms’ ability to allow users

to express themselves freely and openly, sharing their

opinions, likes, and dislikes with a global audience [1]. As

of May 2022, approximately 867 million tweets are sent

per day [2]. Processing these overwhelming online

customers’ reviews and opinions is of interest to service

providers/manufacturers and users. This fueled the need

for Sentiment Analysis (SA), which is an approach in

Natural Language Processing (NLP). SA studies the

subjective information in an expression, including

opinions, appraisals, emotions, and attitudes towards a

topic, person, or entity. Since 2004, SA has rapidly gained

momentum and has become a highly active area of

research [3]. In the literature, three main approaches are

used for SA: Machine Learning [4] (including deep

learning), Lexicon-Based [5], and Hybrid approaches [6].

Among these, Machine Learning is the most widely

adopted and established approach. Handling negation [7]

remains one of the most difficult and unresolved

challenges in sentiment analysis. For example, sentences

like, “I couldn’t be prouder”, and “I am not proud” may be

classified as having negative sentiment, even though the

sentences express opposite sentiments. In the literature

negation words (not, never, can’t, etc.) are often included

in stop-word lists and removed from the text during the

pre-processing step [3], which we find unjustifiable in SA.

Another challenge in sentiment analysis is detecting

sarcasm, which involves using language that signifies the

opposite to convey contempt. The sentence “Of course, I

am happy to spend all my money to buy a mobile!” is an

example of a sarcastic expression.

Extracting proper sentiment becomes even more

complex when dealing with short and noisy social media

texts, that have many peculiarities. In particular, tweets

have many distinctive features such as, the use of hashtags

(e.g., “#sad”) to express a feeling; the use of the symbol

“@” to mention another user in twitter (e.g., “@user123”);

the use of emoticons like “:)” and emojis like “😞” which

can change the tweet meaning. For example, “I am

#speechless🥰” has the opposite sentiment of “I am

#speechless 💔”. Unfortunately, most of the current

research does not take those special symbols into

consideration for SA [8].

In this study, we have designed and compared two

approaches for SA, highlighting the main contributions as

follows:

• We explore and compare the performance as well

as the computational cost of traditional Machine

Learning (ML) methods with Bidirectional

Encoder Representations from Transformers

(BERT) models.

• We propose an enhanced preprocessing stage that

includes data cleaning, normalization, and

emoticon and emoji handling to extract relevantManuscript received April 18, 2023; revised May 10, 2023; accepted

July 13, 2023; published November 16, 2023.

1206

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

doi: 10.12720/jait.14.6.1206-1213

features. This approach has led to an approximate

3% improvement in accuracy for traditional ML

models.

• We show that handling emoticons and emojis

significantly enhances sentiment analysis,

especially in capturing sarcasm and ambiguous

expressions.

• We observed that traditional ML models exhibited

comparable performance to BERT models, but

with a significantly lower computational cost.

• We demonstrate that incorporating both unigrams

and bigrams can improve context understanding,

particularly in cases involving negation.

• We show that traditional ML models have

outperformed the current state-of-the-art

approaches in SA.

This paper is organized as follows: Section II describes

the proposed methodology for both approaches. In

Section III, we compare and discuss the results of

sentiment analysis. The literature in sentiment analysis is

reviewed and compared with our work in Section IV.

Finally, in Section V, we present our conclusions.

II. THE PROPOSED METHODOLOGY

In this section, we discuss our proposed method, which

consists of four phases (see Fig. 1): an extensive and novel

data preprocessing of the tweets, feature extraction, model

creation and training, model assessment and validation on

a separate test dataset.

Figure 1. Model development process.

A. Dataset

We utilized the Kaggle Tweet Sentiment Extraction

Dataset [9] for our study, which consists of two subsets,

one for training and one for testing. The training dataset

consists of 27,481 tweets and includes four fields: textID,

Text, selected_text, and sentiment. We partitioned the

training dataset into an 80% training dataset and a 20%

validation dataset. The test dataset comprises 3534 tweets

and three columns: textID, Text, and sentiment. The

sentiment field in both datasets is the class attribute and

has three labels: negative, neutral, or positive. As we

focused on binary SA, we removed neutral tweets,

resulting in a balanced dataset with 47.6% negative and

52.4% positive tweets. The dataset did not contain any null

rows, but it was noisy (e.g., Ã Â̄¿) due to the nature of

social media data, including repeated letters (e.g., wooow)

and irrelevant parts such as “@users”, emails, website

links, and numbers.

B. Data Preprocessing

Data preprocessing is crucial in this study due to the

noisy and unstructured nature of the text collected from

social media websites. Additionally, tweets contain

various language conventions and peculiarities. This phase

includes four steps: data cleaning, stop-words removal,

emoticon and emoji handling, and text normalization. The

two relevant attributes in this research are the tweets’ “text”

as input and the “sentiment” as output. We mapped

positive and negative sentiments to 1 and 0, respectively.

1) Data cleaning: In this step, regular expressions

were used to clean the tweets by removing noisy data (e.g.,

Ã Â̄¿Â) and removing repeated letters occurring more

than twice successively (e.g., “suppper” was replaced by

“super”). We could have considered replacing a sequence

of repeated characters by two characters instead of

removing them, as done by [10], to differentiate between

the regular usage of the word and the emphasized one.

However, in our case, we did not have levels of positive

and negative sentiments, such as extremely positive,

positive, etc. Emails were simply removed, URL links

were replaced with the word “link” and user mentions

“@user” were replaced with “user_mention” to protect the

privacy of Twitter users. Hashtags were removed but the

words were kept, and words separated by underscores were

replaced by whitespace (e.g., “#so_happy” was replaced

by “so happy”). Numbers and punctuations were removed

except for emoticons, which were handled separately and

will be discussed later. Finally, all text was converted to

lowercase.

2) Stop-words removal: Stop -words are commonly

used words in any language that can be safely removed

from text without sacrificing the meaning of the sentence.

Removing these words can help the model to focus on more

relevant words. Although there is no well-defined list of

stop-words, most researchers remove function words (i.e.,

words that serve to express grammatical relationships with

other words within a sentence) such as “the”, “at”, and

“which” [11]. In this study, we used the Natural Language

Toolkit (NLTK) English stop-words in Python, which

contains 179 tokens. We removed all the negative words

(e.g., “mustn’t”, “wasn’t”, etc.) from the stop-words list as

we believe that the negative form of words absolutely

affects the sentiment of the tweet.

3) Emoticons and emojis handling: Despite their

relevance to sentiment and their popularity on online

platforms, especially social media websites, the literature

on graphical emojis and their text-based precursors-

emoticons-, is limited [12]. An emoticon, short for

“emotion icon” is a combination of punctuation marks,

numbers, and letters that represent a facial expression such

as :-) for a smile or :-(for a frown, conveys the writer’s

intended tone or feelings [13]. Recently, emojis (😊), have

joined the traditional text-based emoticons. Emoticons and

emojis are crucial in communicating emotions that are

difficult to express through words alone, such as sarcasm,

which can be conveyed using ironic or exaggerated

emoticons. However, processing emojis can be

1207

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

particularly challenging due to their complex nature.

Emojis are not standard characters but a combination of

Unicode characters that can have multiple meanings and

interpretations depending on the context and the cultural

background of the users. Therefore, accurately identifying

and analyzing the sentiment of a tweet that contains emojis

requires sophisticated techniques that can account for the

nuances and complexities of these visual symbols. In this

research, we used the western-style list of emoticons

from [14] and replaced each emoticon with its

corresponding meaning using regular expressions. For

example, we replaced :) with the word “smiley”. To handle

emojis, we employed the Emoji module, a Python package

that represents each emoji by its name. For example,

demojizin 1 yields: heart_eyes. We removed the

leading and trailing colons as well as any underscores that

occur between the words.

4) Text normalization: Text normalization is the

process of reducing variations in word forms to their

common original root or base form. This normalization

simplifies the modeling process by decreasing the number

of features, which can improve the performance of the

model. To achieve text normalization, we utilized two

techniques: lemmatization and stemming.

a) Lemmatization: Lemmatization involves

mapping words to their base form (lemma) based on their

dictionary definition and part of speech by employing

vocabulary and morphological analysis of words. For

example, the words “sang” and “sung” could be

lemmatized to “sing”.

b) Stemming: Stemming involves reducing words to

their root form by removing suffixes and prefixes. It uses

heuristic rules to strip suffixes according to a predefined

list of derivational affixes. For example, the words

“trouble”, “troubled” and “troubles” could be stemmed to

“troubl”. This may result in misspelled words, but it is

faster and simpler than lemmatization.

In this research we used an implementation of Porter

algorithm for suffix stripping [15] and Wordnet

Lemmatizer of NLTK for stemming, and lemmatization

respectively.

C. Feature Extraction

Feature extraction is a crucial phase in sentiment

analysis since the accuracy of the tweet classification

depends on the features used as input. The first step in this

phase is text tokenization, which involves breaking down

a piece of text into smaller units, or tokens. Tokens can be

words, characters, or sub-words [16]. These tokens are

then converted into numerical features, commonly known

as word embeddings in NLP, which the model can process

efficiently. Fig. 2 illustrates the steps involved in feature

extraction phase. We used the NLTK word tokenizer,

which tokenizes at the word level. Remarkably, it also

tokenizes contractions in an interesting way, such as

representing “he’s” as “he” and “’s”. Moreover, for

contractions with negations, like “haven’t”, it tokenizes it

1Converting graphical emoji to its meaning in text.

into “have” and “n’t”, which is advantageous, as will be

discussed in Section III.

Figure 2. Features extraction phase.

There are two main types of word embeddings

commonly discussed in literature: frequency-based

embeddings and pre-trained word embeddings. In the

following we will provide an overview of each type.

1) Frequency based embeddings: vectorize text by

considering the frequency of word occurrences in the text

or tweet. These embeddings are typically used with

traditional NLP methods, such as count vector and Term

Frequency-Inverse Document Frequency (TF-IDF).

a) Count vectorization: also known as bag of words

(BoW), it is a matrix that contains all the distinct words

in a document and their frequencies of occurrence. The

order of the words is not important.

When preprocessing tweets in the training dataset, the

vocabulary consisted of 18,527 distinct words, which were

reduced to 11,644 unique words (unigram features). N-

grams are continuous sequences of words or tokens in a

document, where n is the number of those words. For

example, the unigrams (n=1) of the sentence “I am not

good” are [“I”, “am”, “not”, “good”], while the bigrams

(n=2) are [“I am”, “am not”, “not good”]. A combination

of both unigrams and bigrams results in [“I”, “am”, “not”,

“good”, “I am”, “am not”, “not good”]. We explored two

types of word n-grams, unigram and both unigram and

bigram, to capture the context of two contiguous words.

This resulted in 75,846 features. There is a debate in the

literature as to whether higher-order n-grams are better for

sentiment classification. While higher-order n-grams may

help in understanding the context, they can result in a very

sparse feature space that may not help ML algorithms in

detecting patterns, and memory can also be a concern.

b) TF-IDF vectorization: is a statistical measure that

reflects the importance of a word to a document in a

collection of documents [17]. In this work, we created two

separate matrices: one for unigram features and another for

both unigram and bigram features. As a result, the number

of features for only unigrams was 11,644, and the number

of features for both unigrams and bigrams was 75,846.

2) Pre-trained word embeddings: word embedding is

a technique used to represent text, in which words that

have similar meanings are represented by similar vectors

in a high-dimensional space. To obtain word embeddings,

a neural network model is trained on a large corpus of text,

and each distinct word in the corpus is represented with a

corresponding vector in this space [18]. This approach is

considered one of the key breakthroughs of deep learning

in natural language processing. In this study, we explored

BERT word embeddings.

1208

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

D. Machine Learning Models

In an effort to find the best model for sentiment analysis,

we started by exploring traditional classifiers. We then

turned to transformers, a cutting-edge deep learning

algorithm that has achieved significant success in NLP.

1) Traditional ML models: To begin our sentiment

analysis, we started with the Naïve Bayes (NB) classifier,

which is a linear probabilistic model based on Bayes’

theorem [19]. We chose NB due to its simplicity and

popularity in sentiment analysis literature. Next, we

investigated the use of Logistic Regression (LR) as a

generalized linear model [20]. Finally, we explored

Support Vector Machines (SVM), which is a non-

probabilistic linear model capable of solving both linear

and non-linear problems [21]. For all these traditional

models, we used frequency-based word embeddings,

specifically count-vectorization and TF-IDF, as inputs.

Following the pre-processing steps outlined in

Subsection II-B, we created four separate input matrices.

Specifically, we extracted features using count

vectorization twice: first with only unigram words, and

then with both unigram and bigram features. We repeated

this process using TF-IDF as well. To identify the best

sentiment analysis model, we trained each of the three

models (NB, LR, and SVM) with four different input

features: Unigram Count Vectorization (UCV), Unigram

and Bigram Count Vectorization (UBCV), Unigram TF-

IDF (UTF-IDF), and Unigram and Bigram TF-IDF

(UBTF-IDF). The performance results for each model and

input feature combination are presented in Section III.

2) BERT models: A transformer [22] is a deep learning

model that leverages the self-attention mechanism to

assign different weights to each input feature based on its

importance. This attention mechanism provides context

for any position in the input sequence, allowing for

simultaneous processing of the entire input. By

considering all the surrounding words, the transformer

enables BERT to better understand the meaning of a word

in context. In this study, we have fine-tuned BERT [23], a

pretrained bidirectional transformer model. BERT was

originally trained on large unlabeled datasets, including

the Books corpus (with 800 M words) and English

Wikipedia (with 2,500 M words). These pretrained models

can be easily fine-tuned in one of the downstream NLP

tasks in what is known as transfer learning. Fig. 3 shows

the architecture of the BERT model used for sentiment

analysis. The first token of each sequence is always a

special classification token [CLS], and the final hidden

state corresponding to this token is used as the aggregate

sequence representation for classification tasks [23].

We have examined three architectures of BERT:

BERTBASE, BERTLARGE, and DistilBERT. DistilBERT is a

distilled version of BERT that is smaller (40%) and faster

(60%), while reported to maintain 97% of BERT’s

performance [24].

To preprocess the data in this analysis, we followed all

the steps outlined in Subsection II-B except for

lemmatization, stemming, and stop-words removal. With

transformers, such normalization techniques are not

necessary, as the BERT tokenizer performs word-piece

splitting and provides proper word embeddings.

Additionally, the attention mechanism in BERT eliminates

the need for stop-words removal. We trained all three

models for four epochs, which is the recommended

number by the BERT team. We used Google Colab’s GPU

to train DistilBERT and BERTBASE with a batch size of 100

for both training and evaluation. For BERTLARGE, we

utilized Google Colab’s TPU with eight cores, and used a

batch size of 20 per core for both training and evaluation.

The results of the models’ performance are reported and

discussed in the next section.

Figure 3. Sentiment classification using BERT [23].

III. RESULTS AND DISCUSSION

A. Traditional ML Models

To compare and evaluate the performance of different

ML models, we used four metrics [25]: accuracy (given by

Eq. (1)), precision (given by Eq. (2)), recall (given by

Eq. (3)), and F1-score (given by Eq. (4)), where TP, TN,

FP and FN refer to “True Positive”, “True Negative”,

“False Positive”, and “False Negative” respectively. The

results are presented in Table I, which compares the

performance of three traditional ML models on the

preprocessed test dataset, using various frequency word

embeddings. All three models performed well, with

accuracy ranging from 88.17% for Naïve Bayes with UCV

word embeddings to 90.35% for LR with UBCV word

embeddings. The training time for the different models

was relatively short, ranging from 0.01 s to 99.21 s.

Notably, Naïve Bayes had the shortest training time but

also the least accuracy, while the best model was LR using

both unigram and bigram count vectorization.

accuracy =
TP + TN

TP + TN + FP + FN
 (1)

precision =
TP

TP + FP
 (2)

recall =
TP

TP + FN
 (3)

F1 − score =
2 × Precision × Recall

Precision + Recall

(4)

1209

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

TABLE I. PERFORMANCE COMPARISON OF THE PROPOSED TRADITIONAL ML MODELS USING DIFFERENT FREQUENCY WORD EMBEDDINGS

Model Word embeddings Accuracy Precision Recall F1-score Training Time (sec)

Naïve Bayes

UCV 88.17 88.18 88.17 88.17 0.01

UBCV 88.97 88.98 88.97 88.97 0.02

UTF-IDF 87.50 87.55 87.39 87.45 0.02

UBTF-IDF 88.69 88.82 88.54 88.63 0.03

LR

UCV 89.88 89.95 89.88 89.88 65.15

UBCV 90.35 90.40 90.35 90.36 78.83

UTF-IDF 89.83 89.86 89.83 89.83 15.40

UBTF-IDF 89.92 89.93 89.92 89.93 62.53

SVM

UCV 89.35 89.55 89.35 89.36 10.81

UBCV 89.21 89.39 89.21 89.22 30.98

UTF-IDF 89.69 89.72 89.69 89.69 9.34

UBTF-IDF 90.07 90.08 90.07 90.07 36.56

Results show that SVM’s performance with unigram

and bigram TF-IDF features was comparable to the best

model. Additionally, using both unigram and bigram

features yielded better results than using only unigrams in

both count vectorization and TF-IDF across all models,

with one exception. Specifically, the accuracy of SVM

when using UCV was slightly better than when using both

unigrams and bigrams (+0.14%). The input matrix size for

both UCV and UTF-IF unigrams is 1.15 MB, while it is

2.12 MB for both unigrams and bigrams features. The size

of the input matrix could be a concern for larger datasets

or when considering higher n-grams. To assess the effect

of preprocessing, we trained the models on the raw dataset

(without preprocessing) using various frequency word

embeddings. Fig. 4 shows the performance of the different

models with and without preprocessing of the test datasets.

Using the proposed preprocessing led to an improvement

in performance for all models (around +3%). Additionally,

the proposed preprocessing reduced the computational

cost, with an average reduction in training time of 13.70 s.

Figure 4. Accuracy comparison among proposed traditional ML models

using different frequency word embeddings. The orange bars represent

performance without preprocessing, while the blue bars represent

performance using preprocessed test dataset.

Both UCV and UBCV count vectorization gave

marginally better results than UTF-IDF and UBTF-IDF,

respectively, when used with the NB and LR models.

However, the opposite is true for the SVM model. The

importance of TF-IDF is to minimize the weight of

commonly occurring words that may not be relevant to the

classification task. However, since we have already

removed stop words during the preprocessing phase and

the dataset is not specific to a particular domain or product,

we do not have a problem of common words.

1) Most important features/words: We used the best-

obtained model, namely the LR model, to obtain the most

important words for negative and positive sentiments

using only unigrams (Fig. 5) and both unigrams and

bigrams count vectorization (Fig. 6). It is interesting to

note that while using only unigrams, the model was able to

identify the most important words for each sentiment

correctly. However, using both unigrams and bigrams was

better in associating the proper negative form of the words

with the right sentiment. To elaborate, with unigrams

(Fig. 5), the word “not” was identified as an important

word for the negative sentiment, which is not always true.

For example, “not bad” is a positive statement, as evident

in (Fig. 6).

Figure 5. Most important words for negative and positive sentiments

using unigram count vectorization.

Figure 6. Most important words for negative and positive sentiments

using LR model along unigram and bigram count vectorization.

2) Testing LR model with negative form sentences: We

tested several sentences in the negative form using two LR

models, one with UCV and the other with both unigrams

and bigrams count vectorization. Table II shows the

resulting sentiments, with correct sentiments underlined.

These results demonstrate that using both unigrams and

1210

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

bigrams count vectorization with the LR model is better at

understanding context and determining the proper

sentiment, especially for negative sentences.

TABLE II. TESTING NEGATIVE FORM SENTENCES USING LR MODEL

WITH UNIGRAMS ONLY CV AND WITH BOTH UNIGRAMS AND BIGRAMS

CV

Sentences in negative

form

Using LR with

UCV

Using LR with

UBCV

I am not happy positive negative

No problem negative positive

Not bad, it is beautiful negative positive

B. BERT Models

Table III presents a summary of the performance results

of three different versions of the BERT models, namely

DistilBERT, BERTBASE, and BERTLARGE on the test dataset.

BERTLARGE achieved the highest accuracy of 94%.

However, it came at a high computational cost, as it took

about 30 minutes to train on eight cores Cloud TPU. On

the other hand, DistilBERT and BERTBASE were trained in

3.45 min and 7.58 min, respectively, using a single core

Cloud GPU. As expected, all three types of BERT models

outperformed the best obtained traditional ML model (LR).

Refer to Fig. 7 that compares the accuracy of the different

BERT models with LR model on the test dataset.

TABLE III. PERFORMANCE COMPARISON OF THE THREE DIFFERENT

TYPES OF BERT MODELS

Model Accuracy Precision Recall F1-score

DistilBERT 92.92 92.92 92.92 92.92

BERTBASE 93.16 93.18 93.16 93.16

BERTLARGE 94.01 94.01 94.01 94.01

Figure 7. Comparison of accuracy: BERT models vs. Logistic

Regression.

1) Negative form sentences and sarcasm: We

conducted tests on some challenging sentences using the

best obtained traditional ML model (LR) and the three

types of BERT models. The resulting sentiments are

presented in Table IV. As shown in Table IV, for the first

sentence, all models predicted the correct sentiment,

except LR, even though we used unigrams and bigrams

CV. This is because the training dataset does not contain

“not beautiful”, but rather “beautiful”, which appeared 97

times, with 92 of them classified as “positive”. On the

other hand, the different BERT models do not use

frequency word embeddings but instead use rich

contextualized pre-trained word embeddings. The fourth

sentence was correctly classified by all models. Both

DistilBERT and BERTBASE had the same misclassifications

for the second, third, and fifth sentences. However, this

was not the case for BERTLARGE, where all sentences were

correctly classified, except for the sarcasm (last sentence).

TABLE IV. AN EXAMPLE OF TESTING SOME SENTENCES USING THE BEST OBTAINED TRADITIONAL ML MODEL (LR), AND THE THREE TYPES OF

BERT MODELS

Tweets LR DistilBERT BERTBASE BERTLARGE

1. It’s not beautiful positive negative negative negative

2. I don’t dislike horror movies negative negative negative positive

3. Couldn’t be prouder negative negative negative positive

4. I am not proud negative negative negative negative

5. Of course I am happy to pay all my money to buy a mobile! positive positive positive positive

TABLE V. AN EXAMPLE OF TESTING SOME SENTENCES USING BERTLARGE MODEL WITH AND WITHOUT HANDLING EMOTICONS AND EMOJIS

Tweets
Without emoticons and

emojis handling

With emoticons and emojis

handling

Slept only 1 hour at night, woke up to no coffee, what a great day! :’(positive negative

Of course I am happy to pay all my money to buy a mobile! 😞 positive negative

I am speechless 💔 negative negative

I am speechless 🥰 negative positive

2) Emoticons and emojis handling: Our hypothesis is

that handling emoticons and emojis can improve the

model’s ability to understand the context of sentences and

detect sarcasm. To test this, we evaluated the BERTLARGE

model, which was the best-performing model in both of

our approaches, on some tweets that contain emojis and/or

emoticons. If not handled properly, these special

characters could be tokenized incorrectly or removed

during preprocessing. For instance, BERT’s tokenizer

might replace the 💔 emoji with the unknown token [UNK]

because it is not available in BERT original vocabulary.

For emoticons, as they are mixtures of punctuations and

numbers, if not handled properly, they will be removed

during the preprocessing method. To address this issue, we

apply our proposed method for handling emojis that

replaces them with words that are present in BERT’s

vocabulary. For example, 😞 would be replaced by

“disappointed face” which can then be tokenized into

“disappointed” and “face” both of which have embeddings

in BERT’s vocabulary. Similarly, the emoticon: (would be

replaced by “sad cry”. The results of our evaluation are

presented in Table V. As we can see, the proposed method

1211

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

for handling emojis and emoticons has helped the model

to detect sarcasm (sentences 1 and 2) and understand

ambiguous tweets (sentences 3 and 4).

IV. A COMPARATIVE RELATED WORK

Numerous traditional machine learning algorithms have

been explored in the literature for SA, including NB, which

is one of the most used models for text classification due

to its simplicity and effectiveness. As a result, researchers

often use it as a baseline model [26, 27]. In particular,

Hasan et al. [27] designed a NB model that classifies

Amazon reviews expressed in English and Bangla

language without preprocessing for the English dataset.

When the negation words were removed, the model

achieved an accuracy of 86.7% on the English dataset.

Surprisingly, the accuracy dropped to 85.7% when

negations were considered, which may be attributed to

using unigrams only. Our research involved investigating

various types of word embeddings, encompassing both

unigrams and bigrams as two consecutive words, in

addition to conducting a thorough preprocessing stage.

Consequently, we attained an accuracy of 88.97% for the

Naive Bayes (NB) model.

SVM has been widely used by many researchers for

sentiment analysis. Rana et al. [28] applied linear SVM

and NB to classify movie reviews from the Internet Movie

Database, which were categorized based on four genres.

They found that linear SVM performed better than NB,

with accuracy ranging from 72.50% to 87.50% for

different movie genres. In our case, our SVM model with

the proposed preprocessing achieved even higher

accuracy, of 90.07%. Amrani et al. [29] used a hybrid

approach that combined SVM and Random Forest

algorithms to classify Amazon product reviews. They

show that the hybrid approach outperforms NB and SVM

models when implemented separately, achieving an

accuracy of about 83.4%. Poornima et al. [30] used

bigrams with three different models and found that LR

outperformed both the multinomial NB and the SVM

models, with an accuracy of 86.23%. Our proposed

method, which involved an in-depth preprocessing stage

and the use of both unigrams and bigrams with LR,

outperformed all other traditional ML models and

achieved even higher accuracy, with a score of 90.35%.

Homaid et al. [31] analyzed the sentiment of Air-Traveller

using VADER sentiment and LR and found that LR has

outperformed VADER, with 87% accuracy compared to

59%. Ragothaman et al. [32] investigated the correlation

between the tweets’ sentiments and COVID-19 cases and

deaths. Table VI presents a comparison between our

proposed method, incorporating a novel preprocessing

approach, and other research studies that have utilized

traditional ML models for binary sentiment analysis. The

results in the table demonstrate that our proposed method

outperforms all the other models in the literature.

Recently after BERT was published as a revolutionary

algorithm of deep learning in multiple tasks of NLP, some

researchers chose to use BERT in SA. Sousa et al. [33]

fine-tuned BERTBASE on a corpus of 582 financial news

articles that were manually labeled as positive, negative,

or neutral. They have compared BERTBASE with other

models like NB, SVM, and textCNN. They concluded that

BERTBASE has outperformed other models with 82.5%

accuracy. Chiorrini et al. [34] investigated the use of

BERTBASE model for both sentiment analysis (positive,

negative, and neural) and emotion recognition of Twitter

data. The reported results were interesting (92% accuracy),

however the dataset used for SA is quite small (430

manually-annotated tweets) for training, validation, and

test. Delobelle et al. [12] raised the issue of ill-equipped

models to handle emojis. To overcome this, 3627 emoji

tokens were added to the vocabulary of the BERT

tokenizer. In a similar context, Lou et al. [35] proposed

attention-based network models to improve emoji-based

sentiment analysis on Chinese microblog posts.

TABLE VI. COMPARING OUR METHOD WITH THE STATE-OF-THE-ART

METHODS FOR BINARY SENTIMENT ANALYSIS (POS, NEG) USING

TRADITIONAL ML MODELS

Reference Traditional ML Model Best Obtained Accuracy

[27] NB 86.7%

[28] Linear SVM, NB
72.50% to 87.50% for the

different movie genres

[29]
NB, SVM, and hybrid

(NB + SVM)
83.4%

[30] LR, NB, SVM 86.23%

[31] VADER, LR 87%

Our method NB, LR, SVM 90.35%

V. CONCLUSION

This paper investigates two approaches for sentiment

analysis. Specifically, we examine conventional machine

learning algorithms, including Naïve Bayes, LR, and SVM,

and compare them to Bidirectional Encoder

Representations from Transformer (DistilBERT, BERTBASE,

and BERTLARGE). Our study suggests that traditional ML

models can perform well with appropriate preprocessing

and feature extraction. We propose a thorough

preprocessing phase for sentiment analysis that

significantly improves the results of traditional ML models.

Regarding feature extraction, our results indicate that

incorporating both unigrams and bigrams is more effective

in capturing sentiment, particularly in the presence of

negation. This approach enhances our understanding of

sentiment compared to relying solely on unigrams.

Furthermore, we propose a method for effectively

managing emoticons and emojis, which has been effective

in grasping the context of sentences and detecting sarcasm,

thereby increasing accuracy.

Future studies can focus on analyzing tweets that

contain a higher frequency of emoticons and emojis, as this

can aid in improving the model’s comprehension of their

nuanced meanings. Additionally, training the model on a

significantly larger dataset with an increased number of

instances of sarcastic sentences and negation forms, can

greatly enhance its proficiency in accurately recognizing

sentiment in ambiguous sentences.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

1212

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

AUTHOR CONTRIBUTIONS

Khouloud Safi El Jil identified the research question and

designed the study’s methodology. She collected and

analyzed the data, conducted experiments, and contributed

to the interpretation of the findings. She diligently

conducted a comprehensive literature review, ensuring the

study’s relevance within the academic context.

Additionally, she took the lead in drafting and writing the

manuscript, incorporating valuable insights and revisions

from the advisors (Drs. Essia Hamouda, Farid Nait-

Abdessalam, Mohamed Hamdi) and addressing reviewer

comments. The advisors provided guidance, intellectual

inputs, and supervision throughout the research process.

They offered critical feedback on the research direction,

refined the study’s objectives, edited the manuscript, and

facilitated access to necessary resources. All authors had

approved the final version.

REFERENCES

[1] S. Ahmed, M. Pasquier, and G. Qadah, “Key issues in conducting

sentiment analysis on arabic social media text,” in Proc. 2013 9th

International Conference on Innovations in Information

Technology (IIT), 2013, pp. 72–77.

[2] M. Yaqub. (2022). How many tweets per day 2022 (new data).

[Online]. Available: https://www.renolon.com/number-of-tweets-

per-day/

[3] M. Birjali, M. Kasri, and A. Beni-Hssane, “A comprehensive

survey on sentiment analysis: Approaches, challenges and trends,”

Knowledge-Based Systems, vol. 226, 107134, 2021.

[4] A. Rashid and C.-Y. Huang, “Sentiment analysis on consumer

reviews of amazon products,” International Journal of Computer

Theory and Engineering, vol. 13, no. 2, p. 7, 2021.

[5] H. A. Alhammi and K. Haddar, “Building a Libyan dialect lexicon-

based sentiment analysis system using semantic orientation of

adjective-adverb combinations,” Int. J. Comput. Theory Eng, vol.

12, no. 6, pp. 145–150, 2020.

[6] Z. Madhoushi, A. R. Hamdan, and S. Zainudin, “Sentiment analysis

techniques in recent works,” in Proc. 2015 Science and Information

Conference (SAI), 2015, pp. 288–291.

[7] Sangeeta and N. G. Singh, “Review of factors affecting efficiency

of twitter data sentiment analysis,” International Journal of

Computer Theory and Engineering, vol. 12, no. 1, pp. 53–58, 2020.

[8] P. Dandannavar, S. Mangalwede, and S. Deshpande, “Emoticons

and their effects on sentiment analysis of twitter data,” in Proc. EAI

International Conference on Big Data Innovation for Sustainable

Cognitive Computing, 2020, pp. 191–201.

[9] Tweet Sentiment Extraction. (2020). [Online]. Available:

https://www.kaggle.com/c/tweet-sentiment-extraction

[10] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. J. Passonneau,

“Sentiment analysis of twitter data,” in Proc. the Workshop on

Language in Social Media (LSM 2011), 2011, pp. 30–38.

[11] C. Tan, L. Lee, J. Tang, L. Jiang, M. Zhou, and P. Li, “User-level

sentiment analysis incorporating social networks,” in Proc. the 17th

ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, 2011, pp. 1397–1405.

[12] P. Delobelle and B. Berendt, “Time to take emoji seriously: They

vastly improve casual conversational models,” arXiv preprint,

arXiv:1910.13793, 2019.

[13] J. Daintith. (2018). Emoticon a dictionary of computing. [Online].

Available: https://www.encyclopedia.com/science-and-

technology/computers-and-electrical-engineering/computers-and-

computing/emoticon#EMOTICON

[14] Wikipedia. (2022). List of emoticons. [Online]. Available:

https://en.wikipedia.org/wiki/List_of_emoticons

[15] M. F. Porter, “An algorithm for suffix stripping,” Program, 1980.

[16] L. A. Mullen, K. Benoit, O. Keyes, D. Selivanov, and J. Arnold,

“Fast, consistent tokenization of natural language text,” Journal of

Open-Source Software, vol. 3, no. 23, p. 655, 2018.

[17] A. Aizawa, “An information-theoretic perspective of TF–IDF

measures,” Information Processing & Management, vol. 39, no. 1,

pp. 45–65, 2003.

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient

estimation of word representations in vector space,” arXiv preprint,

arXiv:1301.3781, 2013.

[19] I. Rish, et al., “An empirical study of the naive bayes classifier,” in

Proc. IJCAI 2001 Workshop on Empirical Methods in Artificial

Intelligence, vol. 3, no. 22, 2001, pp. 41–46.

[20] F. E. Harrell et al., Regression Modeling Strategies: With

Applications to Linear Models, Logistic Regression, and Survival

Analysis, Springer, 2001.

[21] N. Cristianini, J. Shawe-Taylor et al., An Introduction to Support

Vector Machines and Other Kernel-Based Learning Methods,

Cambridge University Press, 2000.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.

Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”

Advances in Neural Information Processing Systems, vol. 30, 2017.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:

Pretraining of deep bidirectional transformers for language

understanding,” arXiv preprint, arXiv:1810.04805, 2018.

[24] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a

distilled version of bert: Smaller, faster, cheaper and lighter,” arXiv

preprint, arXiv:1910.01108, 2019.

[25] N. Japkowicz and M. Shah, Evaluating Learning Algorithms: A

Classification Perspective, Cambridge University Press, 2011.

[26] X. Shao, C.-S. Kim, and K. D. Ryul, “A study on customers

sentiment analysis based on big data using twitter data,”

International Journal of Computer Theory and Engineering, vol. 11,

no. 1, pp. 11–14, 2019.

[27] K. A. Hasan, M. S. Sabuj, and Z. Afrin, “Opinion mining using

naive bayes,” in Proc. 2015 IEEE International WIE Conference on

Electrical and Computer Engineering (WIECON-ECE), 2015.

[28] S. Rana and A. Singh, “Comparative analysis of sentiment

orientation using SVM and naive bayes techniques,” in Proc. 2016

2nd International Conference on Next Generation Computing

Technologies (NGCT), 2016, pp. 106–111.

[29] Y. Al-Amrani, M. Lazaar, and K. E. El-Kadiri, “Random Forest and

support vector machine-based hybrid approach to sentiment

analysis,” Procedia Computer Science, vol. 127, pp. 511–520, 2018.

[30] A. Poornima and K. S. Priya, “A comparative sentiment analysis of

sentence embedding using machine learning techniques,” in Proc.

2020 6th International Conference on Advanced Computing and

Communication Systems (ICACCS), 2020, pp. 493–496.

[31] M. S. Homaid, D. B. Bisandu, I. Moulitsas, and K. Jenkins,

“Analysing the sentiment of air-traveller: A comparative analysis,”

International Journal of Computer Theory and Engineering, vol. 14,

no. 2, pp. 48–53, 2022.

[32] A. Ragothaman and C.-Y. Huang, “Sentiment analysis on covid-19

twitter data,” International Journal of Computer Theory and

Engineering, vol. 13, no. 4, pp. 100–107, 2021.

[33] M. G. Sousa, K. Sakiyama, L. de Souza Rodrigues, P. H. Moraes,

E. R. Fernandes, and E. T. Matsubara, “Bert for stock market

sentiment analysis,” in Proc. 2019 IEEE 31st International

Conference on Tools with Artificial Intelligence (ICTAI), 2019, pp.

1597–1601.

[34] A. Chiorrini, C. Diamantini, A. Mircoli, and D. Potena, “Emotion

and sentiment analysis of tweets using BERT,” in Proc.

EDBT/ICDT Workshops, 2021.

[35] Y. Lou, Y. Zhang, F. Li, T. Qian, and D. Ji, “Emoji-based sentiment

analysis using attention networks,” ACM Transactions on Asian

and Low-Resource language Information Processing (TALLIP), vol.

19, no. 5, pp. 1–13, 2020.

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

1213

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

http://www.renolon.com/number-of-tweets-per-day/
http://www.renolon.com/number-of-tweets-per-day/
http://www.renolon.com/number-of-tweets-per-day/
http://www.renolon.com/number-of-tweets-per-day/
http://www.kaggle.com/c/tweet-sentiment-extraction
http://www.kaggle.com/c/tweet-sentiment-extraction
https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/computers-and-computing/emoticon%23EMOTICON
https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/computers-and-computing/emoticon%23EMOTICON
https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/computers-and-computing/emoticon%23EMOTICON
https://en.wikipedia.org/wiki/List_of_emoticons
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N6-1206

