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Abstract—The technological advancements and demand of 

high speed communication has led to evolvement of Multiple-

Input and Multiple-Output (MIMO) and massive MIMO 

(mMIMO) communication systems. However, the increased 

number of antennas lead to an increase in computational 

complexity and implementation cost. Moreover, achieving 

the performance to meet the communication demand also 

remains a challenging task. The current researches have 

reported that the precoding scheme can help to minimize the 

computational complexity and increase the performance of 

mMIMO system. Hybrid precoding schemes have gained 

huge attention due to their significant nature to improve the 

overall efficiency of the system but the traditional schemes 

usually focus on optimization or greedy mechanism which 

suffer from the complexity issues and provide the sub-

optimal performance. Moreover, the performance of these 

systems is directly affected by the quality of channel data. 

Therefore, we present a Deep Learning (DL) based approach 

using Deep Neural Network (DNN) model which uses limited 

feedback mechanism to handle the compression and 

reconstruction error.  It aims to minimize the reconstruction 

error by providing the transmitter with sufficient 

information about the Channel State Information at the 

Receiver (CSIR) despite using a reduced amount of feedback 

compared to full feedback systems. This scheme uses encoder 

and decoder based module for limited feedback modelling. In 

order to prove the robustness of proposed DL based 

approach, we have presented extensive experimental analysis 

where the proposed DL based mechanism achieves average 

performance as 16.85 bits/s/Hz, 12.45 bits/s/Hz, and 

8.028  bits/s/Hz in terms of achievable rate, spectral efficiency 

and average sum rate respectively. In contrast to this, the 

existing Simultaneous Orthogonal Matching Pursuit (SOMP) 

achieves the average sum rate as 6.042 bits/s/Hz.  

 

Keywords—deep learning, limited feedback, precoding, 

compression, massive Multiple-Input and Multiple-Output 
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I. INTRODUCTION 

Recently, the demand for wireless communication has 

increased drastically due to its enormous use in a wide 

range of real-time applications such as health monitoring, 

underwater exploration, environmental monitoring, 

cellular communication, etc. [1]. In this domain of wireless 

communication, cellular and mobile communication 

traffic has upsurged because of the increased popularity of 

mobile devices. Moreover, the research community has 

observed a 1000-fold increase in data traffic in the year 

2020, and it is expected to increase by over 10000-fold by 

the year 2030 [2]. 

The increased demand for cellular communication urges 

high-speed Internet connectivity in various domains such 

as smart cities, self-driving cars, infotainment applications, 

etc. Therefore, supporting the incessant growth in data 

traffic and facilitating guaranteed ubiquitous 

communication have become important aspects of the 

current cellular communication systems. Moreover, 

Ericsson presented a mobile data traffic forecast report 

which suggests that by 2028 all mobile data traffic will 

come from 5G. The global monthly average usage per 

smartphone is expected to be 19 GB in 2023 and this 

average usage will reach up to 46 GB by the end of 

2028  [3]. The 5G data traffic is expected to reach 69% by 

the end of 2028. According to the current demand and 

communication, high data rate, communication capacity, 

spectral efficiency, and energy efficiency are the most 

desired characteristics. Bhairanatti et al. [4] presented an 

extensive literature review to report the current progress 

and challenges faced in this domain. The traditional 

communication standards such as 2G, 3G, and 4G are not 

efficient to meet the current demand for communication 

quality. Recently, the use of Multiple-Input Multiple-

Output (MIMO) technology has gained substantial 
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consideration because it helps to achieve increased 

throughput and improves spectral efficiency [5]. 

MIMO refers to a communication standard that uses 

manifold antennas both at transmitter and receiver sides. 

This multiple antenna setup is used to improve the data rate 

and data transmission quality [6]. MIMO systems adopt 

spatial multiplexing and spatial diversity techniques to 

transmit independent and separately encoded data by using 

the same time period and frequency resources [7]. The 

MIMO systems are categorized into two classes as single-

user MIMO (SU-MIMO) with one user and this 

mechanism improves the data rate for one user only. On 

the other hand, multi-user MIMO (MU-MIMO) 

systems  [8] are such where data streams are assigned to 

various users and it facilitates the spatial multiplexing to 

enhance the overall communication. Fig. 1 depicts a 

sample representation of SU and MU MIMO systems. 

 

 

Fig. 1. MU and SU MIMO system. 

The expansion in antenna size is termed as massive 

MIMO [9]. Similarly, the millimetre Wave (mmWave) 

communication standards also provide strength to cellular 

communication systems by addressing the faster data rate-

related issues for cellular networks. The mmWave 

communication has resulted in a ten-fold increase in the 

carrier frequency of wireless communication systems [10]. 

The large antenna array has several advantages but the 

real-time deployment of fully digital massive MIMO poses 

challenges such as excessive power consumption. 

Similarly, the mmWave standards face more path loss than 

the traditional sub-30GHz communication [11]. 

However, the ever-increasing demand for high 

throughput with limited resources has led to adopt the 

mMIMO systems which use a large number of antennas at 

the base station. Fortunately, these issues of mmWave 

communication can be mitigated by using the mMIMO 

antenna arrays [12]. Therefore, the mMIMO systems are 

considered as a promising solution to increase capacity, 

spectral and energy efficiency [13]. The mMIMO systems 

include three key features such as spatial multiplexing [14] 

which is useful in serving multiple users simultaneously, 

precoding which helps to minimize the interference [15], 

and, beamforming which helps to concentrate the energy 

of signal towards the receiver to ensure the efficient 

directional transmission [16]. Michael et al. [17] 

introduced a novel approach for antenna arrangement and 

beam pattern design to mitigate the interface issues while 

maintaining the MIMO radar’s performance.  Similar to 

this, Sameera et al. [18] focused on designing a detector 

for MIMO radar network with two transmitters and three 

receivers. This model performs detection for given bi-

static pair of networks by employing the Linear Frequency 

Modulated (LFM) signal. Despite potential applications of 

mMIMO, this technology still faces several challenges 

which need to be addressed such as the mMIMO systems 

operate at extremely high frequencies due to which the 

Doppler shift increases linearly and as a result channels 

face frequent variations [19]. These systems are employed 

in Time-Division Duplex (TDD) and Frequency Division 

Duplex (FDD) [20, 21] modes, however, TDD is 

preferable because it supports multiple antenna placement 

at BS to increase the system capacity. In TDD mode the 

time required for uplink transmission and downlink CSI 

feedback may exceed the coherence time constraints of the 

communicating channel [22]. Moreover, hardware 

complexity, implementation cost, and power consumption 

are the well-researched challenges of mMIMO systems.  

However, the increased number of antennae at BS in the 

mMIMO system leads to increase in the complexity of the 

system. Therefore, reducing the complexity is one of the 

important aspects of uplink and downlink communication 

systems. Precoding is considered as a promising technique 

to reduce the computational complexity in mMIMO 

systems [23]. It is a method that includes the encoding of 

signals to ensure reliable downlink transmission. 

Generally, precoding techniques are classified into three 

main categories as linear, non-linear, and hybrid 

precoding [24]. However, it is a difficult process to equip 

more antennas with a dedicated Radio Frequency (RF) 

chain due to limited physical space, power consumption, 

and close placement of antennas. In order to address these 

issues of implementation cost and complexity, researchers 

have suggested adopting the phase-shifter-based two-stage 

structure which is called hybrid precoding [25]. In this 

work, we focus on introducing a DL based precoding 

scheme to overcome the complexity issues. Some of the 

challenges faced in existing precoding methods are as 

follows: 

• Complexity: These methods require significant 

computational resources therefore it becomes 

crucial for real-time application with stringent 

latency criteria. 

• Channel State Information: Most precoding 

methods rely on accurate CSI at the Transmitter 

(CSIT) to optimize the transmission. However, 

obtaining accurate CSIT often involves feedback 

from the receiver, which introduces overhead and 

latency. Moreover, imperfect CSI due to channel 

estimation errors can degrade precoding 

performance. 

• Channel conditions: Varying channel conditions 

in real-time scenario affects the precoding process. 

• Energy efficiency: Energy consumption is 

considered as critical factor in wireless 

communications. Energy-efficient precoding 

algorithms that minimize transmit power while 

maintaining communication quality are desirable. 
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Rest of the article is structured in following sections: 

Section II presents a brief analysis on literature review 

where linear, nonlinear and hybrid precoding are discussed, 

Section III presents the proposed DL based solution for 

hybrid precoding, Section IV presents the experimental 

analysis, and finally Section V presents the concluding 

remarks. 

II. LITERATURE REVIEW 

This section presents a brief literature review of 

existing techniques in this domain of massive MIMO 

systems. The previous section has described the challenges 

faced in massive MIMO systems and the role of precoding 

to increase the number of antennas at BS. Several types of 

research have been carried out in this domain of cellular 

communication due to the advancement of precoding 

mechanisms in MIMO systems.  

A. Linear & Non-Linear Precoding 

Precoding is a technique to exploit the Channel-State 

Information at the Transmitter (CSIT) by analyzing the 

signal before transmission. Linear precoder is operated as 

a multimode beamformer which helps to match the input 

signal on one side to the channel on the other side. In order 

to do this, the signal is divided into orthogonal and spatial 

Eigen beams. Further, the high power is allocated where 

channel is strong and low power is allocated where channel 

is weak [26].  

Interference cancellation becomes an important task to 

achieve high throughput performance for downlink 

cellular communication systems. Therefore, Wei et al. [27] 

introduced a linear precoding method that uses channel 

side information with the help of cache files to model the 

cache-aided mMIMO system. This system increases the 

degree of freedom for precoder design and it frees power 

that can be beneficial to the users requesting non-cached 

files.  

According to Ref. [28], the traditional methods steer the 

distortions towards the users therefore authors considered 

the nonlinear nature of Power Amplifiers (PAs) to design 

the linear precoders to mitigate the distortion completely. 

However, it affects the array gain, therefore a precoder 

optimization algorithm is also presented which considers 

array gain, distortion, interference and noise. Specifically, 

an iterative mechanism is introduced to obtain the 

precoding matrix which is used to minimize the consumed 

power and improve the achievable sum rate.  

Liu et al. [29] reported that the traditional Zero-Forcing 

(ZF) precoding method can achieve the near-optimal sum-

rate performance for downlink communication in mMIMO 

systems. However, computational complexity with matrix 

inversion remains a challenging issue in this. To overcome 

the drawbacks of ZF precoding, authors introduced 

Weighted Two-Stage (WTS) precoding which converts the 

complex matrix into two-half iteration stages. Further, the 

speed and convergence of these models is improved with 

the help of weighted coefficients.  

Zhang et al. [30] reported that resource allocation is a 

challenging task in downlink mMIMO systems therefore 

authors introduced a joint Proportional-Fair (PF) resource 

allocation approach which considers user selection, power 

optimization, linear precoding, modulation, and coding 

scheme in single-cell mMIMO systems.  

Ha et al. [31] focused on satellite communication with 

mMIMO systems. This approach presents a joint approach 

with Linear Precoding (LP) and codebook-based 

beamforming mechanism. This approach is also based on 

the codebook method which are constructed with the help 

of Discrete Fourier Transform (DFT) which helps to 

maximize the achievable throughput. Later, LP and DFT-

based beamforming methods use a weighted minimum 

mean square error transformation, duality, and Hungarian 

algorithm to address the challenges of non-linear 

programming.  

 As discussed in [29], the matrix inversion affects the 

performance of the downlink mMIMO system. Therefore, 

Wang et al. [32] suggested linear precoding for faster 

convergence with reduced complexity and global 

convergence. The authors introduced a randomized 

iterative precoding approach to mitigate the approximation 

error. Later, the conditional sampling paradigm is also 

introduced which helps to increase the convergence and 

efficiency of randomized iterations.  

 Other widely known LP methods include Successively-

Regularized Zero Forcing [33], deep learning based zero-

forcing [34], maximum ratio transmission [35], truncated 

polynomial expansion [36], and regularized zero-

forcing [37] etc.  

Similarly, non-linear precoding techniques are also 

widely adopted in mMIMO systems. These schemes are 

implemented when the channel state information is known 

to the transmitter side. Some of the widely known non-

linear precoding techniques include dirty-paper 

coding [38], vector-perturbation coding [39] and 

Tomlinson-Harashima (TH) coding [40], etc.  

B. Hybrid Precoding 

This section presents a brief discussion about hybrid 

precoding because of its importance in reducing hardware 

complexity and minimizing energy consumption.  

Kabalci et al. [41] presented an optimal hybrid 

precoding method that uses Iterative Geometric Mean 

Decomposition (IGMD) to achieve optimal performance. 

However, this method fails to exploit spatial information 

and suffers from the computational complexity issue. 

Therefore, Huang et al. [2] focused on the importance of 

the deep learning-based approach and presented a deep 

learning-based hybrid precoding scheme that helps to 

obtain the optimized decoder by mapping the deep neural 

network.  

According to Ref. [42], channel estimation and hybrid 

precoding are promising techniques for mMIMO system. 

Therefore, the authors introduced DL based compressed 

sensing approach for channel estimation. The DL model is 

trained using offline environments to predict the 

beamspace channel amplitude. Later, DL quantized phased 

hybrid precoder is designed for channel estimation. This 

model is trained offline by considering the phase 

quantization and phase quantization approximation is 

replaced with ideal phase quantization to obtain the hybrid 

precoding.  
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Elbir and Papazafeiropoulos [43] suggested adopting 

the hybrid precoding to improve the sum rate performance 

of mmWave MIMO system because the existing schemes 

are based on greedy and optimization-based approaches. 

The traditional methods provide sub-optimal performance 

therefore authors introduced deep learning-based approach 

that accepts input as an imperfect channel matrix. The 

complete process is divided into two stages: in the first 

stage exhaustive search approach is developed to select the 

analog precoder with the help of a predefined codebook.  

Ravikumar et al. [44] discussed the need of RF chain in 

mMIMO system. Therefore, authors focused on 

development of a cost-efficient solution for hybrid 

precoding. This method facilitates collection of short 

dimensional precoding data from high dimensional beam-

former in the digital domain. Thus, the main aim of this 

approach is to develop a combined channel estimation and 

hybrid precoding method for mmWave communication 

system. The channel estimation is carried out with the help 

of adaptive deep convolution neural network which 

performs channel estimation and reconstruction. Further, 

Forest-Tunicate Swarm Algorithm (F-TSA) is also 

employed to enhance the efficiency of convolution neural 

network.  

Liu et al. [45] focused on deep learning-based approach 

for channel estimation and proposed a spatial-frequency 

ECAUNet++ (SF-ECAUNet++) approach. This 

mechanism performs compression and reconstruction by 

using correlation between spatial and subcarrier frequency. 

Moreover, it also includes attention neural network to 

predict the channel.  

Rajarajeswarie et al. [46] reported that the precoder play 

vital role in mMIMO systems by reducing the complexity. 

The traditional precoder systems require multiple radio 

frequency chains which need to be reduced to improve the 

overall performance. Thus, authors introduced hybrid 

precoding mechanism by using deep learning for 

designing the hybrid precoder. This helps to solve the non-

convex problem. The deep learning training is based on the 

Uniform Channel Decomposition (UCD) and Generalized 

Triangular Decomposition methods.  

Ismail et al. [47] proposed a deep learning approach to 

design the hybrid precoder. This mechanism is based on 

the Parametric Rectified Linear Unit (PReLU) activation 

function which is helpful in increasing the accuracy with 

reduced cost. 

The literature review on precoding techniques in 

massive MIMO systems highlights both linear and non-

linear precoding methods, emphasizing their role in 

exploiting Channel-State Information at the Transmitter 

(CSIT) to enhance system performance. Various 

approaches, including linear precoding with cache-aided 

systems and non-linear precoding to mitigate power 

amplifier distortion, are discussed. Additionally, hybrid 

precoding methods are explored for reducing hardware 

complexity and energy consumption. However, many 

existing approaches face challenges such as computational 

complexity and suboptimal performance. The review 

suggests further investigation into deep learning-based 

precoding methods to address these challenges effectively. 

III. PROPOSED MODEL 

This section presents the proposed solution to design the 

optimal precoder for downlink mMIMO communication 

system. As discussed before hybrid precoding is a 

favorable mechanism that helps to reduce the number of 

RF chains to achieve the improved performance. Several 

techniques have been presented to accomplish the hybrid 

precoding but acquiring the accurate downlink Channel 

State Information (CSI) is an important aspect for BS. 

Therefore, the User Equipment (UE) role comes into 

picture where these UEs estimate the CSI of downlink and 

report the CSI information to BS with the help of feedback. 

Some of the researchers have adopted joint optimization of 

CSI feedback and hybrid precoding. However, these 

methods suffer from the issue of additional 

implementation cost and increased overhead for large 

number of users and antennas [48]. Previous section has 

described the several hybrid precoding techniques where 

CSI feedback and hybrid precoding are realized in separate 

modules and therefore a combined module is much needed 

to explore the capabilities of the system. In this work, we 

adopt the deep learning based framework to design the 

optimal precoder with CSI feedback. 

In this work, we consider a single-cell massive MIMO 

downlink model with limited feedback where a base 

station BS is equipped with 𝑀 antennas. These antennas 

serve K number of single-antenna users simultaneously. 

Let us consider that a precoding matrix is denoted by 𝑭 as 

𝑭(≜ [𝑓1, … 𝑓𝐾]) ∈ ℂ𝑀×𝐾  and 𝒅(≜ [𝑑1, . . 𝑑𝐾]) ∈ ℂ𝐾×1  

denotes the data symbol vector for all user equipments 

(UEs) 𝑘 ∈ {1, … , 𝐾}. The BS is equipped with 𝑁𝑇 number 

of transmit antennas along with 𝑁𝑅𝐹  chains where 

𝐾 ≤ 𝑁𝑅𝐹 . Based on these assumptions, the transmit signal 

vector at BS has been denoted. In this communication 

setup, the hybrid precoding is obtained via digital 

baseband precoder denoted by 𝑫 which has dimensions as 

𝐾 × 𝐾  and analog precoder denoted by 𝑭  which has 

dimensions as 𝑁𝑡 × 𝐾 . The input signal is processed 

through the digital baseband precoder where it adjusts 

amplitude and phase of the signal whereas the analog 

baseband precoder adjusts only the phase of input signal. 

This realization of precoders presents a constraint that 

modulus of every element in 𝑭  is a constant as 

|[𝑭]𝑖,𝑗| =
1

√𝑁𝑡
 where [𝑭]𝑖,𝑗 is the (𝑖, 𝑗)𝑡ℎ element of 𝑭. We 

consider a flat fading channel, thus, the received signal by 

𝑘𝑡ℎ user can be denoted as: 

𝑦𝑘 = 𝒉𝑘
𝐻𝑭𝒅𝑘𝑠𝑘 + ∑ 𝒉𝑘

𝐻𝑭𝒅𝑗𝑠𝑗𝑗≠𝑘 + 𝑛𝑘 (1) 

where 𝒉𝑘
𝐻  represents the channel between BS and 𝑘𝑡ℎ user, 

𝒅𝒋 is the 𝑗𝑡ℎ  column of digital precoding 𝐷 and 𝑛𝑘 is the 

additive white Gaussian noise which has unit variance. 

Further, the signal vector for all 𝐾  users is denoted as 

𝑠 = [𝑠1, … 𝑠𝑘]𝑇 ∈ ℂ𝐾×1 . As discussed before that energy 

consumption is also considered as challenging issue. 

Therefore, we consider the transmit power constraint and 

normalize the energy of 𝐹 and 𝐷 precoder such as that it 

satisfies ‖𝐹𝐷‖𝐹
2 = 𝐾. Based on this, the sum-rate of the 

system can be computed as follows: 
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𝑅 = ∑ log2(1 + 𝑆𝐼𝑁𝑅𝑘)𝐾
𝑘=1   (2) 

where Signal-to-interference-plus-noise-ratio (𝑆𝐼𝑁𝑅) for 

𝑘𝑡ℎ user can be articulated as: 

𝑆𝐼𝑁𝑅𝑘 =
𝑃

𝐾
|ℎ𝑘

𝐻𝐹𝑑𝑘|
2

1+∑
𝑃

𝐾
|ℎ𝑘

𝐻𝐹𝑑𝑘|
2

𝑗≠𝑘

   (3) 

Furthermore, the optimization problem in this mMIMO 

system can be framed as: 
 

{𝑭, 𝑫} = arg max
𝐹,𝐷

𝑅 

s.t. |𝐹𝑖,𝑗| =
1

√𝑁𝑡
 and ‖𝑭𝑫‖𝐹

2 = 𝐾 
(4) 

 

where |. | is the modulus operation and ‖. ‖𝐹  denotes the 

Frobenius norm operation. In this work, we focus on 

reducing the number of feedback CSI parameters. This can 

be achieved by compressing the channel matrix. This task 

is carried out by an encoder in UE and it tries to decode the 

channel matrix accurately at the BS. The encoder module 

is given as: 

𝒒𝑘 = 𝑓𝐸𝑛(𝒉𝑘)   (5) 

where 𝒒𝑘 denotes the compressed codeword of ℎ𝑘 and 𝑓𝐸𝑛 

represents the compression operation of encoder. This 

operation helps to reduce the feedback parameters from 𝑁 

to smaller value of 𝑀 = 2𝐾𝑀𝑡.The compression ratio is 

denoted as 𝛾 =
𝑀

𝑁
. In the next phase, the channel matrix is 

recovered at BS with the help of decoder as 𝑓𝐷𝑒(. ). This 

can be expressed as: 

𝒉̌𝑘 = 𝑓𝐷𝑒(𝒒𝑘)   (6) 

Based on the aforementioned compression and feedback 

model, the channel matrix at BS can be given as: 

𝒉̌𝑘 = 𝑓𝐷𝑒(𝑓𝐸𝑛(ℎ𝑘)) = ℎ𝑘 + 𝑧̃  (7) 

where 𝑧̃ denotes the CSI error due to the compression and 

reconstruction process. The complete setup of digital and 

analog precoder for downlink massive MIMO system is 

depicted in below given Fig. 2. 

 

 

Fig. 2. Digital and analog precoder for downlink massive MIMO 

system. 

A. Proposed Deep Learning Model for Hybrid 

Precoding 

In massive MIMO systems, full utilization of channel 

sparsity can help in refining the overall performance of 

hybrid precoding. In previous segment, we have studied 

the importance of Deep Learning based framework in 

mMIMO systems. Therefore, we adopt the deep learning 

based model to introduce a new deep learning based 

architecture as precoding framework. The most common 

deep learning framework, Deep Neural Networks (DNNs), 

may be compared to a Multiple-Layer Perceptron (MLP). 

In particular, a DNN has several hidden layers in contrast 

to a traditional Artificial Neural Network (ANN) to 

improve its learning and mapping capabilities. Each 

hidden layer in a DNN has a number of units, and 

activation functions allow the output to be created 

depending on the output of these units. For any given 

argument 𝑝, the ReLU and Sigmoid can be expressed as 

𝑅𝑒𝐿𝑈(𝑝) = max(0, 𝑝)  and 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑝) =
1

1+𝑒−𝑝 , 

respectively. The input and output for this network are 

denoted as 𝑣 and 𝑜 respectively. The mapping operation 

can be expressed as: 

𝒛 = 𝑓(𝑣, 𝑤) = 𝑓(𝑛−1) (𝑓(𝑛−2)(. . . 𝑓1(𝑣))) (8) 

where 𝑛  and 𝑤  represents the number of layers and 

weights in the network, respectively. The DNN 

architecture used in this work is presented in Fig. 3. 

 

 

Fig. 3. DNN architecture. 

The proposed network architecture consists of input 

layer, hidden layer and ReLU activation functions. The 

input layer determines the length of input training 

sequence. Specifically, the length of input training 

sequence depends on its dimensions. In this architecture, 

we have used a fully connected layer with 128 units. These 

units are utilized to capture the input data features. Later, 

the two hidden layers are used to process the encoding 

operation on the data obtained from the FC layer. These 

two layers have 400 and 256 units respectively to perform 

the encoding task. In order to consider the distortion in the 

signal, we use a noise layer which consist of 200 units. 

This layer is used to distort the original signal by adding 

the distorted data. The next blocks of hidden layers are 

used as decoder modules where we use two hidden layers. 

The first hidden layer comprises of 128 units and the 

second layer is comprised of 64 units. Finally, the output 

layer is also applied to obtain the final output signal. Each 

layer is summarized as follows: 

1. Input Layer: This layer determines the length of 

the input training sequence, which is dependent on 

the dimensions of the input data. It acts as the entry 

point for data into the neural network. 

2. Fully Connected (FC) Layer: The FC layer 

consists of 128 units and is utilized to capture the 

input data features. Each unit in this layer is 

connected to every neuron in the previous layer, 

allowing it to learn complex patterns in the data. 
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3. Hidden Layers (Encoding): 

• First Hidden Layer: With 400 units, this layer 

processes the encoding operation on the data 

obtained from the FC layer. It extracts higher-

level features from the input data. 

• Second Hidden Layer: This layer consists of 256 

units and further refines the encoded 

representation of the data, capturing more 

abstract features. 

4. Noise Layer: The noise layer consists of 200 units 

and is used to introduce distortion into the original 

signal. By adding distorted data, the network learns 

to handle noise and improve robustness. 

5. Hidden Layers (Decoding): 

• First Hidden Layer: Comprised of 128 units, this 

layer performs decoding operations on the 

distorted data, aiming to reconstruct the original 

signal. 

• Second Hidden Layer: With 64 units, this layer 

further refines the reconstructed signal, helping 

to recover any lost information due to noise or 

distortion. 

6. Output Layer: The output layer is the final layer 

of the network and is responsible for producing the 

final output signal. 

In order to consider power constraints in output layer, 

we introduce an activation function as: 

𝑓(𝑠) = min(max(𝑠, 0) , 𝑁𝑠)  (9) 

where 𝑁𝑠 is the data streams sent by BS to user. In order to 

map the hybrid coding, we use decomposition method to 

decompose the mMIMO channel matrix. The channel 

matrix 𝐻 is represented as: 
 

𝑦 = 𝑊𝑄𝑅𝐻 

𝒚 = [𝑊1, 𝑊2] [
𝑄1 ∗
0 𝑄2

] [
𝑅1

𝐻

𝑅2
𝐻] 

(10) 

 

here, 𝑊1 ∈ ℂ𝑁𝑟×𝑁𝑠  and 𝑅1 ∈ ℂ𝑁𝑟×𝑁𝑠  are regarded as 

combiner and precoder respectively, 𝑄1 ∈ ℂ𝑁𝑠×𝑁𝑠 denotes 

the upper triangular matrix and ∗ is the arbitrary matrix. In 

this module, the largest singular values are estimated as 

𝑞𝑖,𝑖 = (𝛿1, 𝛿2, … , 𝛿𝑁)
1

𝑁𝑠 ∈ 𝑞̅, ∀𝑖  where 𝑞𝑖𝑗  denotes the 

elements of matrix 𝑄1. Therefore, the final received signal 

is expressed as: 
 

𝑦 = 𝐵𝐻𝐻𝑥 + 𝐵𝐻𝑛 

𝑊1
𝐻𝐻𝑅1𝑠 + 𝑊1

𝐻𝑛 

𝑄1𝑠 + 𝑊1
𝐻𝑛 

(11) 

 

In order to train the D model, the loss function is 

expressed as follows: 
 

𝑙𝑜𝑠𝑠 = ‖𝑅1 − 𝑅𝐴𝑅𝐷‖𝐹 

= √𝑡𝑟((𝑅1 − 𝑅𝐴𝑅𝐷)(𝑅1 − 𝑅𝐴𝑅𝐷)𝐻) 

= √ ∑ 𝛿𝑖
2(𝑅1 − 𝑅𝐴𝑅𝐷) 

min{𝑁𝑡,𝑁𝑠}

𝑖=1

 

(12) 

where ‖. ‖𝐹  is the Frobenius norm, 𝑅𝐴  is the analog 

precoder, and 𝑅𝐷 is the digital precoder. Later, we adopt 

the deep learning framework to construct the autoencoder 

module which is expressed as follows: 

𝑅1 = 𝑓(𝑅𝐴𝑅𝐷; Ω)   (13) 

where 𝑓(. ) Is the mapping relation and Ω is the dataset 

samples. The complete deep learning process is as follows: 

In order to obtain the structural statistic of massive 

MIMO model, we adopt deep learning based mapping 

operation and introduce a training mechanism which uses 

a certain configuration of deep learning layers. In this 

process, we initialize the analog and digital precoders as 

empty matrices and generate the initial random data 

sequence. The obtained data is used for training the DNN 

model and precoder matrices 𝑅𝐴 and 𝑅𝐷 are updated as the 

training process continues. Furthermore, physical Angle of 

Arrival (AOA) and Angle of Departure (AOD) are also 

generated randomly to obtain the bias between 𝑅1  and 

𝑅𝐴𝑅𝐷 from output layer of DNN with the help of structural 

features of mMIMO. Therefore, the dataset Ω  with 

structural features is required. Finally, the loss function is 

described as follows: 
 

𝑅𝐴
𝑗+1

= 𝑅𝐴
𝑗

+ 𝑣 

𝑅𝐷
𝑗+1

= 𝑅𝐷
𝑗

+ 𝑣 
(14) 

 

here, 𝑣  denotes the velocity of gradient element, 𝑗  is 

gradient 𝑅𝐴
0 and 𝑅𝐷

0  denotes the randomly generated initial 

solution for analog and digital precoder. The complete 

update process can be defined as follows: 
 

𝑣 = 𝛼𝑣 − 𝜖𝑔 

= 𝛼𝑣 −
𝜖1

𝑁
∇𝑅𝐴,𝑅𝐷

√ ∑ 𝛿𝑖
2(𝑅1 − 𝑅𝐴𝑅𝐷)

min{𝑁𝑡,𝑁𝑠}

𝑖=1

 
(15) 

 

However, the CSI error due to compression and 

reconstruction process affects mMIMO performance. To 

overcome this issue, we have adopted deep learning [2] 

and introduce a novel deep learning based model for 

limited feedback. Generally, the downlink mMIMO 

systems require CSI at the BS to use spatial diversity 

information. However, the increased overhead degrades 

the overall spectral efficiency performance. To overcome 

this issue, we present deep learning based model to 

compress the channel state matrix. This model uses 

convolution layers along with the quantization and entropy 

coding.  

B. Encoder-Decoder Architecture 

Fig. 4 depicts the CSI feedback reconstruction where 

real and imaginary are considered as the channel input as 

the part of channel matrix. The CSI of user is compressed 

into a bit stream with the help of local encoder. The 

encoder model consists of feature encoder model, 

quantizer block and decoder model. This module helps to 

extract these key features from the CSI matrix. Further, we 

use entropy encoder to minimize the feedback amount with 

the help of arithmetic coding which generates the variable 
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length bit stream. The entropy encoder helps to obtain the 

lower dimensionality representation of the feature data.  

 

 

Fig. 4. Proposed architecture for CSI feedback compression. 

Below given Figs. 5 and 6 depict the feature encoder and 

decoder architecture. This architecture uses a convolution 

layer with 256 kernel where size of each kernel is 9×9. The 

encoder module is comprised of three convolution layers 

where first layer uses 9×9 kernel whereas the remaining 

two layers use kernels of size 5×5. Further, we use 

downsampling block to reduce the dimensionality 

followed by a ReLU activation function. Batch 

normalization is also applied at each layer.  

 

 

Fig. 5. Feature encoder. 

 

Fig. 6. Feature decoder. 

On the other hand, the feature decoder module uses 

upsampling, convolution, batch normalization and ReLu 

activation. This module performs the inverse operations as 

mentioned in encoder module. At BS, the outcome of this 

entropy decode module is fed into the feature decoder to 

obtain the channel gain matrix.  

Moreover, the decode architecture also consists of 

residual blocks to skip several layers. This residual block 

helps to prevent the vanishing gradient problem in the deep 

learning process. These residual blocks are equipped with 

the convolutional layer. These layers are activated by 

applying ReLU activation and they are normalised using 

the batch norm. Later, quantization and entropy encoding 

tasks are performed to obtain the final output matrix. The 

Quantization module helps to quantize each element to the 

closest integer and the entropy encoder block considers 

these values as input and converts these quantized bits into 

streams.  

IV. RESULT AND DISCUSSION 

In this section, we present the experimental analysis of 

proposed approach and compare the achieved performance 

with traditional precoding techniques in this domain of 

massive MIMO communication system. 

A. Dataset Details and Training Process 

In this work, we have used publicly available generic 

DeepMIMO dataset. The parameters considered for this 

experiment are presented in Table I. 

TABLE I. SIMULATION PARAMETERS 

Parameter Value 

Active Base Station 4 

Active Users From row R1200 to R1500 

BS Antennas Count 𝑀𝑥 = 1, 𝑀𝑦 = 64 , 𝑀𝑧 = 1 

User Antennas Count 𝑀𝑥 = 1, 𝑀𝑦 = 64 , 𝑀𝑧 = 1 

Antenna Spacing (Wavelength) 0.5 
Bandwidth of Antenna 0.5 GHz 

OFDM Subcarriers 1024 
Sampling Factor 1 

 

In this experiment, we have considered 4 BSs with the 

mobile users from row R1200 to R1500. For simplicity, 

transmitter and receiver modules are considered to employ 

the 64 antennas. Each antenna has total 3 RF chains. Using 

the DeepMIMO dataset generator, we first build the 

channel matrix for each user. Then, a randomly generated 

noise is added to the current channel matrix. Further, near 

optimal Gram Schmidt based precoding model is adopted 

to construct the precoding/combining matrices. The noisy 

channel and the related RF precoder/combiners codebook 

indices are then taken into account as a single data point in 

the dataset. The proposed deep learning based approach, 

which adopts a Stochastic Gradient Descent (SGD) based 

loss function, is trained using the produced dataset. The 

proposed model is implemented by using Keras libraries 

and it uses Adam optimizer with 0.5 momentum, a batch 

size of 512 and 0.0005 learning rate. 

B. Comparative Analysis  

In order to measure the performance of proposed 

approach, we compute achievable rate for varied transmit 

power. The obtained performance is presented in below 

given Fig. 7 where the outcome of Deep Learning based 

hybrid precoding is compared with the direct precoding. 

The achievable rate performance is measured for varied 

total transmit power. The obtained achievable rate 

performance is compared with the existing approach as 
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mentioned in [49] and upper bound. This experiment 

shows that the proposed approach is able to achieve near 

optima solution with reduced overhead as it uses small 

number of M_t and M_r. The average achievable rate for 

M_t = 2 and M_r = 2 is obtained as 13.38 and 13.94 by 

using existing direct precoding and proposed hybrid 

precoding, similarly, the achievable rate for M_t = 4 and 

M_r = 4 is obtained as 14.93 and 15.93 by using direct and 

proposed hybrid precoding, respectively.  

 

 

Fig. 7. Achievable rate performance. 

Further, we measure the performance of proposed 

approach in terms of spectral efficiency for varied SNR 

levels. Below given Fig. 8 depicts the obtained 

performance and comparative representation of the 

spectral efficiency.  The upper bound is obtained with the 

help of fully digital precoding by applying ZF with perfect 

CSI. The increased SNR leads to increase in spectral 

efficiency. 

 

 

Fig. 8. Spectral efficiency. 

The proposed approach achieves the near optimal 

solution because its performance is not degraded due to 

stochastic noise increase. The average spectral efficiency 

is obtained as 5.68, 7.643, 8.914, 11.357, and 12.457 (all 

values in bits/s/Hz) by using Beamspace MIMO (B-

MIMO), Orthogonal Matching Pursuit (OMP), Phase 

Extraction Alternate Minimization Zero Forcing (PE-

AltMin-ZF), Hybrid Precoding Network (HPNet), and 

Proposed Approach, respectively as mentioned in [50]. 

The comparative analysis is obtained from Table II. 

TABLE II. SPECTRAL EFFICIENCY PERFORMANCE 

SNR in dB B-MIMO OMP PE-AltMin-ZF HPNet Proposed Approach Upper Bound 

−20 0.8 0.9 1.2 2 2.2 3 
−15 2 2.3 2.8 3.5 3.6 4 

−10 3 3.3 3.5 4 4.8 5 

−5 4 6 7.8 9 9.6 10 
0 6 11 12.5 15 16.2 17 

5 10 14 16.1 20 22.3 23 

10 14 16 18.5 26 28.5 30 

 

Finally, we compare the sum rate performance for 

varied number of users. Below given Fig. 9 the 

comparative analysis of sum-rate performance. In this 

experiment, the average sum rate performance is obtained 

as 6.042 bits/Hz, 6.4, 7.28, 7.12, 7.68, and 8.02 by using 

SOMP [43], Two-Stage Hybrid Beamforming (TS-

HB)  [43], Multi-layer Perceptron (MLP) [43], Low-

Resolution Hybrid Beamforming (LRHB) [43], 

Convolution Neural Network MIMO (CNN-MIMO) [43], 

and Proposed Approach, respectively. This experiment 

shows that the increasing number of users degrade the sum 

rate performance however, proposed limited feedback 

mechanism helps to maintain the sum rate by reducing the 

congestion. This comparative analysis is presented in 

Table III.  

 

 

Fig. 9. Sum rate performance. 

TABLE III. SUM RATE PERFORMANCE 

No. of Users SOMP TS-HB MLP LRHB CNN-MIMO Proposed Approach 

2 6.8 7.2 8.1 8.5 8.5 8.9 
3 6.5 6.8 8 7.89 8.4 8.6 

4 6.4 6.5 7.6 7.4 8 8.2 

5 6 6.1 7.5 7.1 7.8 7.9 

6 5.6 6.2 6.9 6.8 7.3 7.6 

7 5.5 6 6.4 6.2 7 7.5 
8 5.5 6 6.5 6 6.8 7.5 
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V. CONCLUSION 

In this work, we have concentrated on massive MIMO 

communication systems and identified the various issues 

faced by these systems. The existing studies have reported 

that the performance of mMIMO systems can be upgraded 

by applying precoding scheme. Currently, the hybrid 

precoding schemes have gained attention in this domain. 

Moreover, deep learning based schemes are also widely 

adopted to improve the communication performance. 

Therefore, we present a deep learning based hybrid 

precoding scheme for mMIMO system. The proposed 

DNN architecture accepts the channel matrix as input and 

generates the outputs with the help of analog precoder and 

combiner. Moreover, we have articulated that the 

excessive feedback increases the congestion therefore, we 

introduce encoder and decoder based limited feedback 

model to improve the overall performance of the system. 

Similarly, the compression and reconstruction also affect 

the communication performance at BS. The outcome of 

proposed approach is compared with traditional schemes 

in terms of achievable rate for varied transmit power, 

spectral efficiency, and Sum rate. The comparative 

investigation illustrates that the proposed DL based 

methodology realizes better performance when compared 

with the existing systems. 
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