
Research Opportunities in Microservices Quality 

Assessment: A Systematic Literature Review  

Verónica C. Tapia 1,2,* and Carlos M. Gaona 2 

1 Sistemas de Información/Universidad Técnica de Cotopaxi, Latacunga, Ecuador 
2 Escuela de Ingeniería de Sistemas y Computación/Universidad del Valle, Santiago de Cali, Colombia; 

Email: mauricio.gaona@correounivalle.edu.co (C.M.G.) 

*Correspondence: veronica.tapia@utc.edu.ec (V.C.T.)

Abstract—The growth in the development of microservices 

has sparked interest in evaluating their quality. This study 

seeks to determine the key criteria and challenges in 

evaluating microservices to drive research and optimize 

processes. The systematic review of the literature presented 

in this research identified that the most commonly used 

evaluation criteria are performance, scalability, security, 

cohesion, coupling, and granularity. Although evaluation 

tools exist, they mainly measure performance aspects such as 

latency and resource consumption. Challenges were 

identified in security, granularity, throughput, monitoring, 

organizational strategy, orchestration, choreography, 

scalability, decomposition, and monolith refactoring. In 

addition, research opportunities in empirical studies, analysis 

of quality trade-offs, and broadening of relevant perspectives 

and tools are noted. Challenges in the interrelation of quality 

attributes, metrics and patterns, automatic evaluation, 

architectural decisions and technical debt, domain-based 

design, testing, monitoring, and performance modeling are 

also highlighted. Challenges in orchestration, communication 

management and consistency between microservices, 

independent evolution, and scalability are also mentioned. 

Therefore, it is critical to address these particular challenges 

in microservices and to continue research to improve the 

understanding and practices related to quality.  

Keywords—attributes, challenges, evaluation tools, quality 

metrics, software  

I. INTRODUCTION

Microservice Microservices (MS) development is based 

on an architectural and organizational approach in which 

applications are composed of small independent services 

that can be built on different platforms and through 

multiple technological tools. Each service executes a 

unique functionality in its process. Microservices are an 

interesting option for those who wish to migrate their 

systems to improve their application performance, 

maintainability, scalability, and interoperability. 

As with all types of software, it is essential to 

incorporate the aspects of MS development to ensure 

quality. However, this can be much more complex in MS. 

Hence, it is a crucial concern for researchers. Although 

contributions have been reported, even with tools that 

facilitate migration and development processes while 

preserving quality attributes, there is still no clarity in this 

field [1].  

The objective of this work is to contribute to the 

understanding of the processes related to the quality of 

microservices. For this purpose, a scientific literature 

review on the most important attributes and metrics was 

performed, and research challenges in this area were 

identified. Moreover, this study is directed at the 

community of developers of microservice-based systems, 

academia, and the software industry in general.  

A Systematic Literature Review (LRS) was conducted 

to answer five questions to identify the attributes, metrics, 

challenges, and tools used to assess MS quality. 

The Research Questions (RQ) posed are: 

RQ1: What are the quality attributes applicable to 

microservices? 

RQ2: What are the quality metrics applicable to 

microservices? 

RQ3: What challenges have been identified in 

microservices quality assessment? 

RQ4: What are the most used microservices assessment 

tools?  

RQ5: What metrics do the tools use? 

This paper is organized as follows: Section I comprises 

a concise literature review, the objective of the study, and 

the research questions; Section II describes the basic 

concepts of microservices, software quality, quality 

applicable to microservices, and specific works related to 

the study of microservices quality attributes and metrics 

are discussed; Section III describes the methodological 

process used in this study; Section IV presents the results 

of the study, the general results are discussed first, then 

each research question results citing the most important 

references; Finally in Section V, the conclusions are 

presented. 

II. LITERATURE REVIEW

A. Microservices-Based Applications

MS-based applications are an architectural and

organizational approach to software development in which 

applications consist of small independent services that Manuscript received February 27, 2023; revised April 20, 2023; 

accepted May 29, 2023; published September 25, 2023. 

991

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

doi: 10.12720/jait.14.5.991-1002



communicate through RESTful or RPC-based Application 

Programming Interface (APIs) and lightweight 

protocols [2, 3]. 

It is a collection of self-contained services that work 

together to provide functionality. Currently, there are 

many options for building microservices, some of which 

are pattern driven. However, the mapping between 

attributes and quality patterns remains unclear [4].  

Microservice architecture is a software development 

technique for creating interrelated applications that operate 

independently and ideally have low coupling 

(independence between microservices, such that they can 

operate autonomously without altering each other’s 

functionality) and provide lightweight services. This 

method of conceiving applications is ideally suited to 

distributed architectures in the cloud because each service 

is implemented in different execution environments 

belonging to different physical infrastructures. The 

rationale of the microservice concept is to perform small 

tasks to reduce complexity. In this architecture, several 

services interact with each other. Among the main 

characteristics of microservices are: maintainability, 

evolvability, independent deployment, low costs as a 

single service, improvements, and shorter time to 

market [5]. 

B. Software Quality 

Software quality determines the performance of a 

product’s features and its ability to satisfy the expressed 

and tacit needs of the users. An effective development 

process allows us to obtain a useful product, providing 

measurable value for those who produce and manage it [6]. 

The ISO/IEC 25000 family of standards, known as 

SQuaRE (System and Software Quality Requirements and 

Evaluation), are used to measure quality. SQuaRE is a set 

of rules that aim to create a common framework for 

assessing a software product’s quality, which results from 

the evolution of previous standards, especially ISO/IEC 

9126 and ISO/IEC 14598 [7]. 

Quality is defined by quality attributes (performance, 

testability, security, and availability) using metrics that 

evaluate persistence.  

C. Quality Attributes 

These are the general factors that affect the runtime 

behavior of a system, its design, and user experience. They 

describe the purpose of the system in the environment in 

which it is built. From a technical perspective, quality 

attributes drive important architectural and design 

decisions. They are classified into two types: in the first 

type, the quality attribute maps to several specific 

requirements; in the second type, the quality attribute does 

not map to specific functional requirements, but it affects 

all functional requirements [8, 9].  

ISO 25000 [7] refers to the following quality attributes: 

functionality, performance efficiency, compatibility, 

usability, reliability, security, maintainability, and 

portability. 

Quality attributes represent the properties of a system 

that do not determine the functionality. Otherwise, they 

define the quality and characteristics that the system must 

support. They are generally divided into sub-attributes to 

facilitate measurement. For example, accessibility is a sub-

attribute of usability that identifies the level of satisfaction 

of stakeholders’ needs and the degree of success of a 

system [2, 3]. 

In agile development projects, the definition of 

requirements mainly focuses on functional characteristics. 

Thus, the manifestation of quality attributes and the 

traceability of the relationships between requirements are 

challenging. It hinders the maintenance of the system 

because the significance of the effects of changes in 

functional requirements is unknown. Therefore, it 

becomes a priority that agile methodologies, such as 

Scrum, incorporate the analysis of quality attributes in the 

development plans. As a result, when projects fail, it is 

usually not due to their defective functionalities but to 

problems in their quality attributes, such as complicated 

maintenance, low performance, and security conflicts [1]. 

Measurement in software engineering is crucial for 

evaluating quality characteristics and setting goals. 

Measurement is defined as a logical sequence to quantify 

properties on a specific scale, and measurement functions 

or algorithms can combine quality measurement 

elements [4]. However, some critical design methods have 

been omitted from the architecture measurement process.  

The main objectives of software quality measurement 

include assisting management in monitoring and 

controlling development and maintenance, observing 

conformance to requirements, and serving as a data source 

for improvement. Some quality attributes can be measured 

using architectural characteristics such as size, complexity, 

coupling, and cohesion. These measurements are defined 

by standards such as IEC 25023. 

D. Quality Attributes in Microservices. 

According to Valdivia et al. [10], who studied 

architecture patterns, the quality attributes of MS 

identified in the literature are maintainability, reliability, 

security, performance, compatibility, and portability. 

These are measurable non-functional requirements whose 

purpose is to determine the level of user satisfaction [11]. 

Similarly, Richardson [12] stated that microservices must 

be maintainable, testable, coupled, independently 

implementable, and capable of being developed by small 

teams. Finally, Osses et al. [13] described exploratory 

research based on a systematic literature review that 

yielded 44 architectural patterns and five quality attributes 

(scalability, flexibility, testability, performance, and 

elasticity), which are related to most of the architectural 

patterns and tactics for microservices. 

E. Quality Metrics 

Metrics evaluate the degree of presence of quality 

attributes, which can be internal when they do not depend 

on the software execution (static) or external when they 

apply to the running software (dynamic), allowing 

quantification of the attributes by providing a numerical 

value as a measure [9, 10]. 

Selmadji and Seriai et al. [14] determined a set of 

quality evaluation criteria classified according to static and 

dynamic analysis presented in Table I. 

992

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023



TABLE I. QUALITY ASSESSMENT METRICS BY TYPE OF ANALYSIS [5] 

 

F. Related Work 

Several studies have been conducted on microservice 

quality involving metrics and attributes, some of which are 

discussed below. 

Jin and Liu et al. [15] discusses the popularity of 

microservices in software architecture and the challenges 

they present, such as resilience, performance, and 

evolution. It describes a systematic mapping that analyzes 

how self-adaptive approaches are applied in 

microservices-based architectures. This paper selected 

twenty-one studies between February and May 2020 

through an automated search of five scientific databases. It 

also proposes four promising research directions. The 

main findings indicate that most studies focus on self-

healing, performance quality, and scalability attributes. 

Li et al. [1] systematically analyzes quality in 

Microservice-based Architectures (MSAs). It identified 

six principal quality assurances and 19 tactics that 

architecturally address these assurances. The study 

contributes to the knowledge of the state of the art of 

quality assurances in MSAs. It may be helpful for software 

practitioners and architects in decision-making. In addition, 

it identifies missing areas and opportunities for research on 

the topic. The authors plan to conduct primary empirical 

studies and expand the review, focusing on the latest 

knowledge additions. 

Valdivia and Lora-González et al. [10] was oriented 

toward answering three questions linked to the patterns 

used in microservices, quality attributes, and metrics to 

quantify the quality attributes related to a pattern. The 

work includes gray literature, and as a result, 54 patterns 

aimed at solving communication difficulties and 

optimizing performance were identified; reliability and 

security as the quality attributes most frequently related to 

patterns. As for metrics, time, percentage of accepted 

requests, number of files to be modified, and energy 

consumption were identified. The publication aims to 

improve the understanding of microservices-based system 

design through a systematic, multivocal literature review 

of patterns related to microservices architecture and their 

correspondence to quality attributes and metrics identified 

in academic and industrial research. 

Gorski and Wozniak [16] notes that numerous articles 

have been written on optimizing business process 

execution in service architecture with reliability in mind. 

In this study, publications from 2006 to 2020 were 

reviewed. Therefore, 128 relevant articles were selected, 

providing a broader view of the field of application of 

services to support business processes. The reviewed 

articles describe different methods related to optimization 

steps, such as resource allocation, service composition, 

and service scheduling. Additionally, 119 out of 128 

articles focus on service composition methods, while only 

three address service schedule, indicating that this stage is 

the least developed in optimization. The most popular 

method identified in the articles is the genetic algorithm, 

which many researchers consider highly effective. In 

addition, the review includes articles describing new 

original heuristic algorithms that are relevant to solving 

problems at the service composition stage. 

Capuano and Muccini’s [17] objective was to determine 

the impact of a quality-driven approach in migrating to 

microservices. An LRS was proposed with three questions: 

studies implementing a quality-driven approach to migrate 

to microservices, quality attributes analyzed in the 

migration phases, and the migration phase in which the 

quality-driven process is implemented. The results 

revealed that quality-driven migration is growing; 28.21% 

of the researchers identified quality attributes in the 

understanding phase, 48.72% in the microservice 

identification phase, 35.90% in the microservice 

evaluation phase, and 2.56% in the packaging phase. This 

finding emphasizes that many researchers have considered 

quality attributes in their studies. However, it appears that 

quality improvement is not the migration objective. 

Li et al. [1] aimed to investigate the state-of-the-art 

microservice quality attributes, which allowed the 

identification of studies on testing related to MS quality 

assurance. The results provide an overview of the six 

quality attributes of most concern in MS: scalability, 

performance, availability, monitoring, security, and 

testability; they identify 19 tactics that architecturally 

address critical quality assurances, including two tactics 

for scalability, four for performance, four for availability, 

four for monitoring, three for security, and two for 

testability. 

III. MATERIALS AND METHODS 

The LRS process began in July 2022 based on an 

adaptation of the methodology proposed by 

Kitchenham [18]. Nine stages were executed, Fig. 1, 

considering the five research questions. From Stage 4 

onwards, the process was carried out iteratively for each 

question see Fig. 2. 

A. Research Questions 

Considering that the objective of this study was to 

understand and interpret the processes of MS quality, five 

research questions were posed to conduct an LRS, Table II.

 

Static Analysis Dynamic Analysis 

Granularity Execution cost 

LOC Response Time 

Open interfaces Availability 

High cohesion Succ. Exec. Rate 

Loose coupling Usage Frequency 

 Scalability 

 Independence 

 Maintainability 

 Deployment 

 Health Management 

 Modularity 

 Manageability 

 Performance 

 Reusability 

 Tech. Heterogeneity 

 Agility 

 Security 

 Load Balancing 

 Org. Alignment 

993

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023



 

Figure 1. Stages of the systematic literature review. 

 

Figure 2. Information search process. 

TABLE II. RESEARCH QUESTIONS 

Questions Motivation 

RQ1: What are the quality 

attributes applicable to 

microservices? 

The objective of the first question is to know 

the quality attributes most investigated in 

MS and those of concern to the developer 

community. 

RQ2: What are the quality 

metrics applicable to 

microservices? 

The second question requires identifying the 

parameters applied to evaluate MS quality, 

i.e., the metrics used 

RQ3: What challenges 

have been identified in 

assessing the quality of 

microservices? 

The third question was posed because of the 

need to know the gaps in the research on MS 

quality assessment to project future work 

and raise them to the research community. 

RQ4: What are the most 

used microservices 

evaluation tools? 

The fourth question aims to identify tools to 

evaluate the quality of microservices. 

RQ5: What metrics do the 

tools use? 

Once the tools have been identified, the fifth 

question’s objective is to know the metrics 

used to evaluate MS quality. 
 

B. Document Search Process 

In this phase, the inclusion and exclusion criteria were 

established to consider valid sources: publications from 

2017 onwards, number of citations, and full versions of the 

articles. Gray literature (technical reports, abstracts, or 

presentations) and articles not related to software and 

microservices were excluded, Table III. 

C. Databases 

Databases with the highest bibliographic production in 

microservices and quality attributes were delimited and 

included in the selection: Scopus, ScienceDirect, IEEE 

Xplore Digital Library, Web of Science, Springer, and 

ACM Digital Library. 

D. Keywords 

During this phase, the search terms in each database 

were specified. The keywords used in this study are 

microservices, quality, microservice quality, quality 

attributes, quality metrics, microservice quality challenges, 

and microservice quality assessment tools.   

E. Search Strings 

A list of search strings was defined according to each 

question, and the relationships between the keywords were 

specified using AND, OR, and NOT logical operators. For 

example, for research question 1, what are the quality 

attributes applicable to microservices? The list of 

keywords contains microservices and quality attributes, 

the search string in Scopus, considering publications since 

2017, is: TITLE-ABS-KEY ( ( ( ( “Quality Attribute” ) 

AND ( ( “Microservices” ) ) OR ( “Microservice quality 

attributes” ) ) AND PUBYEAR > 2016 AND PUBYEAR 

< 2024. Similarly, in ScienceDirect, (“Quality Attribute” 

AND “Microservices”) OR (“Quality attributes in 

Microservices” OR “Quality of Microservices”) Year: 

2017-2023.  

F. Review Phase 

The databases were reviewed using the different search 

strings and inclusion/exclusion criteria.  

G. Quality Assessment 

The quality of the information collected was assessed 

by verifying the relevance of the content to answer each 

question, the study’s objectives, methodology, and results. 

H. Data Extraction 

All the information that passed the quality assessment 

was recorded in the database created for this purpose. The 

pertinent information was extracted from the selected 

sources using detailed research questions and objectives 

analysis. 

I. Writing Results 

Finally, the article is written, and the results are 

presented as graphs, tables, and detailed explanations. 

TABLE III. INCLUSION AND EXCLUSION CRITERIA 

Inclusion Criteria Exclusion Criteria 

IC1: Articles published in recent 

years, as of 2017. 

IC2: Published articles with the 

highest number of citations. 

IC3: If an article describes more 

than one study, each study is 

evaluated individually. 

IC4: If there are short and full 

versions of the same study, the 

latter is included 

EC1: Technical reports and 

papers available as abstracts or 

presentations (gray literature). 

EC2: Articles that do not 

present studies related to 

software and microservices. 

 

IV. RESULT AND DISCUSSION 

This section presents the results of the LRS. The first 

subsection describes the results in a general manner. 

Subsequently, the results for each question are specified in 

more detail. 

After quality assessment, the search generated 965 

sources, and 163 were obtained. The selected databases 

were ACM, IEEE XPLORE, SCIENCEDIRECT, 

SCOPUS, SPRINGER, and WEB of SCIENCE (WOS), 

Fig. 3. 

Research 
questions 

Inclusion/ 
exclusion 
criteria 

Databases Key words 

Search 
string 

Review 
phase 

Quality 
assessment 

Data 
extraction                                                                 

Writing 
results 

994

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023



 

Figure 3. Results of the LRS process. 

1) Q1: What are the quality attributes applicable to 

microservices? 

For RQ1, 30 out of 296 publications were considered. 

The results indicate that the most frequently reported 

attributes for microservices are performance, scalability, 

security, maintainability, and coupling. In addition, with a 

lower frequency are cohesion, granularity, reliability, 

elasticity, flexibility, complexity, and interoperability. 

Table IV specifies the sources and frequencies of the most 

reported quality attributes. 

TABLE IV. QUANTITATIVE SUMMARY OF THE SEARCH, EVALUATION, 

AND EXTRACTION OF ATTRIBUTES (RQ1) 

Attribute N0 References 

Performance 14 [1, 3, 4, 10, 15, 19–27] 
Scalability 13 [1–4, 10, 15, 19, 21, 22, 24, 27–29] 
Security 10 [1, 2, 4, 21, 22, 25, 27–30] 

Maintenance 9 [3, 4, 10, 20, 26, 23, 31–33] 
Coupling 8 [1, 3, 14, 19, 31, 32, 34, 35] 

Fig. 4 shows that 38 attributes were collected, and 17 

were reported in a single study. In order to extend the 

analysis of RQ1, it is essential to mention the following 

studies: 

In study of Osses and Márquez et al. [13], most 

architectural patterns and tactics were associated with five 

quality attributes: flexibility, testability, elasticity, 

performance, and scalability, with the last two being the 

dominant ones.  

Cojocaru and Oprescu et al. [14] identifies a 

comprehensive set of quality criteria used for both Micro-

Service based Architectures (MSA) and Service Oriented 

Architecture (SOA), the inclusion of each identified 

quality attribute to a recommended minimum set of quality 

attributes based on the significance of the decomposition 

context and implementation feasibility was also discussed, 

within these quality criteria are: granularity, coupling, 

cohesion, cost and response time.  

 

 

Figure 4. Results of the search process (RQ1). 

995

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023



Cojocaru and Uta et al. [35] provided a microservice 

validation framework that tested the quality of MS 

resulting from semi-automatic decomposition processes, 

emphasizing quality attributes such as granularity, 

coupling, and cohesion. 

2) RQ2: What are the quality metrics applicable to 

microservices? 

For RQ2, 37 of 266 bibliographic sources were 

considered. According to the LRS, the metrics applicable 

to the MS are cohesion, coupling, granularity, performance, 

and complexity, Table V.  

TABLE V. QUANTITATIVE SUMMARY OF SEARCH, EVALUATION, AND 

EXTRACTION OF METRICS (RQ2) 

Metrics N References 

Performance 14 [3, 29–39] 
Cohesion 8 [3, 23, 37, 40–46] 
Coupling 8 [3, 33, 36, 39–43, 47] 

Granularity 4 [14, 33, 38, 41] 
Complexity 4 [3, 25, 42, 43] 

 

The following are some interesting facts related to this 

question: 

Zhong and Zhang et al. [47] determined the following 

results: 1) They proposed microservice coupling (MCI) 

measures based on the theory of relative measurement. 

These measures were effective in assessing the coupling 

between microservices. 2) They found a strong correlation 

between MCI coupling values and normalized change 

impacts on microservice pairs. It suggests that MCI 

coupling measures indicate the effects that change in 

microservices can have. Thus, it demonstrated that MCI 

coupling measures are constructively valid and can be used 

to evaluate microservice coupling in software projects. 

Additionally, it implies that these measures are useful and 

reliable for analyzing the relationship and interdependency 

between microservices. 3) The authors recommended 

further empirical evaluations in industrial microservices 

projects to improve the understanding of the effectiveness 

of MCI coupling measures in change impact analysis and 

microservices architecture independence. Hence, more 

research and experimentation are needed to verify and 

strengthen the usefulness of MCI coupling measures in a 

real microservices development context. 

Other metrics appear according to the following studies: 

The metrics applicable to microservices and cloud-

oriented applications were elasticity, availability, isolation 

(performance isolation), and operational risk [45].  

The microservice metrics were time (performance 

efficiency), percentage of accepted requests 

(interoperability), number of files to modify 

(maintainability), and energy consumption (performance 

efficiency) [10]. 

Jin and Liu et al. [45] used dependency metrics that 

were collected as time series and system metrics obtained 

from the underlying operating system to report the 

resource usage of a component and are generally related to 

the hardware resources on a host, including central 

processing unit memory, network, and disk I/O usage. It 

also raises the existence of application-level metrics 

aggregated by developers, such as the number of users, 

response time to a request, and execution time. 

Tamburri and Bersani et al. [48] designated an MVC 

architecture pattern that used Chidamber and Kemerer (CK) 

metrics [49]. The Lack of Cohesion in Methods (LCOM) 

measures how tightly linked the internal elements of a 

software module are. The Number of Root Classes (NOR) 

measures how many class hierarchies there are in the 

program, Depth of Inheritance Tree (DIT) measures the 

length of a class hierarchy, response for a class (RFC) 

measures the number of methods and constructors invoked 

by objects of a class, and coupling between objects (CBO) 

measures how many methods and instance variables of 

class B use the methods of class A (bidirectional uses are 

considered only once, inheritance-related connections are 

not considered). WMC (weighted methods per class) 

measures the sum of the cyclomatic complexity of 

methods in a class. Class Dependency (CD) metrics, 

cyclomatic measures (number of cyclomatic class 

dependencies), Dcy measures (number of dependencies), 

and Dcy* measures (number of transitive dependencies).  

The LRS finds 17 metrics for microservices, the most 

important of which is performance. Cohesion and coupling 

are static analysis metrics; most metrics do not have high 

frequency; they are reported in three, two, and one studies.  

Fig. 5 projects a broader picture of the metrics 

encountered. 

 

 

Figure 5. Quality metrics applicable to Microservices (RQ2). 

3) RQ3: What challenges are identified in evaluating 

microservices quality? 

For RQ3, 22 sources were selected out of the 38 

identified, most of which relate to security, granularity, 

performance, monitoring, organizational strategy, 

orchestration, choreography, scalability, decomposition, 

and monolith refactoring. Some relevant work related to 

this issue is presented below. Additionally, Table VI lists 

the challenges per study. Waseem and Liang et al. [3] 

raises two research opportunities. The first is to conduct 

empirical studies on exploring specific tactics for 

microservices-based application development or analyzing 

trade-offs between different quality assurances (attributes). 

The second is constantly expanding the review to include 

new perspectives, such as emerging quality assurances, 

tactics, countermeasures, and relevant tools. 

996

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023



TABLE VI. CHALLENGES IDENTIFIED BY AUTHORS (RQ3) 

References Challenges 

[52] 

Performance-based testing, monitoring, and 

modeling of microservices. Particular challenges 

include efficient performance regression testing 

strategies, performance monitoring under continuous 

software changes, and performance modeling 

concepts appropriate for changing use cases. 

[27] 
Measurement, controlling, and maintaining a satisfactory level of system 

architecture quality. 

[59] 

Feature determination, variability modeling, 

variable microservice architectures, 

interchangeability, customization, and re-

engineering. 

[26]  

Lack of tools or frameworks to select third-party 

artifacts such as security or the latest version and 

lack of practitioners’ knowledge of systematic 

methods are the main challenges that can be 

addressed in future work. According to the survey 

results, optimizing security, response time, and 

performance are higher priorities than resilience, 

reliability, fault tolerance, and memory usage.  

[60]  

Monitoring and adaptation mechanisms to address 

the diversity of microservice quality attributes, 

identify and resolve potential conflicts between the 

quality requirements of individual microservices and 

those of the overall application, and reconcile the 

adaptation needs of individual microservices and the 

overall application. 

[61]  Infrastructure Orchestration. 

[62] 
Manage business processes that expand beyond the 

boundaries of an individual microservice. 

[63]  Performance. 

[64]  Architecture exploitation. 

[53]  

Lack of relevant skills, reliance on software as a 

service, organizational culture and structure, 

governance, difficulties associated with monolith 

decomposition/refactoring, master data 

management, orchestration, choreography, testing, 

and performance. 

[65]  Determining microservices granularity. 

[66] Security mechanisms. 

[67]  Scalability. 

[54]  

There is insufficient evidence on how to assess 

whether decisions made regarding microservices 

architectures produce technical debt when new 

system requirements need to be satisfied, e.g., high 

availability. 

[2] 

Define the level of granularity of microservices, 

modularization and refactoring of services, 

integration with the user interface, security, 

orchestration, monitoring, management and 

supervision of microservices, fault tolerance, 

recovery, and self-repair of microservices. 

[68]  
Content, mapping, tools, and business-related 

challenges. 

[69] 

Finding the proper service cut-off, decomposition, 

lack of expertise, DevOps and automation, 

organizational techniques (mindset change, cross-

team collaboration, staffing, administrative and cost 

justification) was a major technical challenge, along 

with building the necessary expertise with the new 

technologies. Organizational challenges were 

especially related to large and traditional companies 

that simultaneously established agile processes. 

Initiating a change of mindset and ensuring smooth 

collaboration between teams was critical in these 

cases. 

[70]  

Microservice-client interactions, microservice 

interactions, database transactions by microservices, 

service discovery, fault tolerance, monitoring, 

logging, security, integration and deployment. 

[71] Ensuring data consistency in the system. 

[72] 

Heterogeneity, coupling, maintainability, security, 

routine testing, consistency, performance, business 

details. 

[73] Reliability. 

[74] 

Microservice container security, vulnerability 

management, digital research and container 

alternatives. 

[75]  

The main challenge remains modeling a function 

block as a service, adopting service-oriented 

concepts such as service-oriented architecture or 

microservices architecture requires addressing 

challenges such as service granularity or 

decomposition. 

 

Valdivia and Lora-González et al. [10] points out that 

the lack of a clear definition of the interrelationship 

between quality attributes, metrics, and patterns in 

microservices is of concern for software engineering 

because this understanding is fundamental for correctly 

constructing systems based on this emerging architecture. 

As a result, greater clarity on this topic is needed to ensure 

that systems using microservices are designed and 

developed correctly. 

Filho and Pimentel et al. [15] raises resilience, 

performance, and evolution as software architecture 

challenges. 

The challenges in microservice development were 

measuring, controlling, and maintaining a satisfactory 

level of system architecture quality [27]. 

Vale and Correia et al. [50] provides a report on the 

design and execution of an interview study, with findings 

that support hypotheses that the body of knowledge on 

quality assurance in microservices architectures may be 

incomplete or inaccurate. It provides a greater 

understanding of pattern-affected quality controls, which 

may serve as a valuable guide for strategic engineering 

decision-making on moving forward with microservices 

adoption. Also, it points out that studies specifically 

targeting quality attributes in microservices are urgently 

needed. In addition, a systematic review of the empirical 

literature on microservices that adds insight into trade-offs 

would help researchers gain an updated perspective on the 

design trade-offs inherent in this architectural style. 

Hassan and Bahsoon et al. [51] addressed the challenges 

of dependency on software as a service, organizational 

culture, and structure, governance, difficulties associated 

with monolith decomposition/refactoring, master data 

management, orchestration and choreography, testing, and 

performance. 

According to Heinrich et al. [52], several challenges are 

highlighted concerning microservices. Generally, issues 

such as testing, monitoring, and performance modeling are 

found. In addition, particular challenges are presented, 

such as implementing strategies for performance 

regression testing, monitoring constantly evolving 

software environments, and using performance modeling 

concepts suitable for changing use cases. 

Baškarada and Nguyen et al. [53] highlighted the 

challenges associated with the decomposition and 

refactoring of monoliths.  

997

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023



Marquez and Astudillo [54] indicated that there is 

insufficient evidence on how to evaluate whether 

architectural decisions made in microservices produce 

technical debt. 

Sotomayor and Allala et al. [55] compare various tools 

that can be used for testing at different levels and present 

an open-source Ridesharing microservices reference 

prototype with which a testbed was used to evaluate new 

testing techniques and tools. Some results of this work 

express the following: 1) microservices researchers are 

looking for solutions to improve the correctness of 

microservices applications using formal techniques, 2) 

researchers are developing new testing techniques and 

tools that focus on the added complexity of data 

communication required between various services, 3) it is 

highlighted that researchers are interested in comparing 

different microservices testing tools and measuring the 

overhead for testing microservices applications. 

Researchers generally look for solutions to address the 

unique challenges associated with microservices 

architecture and test these applications. 

For Bogner and Wagner et al. [56], there are a variety 

of metrics for evaluating conventional systems that may 

also apply to microservices; however, evaluation 

approaches specific to microservices are rare, and 

automatic evaluation methods are lacking. 

Rademacher and Sorgalla et al. [57] addresses the 

challenges of designing Domain-based microservices and 

how model-driven design can help overcome them. These 

challenges include defining appropriate boundaries for 

microservices, managing communication and consistency 

between them, maintaining domain model consistency, 

and enabling independent evolution and scalability. The 

Model-driven design addresses these challenges by 

providing a clear view of the domain and the relationships 

between components, helping to define communication 

contracts, maintaining model consistency, and identifying 

entry points and interfaces for microservice evolution and 

scalability. 

It is also important to highlight the study [58], which 

aimed to investigate the differences between ideal 

theoretical visions and actual industry practices related to 

microservices and analyze the costs that microservices 

imply for industry professionals. They interviewed 

practitioners from 20 software companies; the results 

identified eight pairs of common practices and challenges. 

They also identified five research areas that require further 

exploration based on challenges from the practitioners’ 

perspective: systematic evaluation and assessment, 

organizational transformation, decomposition, distributed 

monitoring, and troubleshooting. 

In summary, the most critical challenges related to 

microservices quality research are as follows:  

The lack of specific assessment approaches to 

effectively measure microservices’ quality requires 

additional research to develop automatic and specific 

assessment methods.   

Knowledge about quality assurance in microservices 

architectures is incomplete, so additional research is 

needed to understand better the quality controls affected 

by patterns in microservices.  

There is a lack of sufficient evidence to assess the 

impact of architectural decisions on microservice quality 

and how to address the resulting technical debt, requiring 

studies that develop methods and approaches to addressing 

this problem.  

Issues of clarity in the interrelationship between quality 

attributes, metrics, and patterns in microservices also 

require additional research to improve understanding of 

this relationship. Need for empirical studies on specific 

tactics and quality trade-offs to understand how these 

decisions affect microservices performance and 

development.  

Overall, these challenges and research gaps underscore 

the importance of additional research and exploration in 

the field of microservices quality in order to improve 

understanding and practices in this evolving area. 

4) RQ4: What are the most commonly used 

microservices evaluation tools? 

Microservices evaluation tools were reported in 74 out 

of 365 sources. Most studies focus on implementing or 

investigating a particular tool with which they perform the 

evaluations and apply the quality metrics. In this context, 

more than 70 different evaluation tools can be cited. 

Table VII below shows a sample of the tools found, the 

only ones cited in more than one study being “Jaeger” and 

“Zipking,” the others being mentioned in only one study. 

TABLE VII. SUMMARY OF THE USE OF ASSESSMENT TOOLS 

Attribute N References 

Jaeger 3 [76–78] 
Zipking 2 [76, 77] 
Grafana 1 [79] 

Kaiju 1 [77] 
Prometheus 1 [77] 
Opentracing 1 [77] 

Aroma 1 [80] 
MAAT 1 [81] 

MSA Nose+ 1 [82] 
Prevant 1 [83] 

Docker Compose Rule 1 [55] 

 

5) RQ5: What metrics do the tools use? 

From the search conducted for RQ4, the results for RQ5 

were also obtained (metrics used by the evaluation tools). 

Seventy-three sources were identified, and it determined 

that the tools use application metrics such as the number 

of users, response times, start time, and end time (Fig. 6) 

and system metrics such as CPU, memory, and disk 

resource usage (Fig. 7). 

 

 

Figure 6. Application level metrics. 

998

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023



 

Figure 7. System or infrastructure metrics. 

The tools most frequently apply the following metrics: 

trace, latency, and resources [36]; checking the resource 

usage of pods (individual instances of a running process), 

the number of replicas of a given service, whether any pod 

is in a restart cycle, or whether the developer can 

reschedule all pods in case of a node failure [46]; CPU 

performance and hard disk usage, network latency and 

other infrastructure metrics around the system and 

components [42]; start time, end time, source IP, 

destination service, destination instance, destination IP, 

destination role, whether metrics associated with the 

source and destination of the request are saved [59]. 

In the case of RQ4 and RQ5, it can be stated that the 

reported tools focus the evaluation on measuring runtime 

applications. Therefore, they use metrics that allow 

determining parameters such as the time in which a 

microservice is available and accessible for use; 

responsiveness and execution speed, including metrics 

such as response time, latency, and performance under 

load; the ability to handle an increase in the workload and 

the number of requests without degrading its performance. 

V. CONCLUSION 

In this study, the criteria, challenges, and tools related 

to the quality of microservices have been analyzed based 

on the scientific publications of recent years. The results 

found allow us to deduce the following: 

The quality attributes applicable to microservices 

include performance, scalability, security, maintainability, 

and coupling. Among them, performance is the attribute of 

most concern and research. In terms of metrics (RQ2), it is 

observed that performance metrics are the most cited, 

followed by cohesion, coupling, granularity, and 

complexity. 

Several tools were identified for evaluating 

microservices. Among the metrics used by these tools, 

several common ones were found, such as traceability, 

latency, CP resource usage, and infrastructure metrics 

related to the system and components. In addition, some 

application metrics, such as number of users, actions 

performed during execution, and response times, are 

mentioned. It is important to note that most tools evaluate 

microservices’ performance metrics. 

There are several challenges identified when evaluating 

the quality of microservices. These challenges include 

security, granularity, performance, monitoring, 

organizational strategy, orchestration, choreography, 

scalability, decomposition, and monolith refactoring. 

Several research opportunities are also mentioned, such as 

conducting empirical studies on specific tactics for 

microservices-based application development, analyzing 

trade-offs between different quality guarantees, and 

constantly expanding the review to include new 

perspectives and relevant tools. 

In addition, challenges related to the lack of a clear 

definition of the interrelationship between quality 

attributes, metrics, and patterns in microservices, 

automatic evaluation of microservices, evaluation of 

architectural decisions in terms of technical debt, domain-

based microservice design, testing, monitoring and 

performance modeling, among others, are highlighted. 

Challenges related to orchestration, communication 

management, consistency between microservices, 

independent evolution, and scalability are also mentioned. 

Overall, the need to address the unique challenges 

associated with microservices architecture and testing of 

these applications is highlighted, and the importance of 

further research to improve understanding and practices 

related to microservices quality. 

These challenges and research gaps highlight the need 

for continued exploration and study in microservices 

quality to improve understanding and practices in this 

emerging area of software architecture. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Verónica C. Tapia conducted the literature review, 

analyzed the data, and wrote the article; Carlos M. Gaona 

conducted the research and reviewed the different versions 

of the paper; both of the two authors approved the final 

version. 

REFERENCES 

[1] S. Li et al., “Understanding and addressing quality attributes of 

microservices architecture: A Systematic literature review,” Inf. 

Softw. Technol., vol. 131, 106449, 2021. 

doi: 10.1016/j.infsof.2020.106449 

[2] F. H. Vera-Rivera, C. M. Gaona Cuevas, and H. Astudillo, 

“Development of microservice-based applications: Trends and 

research challenges,” Rev. Ibérica Sist. e Tecnol. Informação, vol. 

E23, pp. 107–120, 2019. (in Spanish) 

[3] M. Waseem, P. Liang, and M. Shahin, “A systematic mapping study 

on microservices architecture in DevOps,” J. Syst. Softw., vol. 170, 

110798, 2020. doi: 10.1016/j.jss.2020.110798 

[4] J. A. Valdivia, X. Limon, and K. Cortes-Verdin, “Quality attributes 

in patterns related to microservice architecture: A systematic 

literature review,” in Proc. 2019 7th Int. Conf. Softw. Eng. Res. 

Innov. CONISOFT 2019, 2019, pp. 181–190. 

doi: 10.1109/CONISOFT.2019.00034 

[5] A. Razzaq and S. A. K. Ghayyur, “A systematic mapping study: 

The new age of software architecture from monolithic to 

microservice architecture—Awareness and challenges,” Comput. 

Appl. Eng. Educ., vol. 31, no. 2, pp. 421–451, 2023. 

doi: 10.1002/cae.22586 

[6] M. Milić and D. Makajić-Nikolić, “Development of a quality-Based 

model for software architecture optimization: A case study of 

monolith and microservice architectures,” Symmetry (Basel)., vol. 

14, no. 9, 2022. doi: 10.3390/sym14091824 

[7] ISO 25000. ISO 25OOO Calidad de software y datos. [Online]. 

Available: https://iso25000.com/index.php/normas-iso-25000 

[8] S. Jeon, M. Han, E. Lee, and K. Lee, “Quality attribute driven agile 

development,” in Proc. 2011 9th Int. Conf. Softw. Eng. Res. Manag. 

Appl. SERA 2011, 2011, pp. 203–210. doi: 10.1109/SERA.2011.24 

999

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023



[9] G. Arcos-Medina and D. Mauricio, Aspects of Software Quality 

Applied to the Process of Agile Software Development: A 

Systematic Literature Review, vol. 10, no. 5. Springer India, 2019. 

[10] J. A. Valdivia, A. Lora-González, X. Limón, K. Cortes-Verdin, and 

J. O. Ocharán-Hernández, “Patterns related to microservice 

architecture: A multivocal literature review,” Program. Comput. 

Softw., vol. 46, no. 8, pp. 594–608, Dec. 2020. 

doi: 10.1134/S0361768820080253 

[11] T. Schirgi and E. Brenner, “Quality assurance for microservice 

architectures,” in Proc. IEEE Int. Conf. Softw. Eng. Serv. Sci. 

ICSESS, 2021, pp. 76–80. 

doi: 10.1109/ICSESS52187.2021.9522227 

[12] C. Richardson. Microservice architecture. [Online]. Available: 

https://microservices.io/patterns/microservices.html 

[13] F. Osses, G. Márquez, and H. Astudillo, “An exploratory study of 

academic architectural tactics and patterns in microservices: A 

systematic literature review,” in Proc. Av. en Ing. Softw. a Niv. 

Iberoam. CIbSE 2018, 2018, pp. 71–84. 

[14] M. D. M.-D. Cojocaru, A. Oprescu, and A. Uta, “Attributes 

assessing the quality of microservices automatically decomposed 

from monolithic applications,” in Proc. 2019 18th Int. Symp. 

Parallel Distrib. Comput. ISPDC 2019, no. 1, 2019, pp. 84–93. 

doi: 10.1109/ISPDC.2019.00021 

[15] M. Filho, E. Pimentel, W. Pereira, and P. Maia, “Self-adaptive 

microservice-based systems—Landscape and research 

opportunities,” in Proc. 2021 International Symposium on Software 

Engineering for Adaptive and Self-Managing Systems (SEAMS), 

2021. doi: 10.1109/SEAMS51251.2021.00030 

[16] T. Gorski and A. P. Wozniak, “Optimization of Business process 

execution in services architecture: A systematic literature review,” 

IEEE Access, vol. 9, pp. 111833–111852, 2021. 

doi: 10.1109/ACCESS.2021.3102668 

[17] R. Capuano and H. Muccini, “A systematic literature review on 

migration to microservices: A quality attributes perspective,” in 

Proc. 2022 IEEE 19th International Conference on Software 

Architecture Companion (ICSA-C), 2022. doi: 10.1109/ICSA-

C54293.2022.00030 

[18] B. Kitchenham, “Procedures for performing systematic reviews,” 

Keele Univ. Tech. Rep. TR/SE-0401, 2004. 

[19] F. H. Vera-Rivera, H. Astudillo, and C. M. Gaona-Cuevas, 

“Defining and measuring microservice granularity—A literature 

overview,” PeerJ Computer Science, vol. 20, 2017. 

[20] A. Yamuç and U. M. Sürme, “A service-oriented architecture to 

microservice architecture migration strategy for satellite ground 

software systems ,” in Proc. 7th Turkish National Software 

Architecture Conference, UYMK 2018, 2018, vol. 2291, pp. 8–19. 

[21] S. A. K. A. K. Ghayyur, A. Razzaq, S. Ullah, and S. Ahmed, 

“Matrix clustering based migration of system application to 

microservices architecture,” Int. J. Adv. Comput. Sci. Appl., vol. 9, 

no. 1, pp. 284–296, 2018. doi: 10.14569/IJACSA.2018.090139 

[22] I. Ranawaka et al., “Custos: Security middleware for science 

gateways,” in Proc. Practice and Experience in Advanced Research 

Computing, 2020, pp. 278–284. doi: 10.1145/3311790.3396635 

[23] P. Di Francesco, P. Lago, and I. Malavolta, “Architecting with 

microservices: A systematic mapping study,” J. Syst. Softw., vol. 

150, pp. 77–97, 2019. doi: 10.1016/j.jss.2019.01.001 

[24] S. Eismann, C.-P. Bezemer, W. Shang, D. Okanović, and A. van 

Hoorn, “Microservices: A performance tester’s dream or 

nightmare?” in Proc. the ACM/SPEC International Conference on 

Performance Engineering, 2020, pp. 138–149. 

doi: 10.1145/3358960.3379124 

[25] F. Klinaku, D. Bilgery, and S. Becker, “The applicability of palladio 

for assessing the quality of cloud-based microservice architectures,” 

in Proc. the 13th European Conference on Software Architecture, 

vol. 2, 2019, pp. 34–37. doi: 10.1145/3344948.3344961 

[26] J. Ghofrani and D. Lübke, “Challenges of microservices 

architecture: A survey on the state of the practice,” in Proc. CEUR 

Workshop, vol. 2072, 2018, pp. 1–8. 

[27] M. Cardarelli, A. Di Salle, L. Iovino, I. Malavolta, P. Di Francesco, 

and P. Lago, “An extensible data-driven approach for evaluating the 

quality of microservice architectures,” in Proc. 34th Annual ACM 

Symposium on Applied Computing, SAC 2019, 2019, vol. 1477, pp. 

1225–1234. doi: 10.1145/3297280.3297400 

[28] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann, 

“Microservices in industry: Insights into technologies, 

characteristics, and software quality,” in Proc. 2019 IEEE 

International Conference on Software Architecture Companion 

(ICSA-C), 2019, pp. 187–195. doi: 10.1109/ICSA-C.2019.00041 

[29] M. Stocker, O. Zimmermann, U. Zdun, D. Lübke, and C. Pautasso, 

“Interface quality patterns—Communicating and improving the 

quality of microservices APIs,” in Proc. the 23rd European 

Conference on Pattern Languages of Programs, 2018. 

doi: 10.1145/3282308.3282319 

[30] G. Márquez and H. Astudillo, “Identifying availability tactics to 

support security architectural design of microservice-based 

systems,” in Proc. 13th European Conference on Software 

Architecture, ECSA 2019, vol. 2, 2019, pp. 123–131. 

doi: 10.1145/3344948.3344996 

[31] M. Gao, M. Chen, A. Liu, W. H. Ip, and K. L. Yung, “Optimization 

of microservice composition based on artificial immune algorithm 

considering fuzziness and user preference,” IEEE Access, vol. 8, pp. 

26385–26404, 2020. doi: 10.1109/ACCESS.2020.2971379 

[32] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann, “Limiting 

technical debt with maintainability assurance: An industry survey 

on used techniques and differences with service- and microservice-

based systems,” in Proc. the 2018 International Conference on 

Technical Debt, 2018, pp. 125–133. 

doi: 10.1145/3194164.3194166 

[33] J. Bogner, A. Zimmermann, and S. Wagner, “Towards an 

evolvability assurance method for service-based systems,” in Proc. 

7th European Conference on Service-Oriented and Cloud 

Computing, ESOCC 2018,. 2020, vol. 1115, pp. 131–139. 

doi: 10.1007/978-3-030-63161-1_10 

[34] J. Bogner, S. Wagner, and A. Zimmermann, “Automatically 

measuring the maintainability of service- and microservice-based 

systems - a literature review,” in Proc. 27th International Workshop 

on Software Measurement and 12th International Conference on 

Software Process and Product Measurement, 2017, pp. 107–115. 

doi: 10.1145/3143434.3143443 

[35] M. Cojocaru, A. Uta, and A.-M. A. M. Oprescu, “MicroValid: A 

validation framework for automatically decomposed microservices,” 

in Proc. Int. Conf. Cloud Comput. Technol. Sci. CloudCom., 2019, 

pp. 78–86. doi: 10.1109/CloudCom.2019.00023 

[36] J. Bogner, S. Wagner, and A. Zimmermann, “On the impact of 

service-oriented patterns on software evolvability: A controlled 

experiment and metric-based analysis,” PeerJ Comput. Sci., vol. 

2019, no. 8, 2019. doi: 10.7717/peerj-cs.213 

[37] J. Bogner, S. Wagner, and A. Zimmermann, “Using architectural 

modifiability tactics to examine evolution qualities of service- and 

microservice-based systems: An approach based on principles and 

patterns,” Software-Intensive Cyber-Physical Syst., vol. 34, no. 2–

3, pp. 141–149, 2019. doi: 10.1007/s00450-019-00402-z 

[38] C. Trubiani, A. Bran, A. van Hoorn, A. Avritzer, and H. Knoche, 

“Exploiting load testing and profiling for performance antipattern 

detection,” Inf. Softw. Technol., vol. 95, pp. 329–345, 2018. 

doi: 10.1016/j.infsof.2017.11.016 

[39] C. Schröer, F. Kruse, and J. Marx Gómez, “A qualitative literature 

review on microservices identification approaches,” Commun. 

Comput. Inf. Sci., vol. 1310, pp. 151–168, 2020. doi: 10.1007/978-

3-030-64846-6_9 

[40] A. Selmadji, A.-D. Seriai, H. L. Bouziane, C. Dony, and R. O. 

Mahamane, “Re-architecting OO software into microservices: A 

quality-centred approach,” in Proc. 7th European Conference on 

Service-Oriented and Cloud Computing, ESOCC 2018, 2018, vol. 

11116, pp. 65–73. doi: 10.1007/978-3-319-99819-0_5 

[41] S. Li et al., “A dataflow-driven approach to identifying 

microservices from monolithic applications,” J. Syst. Softw., vol. 

157, 110380, 2019. doi: https://doi.org/10.1016/j.jss.2019.07.008 

[42] O. Al-Debagy and P. Martinek, “A metrics framework for 

evaluating microservices architecture designs,” J. Web Eng., vol. 19, 

no. 3–4, pp. 341–369, 2020. doi: 10.13052/jwe1540-9589.19341 

[43] Y. Zhang, B. Liu, L. Dai, K. Chen, and X. Cao, “Automated 

microservice identification in legacy systems with functional and 

non-functional metrics,” in Proc. IEEE 17th International 

Conference on Software Architecture, ICSA 2020, Mar. 2020, pp. 

135–145. doi: 10.1109/ICSA47634.2020.00021 

[44] A. Selmadji, A.-D. Seriai, H. L. Bouziane, R. O. Mahamane, P. 

Zaragoza, and C. Dony, “From monolithic architecture style to 

microservice one based on a semi-automatic approach,” in Proc. 

17th IEEE International Conference on Software Architecture, 

2020, pp. 157–168. doi: 10.1109/ICSA47634.2020.00023 

1000

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023



[45] W. Jin, T. Liu, Q. Zheng, D. Cui, and Y. Cai, “Functionality-

oriented microservice extraction based on execution trace 

clustering,” in Proc. 25th IEEE International Conference on Web 

Services, 2018, pp. 211–218. doi: 10.1109/ICWS.2018.00034 

[46] M. Abdellatif et al., State of the Practice in Service Identification 

for SOA Migration in Industry, 2018, pp. 634–650. 

[47] C. Zhong, H. Zhang, C. Li, H. Huang, and D. Feitosa, “On 

measuring coupling between microservices,” J. Syst. Softw., vol. 

200, 2023. doi: 10.1016/j.jss.2023.111670 

[48] D. A. Tamburri, M. M. Bersani, R. Mirandola, and G. Pea, “DevOps 

service observability by-design: Experimenting with model-view-

controller BT- service-oriented and cloud computing,” in Proc. 7th 

IFIP WG 2.14 European Conference, 2018, pp. 49–64. 

[49] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object 

oriented design,” IEEE Trans. Softw. Eng., vol. 20, no. 11, 1994. 

doi: 10.1145/118014.117970 

[50] G. Vale, F. F. Correia, E. M. Guerra, T. de O. Rosa, J. Fritzsch, and 

J. Bogner, “Designing microservice systems using patterns: an 

empirical study on quality trade-offs,” in Proc. 2022 IEEE 19th 

International Conference on Software Architecture (ICSA), Mar. 

2022, pp. 69–79. doi: 10.1109/ICSA53651.2022.00015 

[51] S. Hassan, R. Bahsoon, and R. Kazman, “Microservice transition 

and its granularity problem: A systematic mapping study,” Softw. 

Pract. Exp., vol. 50, no. 9, pp. 1651–1681, 2020. 

doi: 10.1002/spe.2869 

[52] R. Heinrich et al., “Performance engineering for microservices: 

Research challenges & directions,” in Proc. ICPE 2017, 

Companion 2017 ACM/SPEC Int. Conf. Perform. Eng., pp. 223–

226, 2017. doi: 10.1145/3053600.3053653 

[53] S. Baškarada, V. Nguyen, and A. Koronios, “Architecting 

microservices: Practical opportunities and challenges,” J. Comput. 

Inf. Syst., vol. 60, issue 5, pp. 428–436, 2020. 

doi: 10.1080/08874417.2018.1520056 

[54] G. Márquez and H. Astudillo, “Helping novice architects to manage 

architectural technical debt in microservices architecture,” in Proc. 

13th Ibero-American Conference on Software Engineering and 

Knowledge Engineering, JIISIC 2018, 2018, pp. 97–108. 

[55] J. P. Sotomayor, S. C. Allala, P. Alt, J. Phillips, T. M. King, and P. 

J. Clarke, “Comparison of runtime testing tools for microservices,” 

in Proc. Int. Comput. Softw. Appl. Conf., 2019, vol. 2, pp. 356–361. 

doi: 10.1109/COMPSAC.2019.10232 

[56] J. Bogner, S. Wagner, and A. Zimmermann, “Towards a practical 

maintainability quality model for serviceand microservice-based 

systems,” in Proc. 11th European Conference on Software 

Architecture, ECSA 2017, 2017, pp. 195–198. 

doi: 10.1145/3129790.3129816 

[57] F. Rademacher, J. Sorgalla, and S. Sachweh, “Challenges of 

domain-driven microservice design: A model-driven perspective,” 

IEEE Softw., vol. 35, no. 3, pp. 36–43, 2018. 

doi: 10.1109/MS.2018.2141028 

[58] X. Zhou et al., “Revisiting the practices and pains of microservice 

architecture in reality: An industrial inquiry,” J. Syst. Softw., vol. 

195, 111521, 2023. doi: 10.1016/j.jss.2022.111521 

[59] W. K. G. Assunção, J. Krüger, and W. D. F. Mendonça, “Variability 

management meets microservices: six challenges of re-engineering 

microservice-based webshops,” in Proc. ACM Int. Conf. 

Proceeding Ser., 2020, pp. 14–24. doi: 10.1145/3382025.3414942 

[60] N. C. Mendonca, P. Jamshidi, D. Garlan, and C. Pahl, “Developing 

self-adaptive microservice systems: Challenges and directions,” 

IEEE Softw., 2019. doi: 10.1109/MS.2019.2955937 

[61] C. T. Joseph and K. Chandrasekaran, “IntMA: Dynamic 

Interaction-aware resource allocation for containerized 

microservices in cloud environments,” J. Syst. Archit., vol. 111, no. 

May, 2020. doi: 10.1016/j.sysarc.2020.101785 

[62] D. Monteiro, P. H. M. Maia, L. S. Rocha, and N. C. Mendonça, 

“Building orchestrated microservice systems using declarative 

business processes,” Serv. Oriented Comput. Appl., vol. 14, no. 4, 

pp. 243–268, Dec. 2020. doi: 10.1007/s11761-020-00300-2 

[63] F. Faticanti, F. De Pellegrini, D. Siracusa, D. Santoro, and S. Cretti, 

“Throughput-aware partitioning and placement of applications in 

fog computing,” IEEE Trans. Netw. Serv. Manag., vol. 17, no. 4, 

9189841, pp. 2436–2450, 2020. doi: 10.1109/TNSM.2020.3023011 

[64] R. Brondolin and M. D. Santambrogio, “A black-box monitoring 

approach to measure microservices runtime performance,” ACM 

Trans. Archit. Code Optim., vol. 17, no. 4, 2020. 

doi: 10.1145/3418899 

[65] F. H. Vera-Rivera, E. G. Puerto-Cuadros, H. Astudillo, and C. M. 

Gaona-Cuevas, “Microservices backlog—A model of granularity 

Specification and microservice identification BT-services 

computing—SCC 2020,” in Proc. 17th International Conference on 

Services Computing, SCC 2020, held as part of the Services 

Conference Federation, 2020, vol. 12409 LNCS, pp. 85–102. 

doi: 10.1007/978-3-030-59592-0_6 

[66] A. Pereira-Vale, G. Marquez, H. Astudillo, and E. B. Fernandez, 

“Security mechanisms used in microservices-based systems: A 

systematic mapping,” in Proc. 2019 XLV Latin American 

Computing Conference (CLEI), 2019. 

doi: 10.1109/CLEI47609.2019.235060 

[67] G. Márquez, M. M. Villegas, and H. Astudillo, “An empirical study 

of scalability frameworks in open source microservices-based 

systems,” in Proc. 37th International Conference of the Chilean 

Computer Science Society, SCCC 2018, 2018. 

doi: 10.1109/SCCC.2018.8705256 

[68] M. Kleehaus and F. Matthes, “Challenges in documenting 

microservice-based IT landscape: A survey from an enterprise 

architecture management perspective,” in Proc. 2019 IEEE 23rd 

International Enterprise Distributed Object Computing Conference 

(EDOC), Oct. 2019, pp. 11–20. doi: 10.1109/EDOC.2019.00012 

[69] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann, 

“Microservices migration in industry: intentions, strategies, and 

challenges,” in Proc. 2019 IEEE International Conference on 

Software Maintenance and Evolution (ICSME), Sep. 2019, pp. 481–

490. doi: 10.1109/ICSME.2019.00081 

[70] R. M. Munaf, J. Ahmed, F. Khakwani, and T. Rana, “Microservices 

architecture: Challenges and proposed conceptual design,” in Proc. 

2019 International Conference on Communication Technologies 

(ComTech), Mar. 2019, pp. 82–87. 

doi: 10.1109/COMTECH.2019.8737831 

[71] J. D. Pereira et al., “A platform to enable self-adaptive cloud 

applications using trustworthiness properties,” in Proc. 15th 

IEEE/ACM International Symposium on Software Engineering for 

Adaptive and Self-Managing Systems, SEAMS 2020, 2020, pp. 71–

77. doi: 10.1145/3387939.3391608 

[72] T. Cerny et al., “On code analysis opportunities and challenges for 

enterprise systems and microservices,” IEEE Access, vol. 8, pp. 

159449–159470, 2020. doi: 10.1109/ACCESS.2020.3019985 

[73] A. Avritzer, “Challenges and approaches for the assessment of 

micro-service architecture deployment alternatives in DevOps: A 

tutorial presented at ICSA 2020,” in Proc. 2020 IEEE International 

Conference on Software Architecture Companion (ICSA-C), Mar. 

2020, pp. 1–2. doi: 10.1109/ICSA-C50368.2020.00007 

[74] S. Sultan, I. Ahmad, and T. Dimitriou, “Container security: Issues, 

challenges, and the road ahead,” IEEE Access, vol. 7, pp. 52976–

52996, 2019. doi: 10.1109/ACCESS.2019.2911732 

[75] A. Homay, A. Zoitl, M. de Sousa, M. Wollschlaeger, and C. 

Chrysoulas, “Granularity cost analysis for function block as a 

service,” in Proc. 2019 IEEE 17th International Conference on 

Industrial Informatics (INDIN), Jul. 2019, pp. 1199–1204. 

doi: 10.1109/INDIN41052.2019.8972205 

[76] M. Cristian, “Evaluation of an end-to-end testing tool for micro-

services implemented in Java and Node.JS,” Universidad de Costa 

Rica, 2020. 

[77] M. Scrocca, R. Tommasini, A. Margara, E. D. Valle, and S. Sakr, 

“The Kaiju project: Enabling event-driven observability,” in Proc. 

the 14th ACM International Conference on Distributed and Event-

based Systems, 2020. doi: 10.1145/3401025.3401740 

[78] Y. Gan et al., “Seer: Leveraging big data to navigate the complexity 

of performance debugging in cloud microservices,” in Proc. 

International Conference on Architectural Support for 

Programming Languages and Operating Systems - ASPLOS, 2019, 

pp. 19–33.doi: 10.1145/3297858.3304004 

[79] F. Pina, J. Correia, R. Filipe, F. Araujo, J. Cardroom,  “Nonintrusive 

monitoring of microservice-based systems,” in Proc. 2018 IEEE 

17th International Symposium on Network Computing and 

Applications (NCA), 2018. doi: 10.1109/NCA.2018.8548311 

[80] P. Bacchiega, I. Pigazzini, and F. A. Fontana, “Microservices smell 

detection through dynamic analysis,” in Proc. 48th Euromicro Conf. 

Softw. Eng. Adv. Appl. SEAA 2022, pp. 290–293, 2022. 

doi: 10.1109/SEAA56994.2022.00052 

[81] T. Engel, M. Langermeier, B. Bauer, and A. Hofmann, “Evaluation 

of microservice architectures: A metric and tool-based approach,” 

1001

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023



in Proc. International Conference on Advanced Information 

Systems Engineering, 2018, pp. 74–89. 

[82] S. Pulnil and T. Senivongse, “A microservices quality model based 

on microservices anti-patterns,” in Proc. 2022 19th International 

Joint Conference on Computer Science and Software Engineering 

(JCSSE), 2022. doi: 10.1109/JCSSE54890.2022.9836297 

[83] M. Schreiber, “Prevant (Preview servant): Composing 

microservices into reviewable and testable applications,” 

OpenAccess Ser. Informatics, vol. 78, no. 5, pp. 1–5, 2020. 

doi: 10.4230/OASIcs.Microservices.2017-2019.5 

 

Copyright © 2023 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any 

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made. 

 

1002

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N5-991



