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Abstract—Plant diseases significantly affect both the world’s 
agricultural economy and food security on a worldwide scale. 
The likelihood of establishing efficient control measures is 
increased by their early discovery and classification. 
Convolutional Neural Networks (CNN)-based categorization 
of tomato leaf diseases using RGB photos has shown 
encouraging results in several recent research. Despite their 
usefulness, CNN models have limitations. Sometimes, they 
fail to focus on the specific areas affected by plant disease and 
instead may include irrelevant backgrounds or healthy plant 
parts in their categorization. This research introduces a new 
approach for identifying diseased areas and extracting 
relevant features for illness classification using an Rider 
Chicken Optimization Algorithm (RCOA)-based Recurrent 
Neural Network (RNN). Compared to traditional CNN 
techniques, the RNN-based approach is more robust and can 
better generalize to unknown crop species that are affected. 
The classification is based solely on distinct features to 
achieve the highest accuracy. The proposed RCOA-trained 
RNN classifier is used to classify diseases. To improve the 
accuracy of the classification results, fictional computing 
combines the premise of rider optimization with the 
hierarchical and swarming conduct of chickens to manage 
huge volumes of data. The suggested RCOA-based RNN is 
capable of precisely finding infectious illnesses by analyzing 
the area of focus with 98.8% accuracy in tomato leaves. 

Keywords—Recurrent Neural Network (RNN), Rider 
Chicken Optimization Algorithm (RCOA), plant village, 
Convolutional Neural Networks (CNN), plant disease 

I. INTRODUCTION

Tomatoes are extensively grown vegetables worldwide, 
serving as a significant source of nutrition for millions of 
individuals. Nevertheless, tomato crops can be severely 
affected by various diseases, resulting in considerable 
economic losses for farmers and a shortage of food supply 
for consumers [1]. Therefore, detecting and categorizing 
tomato crop diseases has become a crucial area of study. 
With new computer vision algorithms’ advancements, 
accurate and efficient detection and classification of 
tomato crop diseases are now achievable [2]. 

Previously, the process of identifying and categorizing 
tomato crop diseases was carried out manually by human 

experts, which is time-consuming and costly. However, 
with the introduction of new technologies such as machine 
learning and computer vision, it is now possible to 
automate this process. Several algorithms have recently 
been developed to detect and classify tomato crop diseases 
with high accuracy [3]. 

In the realm of agricultural technology, machine 
learning algorithms have emerged as powerful tools for 
automating the detection and classification of crop 
diseases. One such algorithm is Convolutional Neural 
Networks (CNNs), which have demonstrated remarkable 
efficacy in identifying various diseases affecting tomato 
crops. CNNs operate by extracting features from images, 
enabling them to discern intricate patterns essential for 
accurate classification. However, a limitation of CNNs lies 
in their inability to encode spatial information, thereby 
necessitating a substantial volume of training data for 
optimal performance [4]. 

Another notable algorithm in the domain of crop disease 
classification is the Support Vector Machine (SVM). 
SVMs excel in discerning complex boundaries between 
different classes of data, maximizing classification 
confidence by optimizing the decision surface. By 
defining a hyperplane with a significant margin of 
separation, SVM ensures robust categorization, even in 
scenarios where linear separation in high-dimensional 
space is unattainable [5]. 

Recurrent Neural Networks (RNNs) transitioning from 
conventional machine learning methods to more 
sophisticated techniques have garnered attention for their 
ability to model sequential data effectively. In the context 
of disease detection in tomato crops, RNNs offer a 
promising avenue for capturing temporal dependencies in 
disease progression. Building upon the principles of neural 
networks, RNNs can analyze sequential data, such as time-
series observations of crop health, and discern patterns 
indicative of disease onset or progression. This capability 
makes RNNs well-suited for tasks requiring the analysis 
of sequential data streams, including disease monitoring in 
agricultural settings [6]. 

k-nearest neighbor is a common supervised machine
learning method that is straightforward and easy to use. As 
a result of its simple interpretation and short computation 
time compared to other machine learning algorithms. 
Regression and classification issues may both be solved 
using KNN. The drawback of this approach is that as the 
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size of the data set increases, so does the algorithm’s 
efficiency. KNN is well-known for its slowdowns. Due to 
the requirement to keep all training examples and the 
additional time required to calculate the distance to all 
samples, this method is computationally costly. Missing 
data can’t be handled [6]. 

Finally, Random Forest is another algorithm that has 
shown promising results in detecting and classifying 
tomato crop diseases. In the case of tomato crop disease 
detection, Random Forest can be used to classify images 
of tomato crops into healthy and diseased categories based 
on the features extracted from them. This technique has 
the drawback of being inefficient in real-time prediction 
situations. Complex algorithm that is indeed difficult to 
put into practice. 

RNNs have been used in the development of a number 
of agricultural applications in recent years. Pattern 
recognition, such as in automated diagnostic systems, is a 
popular use of RNNs. For classification, RNNs may make 
use of nonlinear decision limits and state memory. Much 
research has shown that RNNs can tell the difference 
between linear and nonlinear data. RNNs have been shown 
in previous research to be very effective in the healthcare 
industry. This study found that the classification accuracy 
of RNNs was better than MLPs when compared to other 
research that examined their findings [7]. 

Chicken Swarm Optimization (CSO), a brand-new bio-
inspired method, is suggested for optimization 
applications. Tests on twelve benchmark datasets were 
carried out to correlate the performance of CSO with that 
of other algorithms [8]. The outcomes demonstrate that 
CSO may produce strong optimization outcomes in terms 
of both robustness and accuracy. The work is bifold as: 

(1) To achieve high accuracy in identifying diseases 
in tomato leaves, we will employ an RNN with 
RCOA and investigate its efficacy on the plant 
village dataset. 

(2) To examine how the train/test split size amount of 
the dataset affects the performance of the network 
model in identifying diseases in tomato leaf 
images. For the chosen dataset it is analyzed with 
different split ratios to determine their impact. 

II. LITERATURE REVIEW 

An important type of neural network is the Recurrent 
Neural Network (RNN), which creates a directed graph of 
connections between layer nodes that follow a series of 
variables. This RNN-based method is popular for handling 
sequential data and making predictions in areas such as 
language translation or action recognition, as shown in 
studies by Ma et al. [9]. Long Short-Term Memory 
(LSTM) and Gated Recurrent Unit (GRU) are improved 
RNN models that address issues like disappearing 
gradients and enable training on extended sequences. 

Meanwhile, Zhao et al. [10] showed that LSTM could 
capture distinguishing areas of images for accurate 
categorization. RNNs can also use attention as a 
mechanism to focus on certain inputs while predicting 
specific outputs, which simplifies the learning process and 
leads to higher-quality learning. For example, Ren and 

Zemel [11] used an RNN with an attention mechanism to 
capture spatial features. 

Paudel et al. [12] suggested a brand-new RNN-based 
framework for the detection of illnesses affecting maize 
crops. Long Short-Term Memory (LSTM) cells of the 
RNN architecture were used in the suggested framework 
to efficiently describe the temporal relationships in the 
sequence of input data. A publicly accessible dataset of 
9,692 photos of maize leaves affected with common rust, 
grey leaf spot and northern leaf blight was used in the 
study. The suggested RNN-based framework 
outperformed other cutting-edge techniques by 
categorizing the various diseases with an accuracy of 
95.5%. In a different research, Gouda et al. [13] suggested 
a deep learning-based method for identifying and 
categorizing illnesses affecting cotton crops. The 
sequential patterns in the input data were recognized by 
the research using an RNN architecture termed a Gated 
Recurrent Unit (GRU). Images of cotton leaves afflicted 
with bacterial blight, bacterial leaf spot, cotton leaf curl 
virus, and powdery mildew made up the input data. The 
suggested RNN-based strategy outperformed other 
conventional and deep learning-based algorithms, 
categorizing the various illnesses with an accuracy of 
96.8%. 

Lu et al. [14] developed an RNN-based method for 
identifying and categorizing tomato illnesses. The 
suggested method modelled the temporal relationships in 
the input data series using an LSTM architecture. Images 
of tomato leaves affected with six distinct illnesses made 
up the input data: septoria leaf spot, grey mold, late blight, 
mosaic virus, and bacterial wilt. The suggested RNN-
based strategy outperformed other conventional and deep 
learning-based systems, categorizing the various illnesses 
with an accuracy of 96.3%. 

Li et al. [15] suggested an RNN-based method for 
identifying and categorizing apple illnesses. The 
suggested method modelled the temporal relationships in 
the input data series using an Attention-based LSTM 
(ALSTM) architecture. The input data consisted of 
pictures of apple leaves with four different diseases: apple 
scab, cedar apple rust, frogeye leaf spot, and healthy leaves. 
The suggested RNN-based strategy outperformed other 
conventional and deep learning-based systems, 
categorizing the various illnesses with an accuracy of 
96.5%. 

An RNN-based strategy using RCOA was suggested by 
Chen et al. [16] for the prediction of tomato leaf diseases. 
The network weights were optimized using the suggested 
method, which combined an LSTM architecture with the 
RCOA algorithm [17]. Images of tomato leaves affected 
with two distinct diseases—early blight and late blight—
made up the input data. The suggested RNN-based method 
outperformed previous cutting-edge approaches, 
predicting tomato leaf diseases with an accuracy of 95.2%. 

While Vinoth and Ananth [17] may have utilized a 
similar approach based on RCOA for RNNs in disease 
detection, our research introduces several novel elements 
that set it apart. Firstly, we have refined and optimized the 
underlying algorithmic framework, enhancing its efficacy 
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in capturing subtle patterns indicative of tomato leaf 
diseases. Our modifications include fine-tuning 
parameters, adjusting optimization strategies, and 
incorporating domain-specific knowledge to improve 
overall performance. Additionally, we have extended the 
scope of application by integrating auxiliary data sources, 
such as environmental variables or genetic profiles, to 
augment disease detection accuracy. Furthermore, our 
research introduces innovative post-processing techniques 
tailored to address specific challenges encountered in 
agricultural settings, such as variability in lighting 
conditions or leaf morphology. By leveraging these 
advancements, our approach not only achieves superior 
classification accuracy but also demonstrates robustness 
and adaptability across diverse environmental contexts. 
Overall, while Vinoth and Ananth [17] may provide a 
foundation for RCOA-based RNNs in disease detection, 
our research significantly advances the state-of-the-art by 
introducing novel methodologies and optimizations 
tailored specifically for the challenges inherent in tomato 
crop disease detection 

Tomato leaf prediction is a crucial task in the 
agricultural industry for ensuring the health and quality of 
tomato crops. Recurrent Neural Networks (RNNs) have 
been investigated by researchers as a potential tool for 
predicting tomato leaf diseases thanks to developments in 
machine learning and artificial intelligence. 

III. MATERIALS AND METHODOLOGIES 

Plant Village dataset was utilized to construct the 
tomato leaf dataset [18]. The collection comprises 54,306 

leaf pictures with 38 class labels, including some healthy 
tomato leaves and nine different forms of tomato leaf 
illnesses is depicted in Table I. Ten of these categories, 
which are especially connected to tomato plant leaves, 
were the focus of the investigation. Due to its genetic 
heritage, the tomato plant is vulnerable to several bacilli-
caused illnesses. There by eighteen thousand three 
hundred and forty photos of tomato plant leaves were 
included in the dataset for the study, along with 
information on management methods, genetic heritage, 
and environmental changes. Fig. 1 classifies the different 
illnesses into those caused by fungus, bacteria, mold, 
viruses, or mites. 

TABLE I. PLANT VILLAGE DATASET SAMPLES WITH TABLE 
DESCRIPTION 

Type Class Origin Images Augmentation Trainset 
Bacterial Spot 0 425 2125 1700 
Early Blight 1 480 2400 1920 

Healthy 2 481 2405 1924 
Late Blight 3 463 2315 1852 
Leaf Mold 4 470 2350 1880 

Mosaic Virus 5 448 2240 1792 
Septoria Leaf 

Spot 6 436 2180 1744 

Target Spot 7 457 2285 1828 
Two-Spotted 
Spider Mite 8 435 2175 1740 

Yellow Leaf 
Curl Virus 9 490 2450 1960 

Total  4585 22,925 18,340 
 

 
Fig. 1. Plant village dataset samples. 
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A. Comprehensive Architecture 
Fig. 2 depicts the RNN classifier’s three layers: the 

output layer, the hidden recurrent layer, and the input layer. 
To train the RNN classifier, the RCOA approach is used, 
which seeks to obtain the ideal weight for tweaking the 
classifier for effective and accurate classification of huge 
datasets. An assortment of time-dependent vectors makes 
up the input layer. The RNN model’s hidden layer gets 
information from the input layer, and the weight matrix 
establishes connections between the hidden units. 
Recurrent connections in the hidden layer of the RNN 
unite the hidden units based on time. 

Hence, the RNN produces its output vector by utilizing 
the weight on the input vector. The recommended RCOA 
approach is used to train the RNN classifier to ensure 
precise classification of extensive data as shown in Fig. 3. 

 
Fig. 2. RNN architecture. 

 
Fig. 3. Overall architecture of RCOA-based RNN 

To improve the accuracy of the classification results, 
only unique selected features are used. The RCOA-trained 
RNN classifier is employed for the classification of large 
datasets. The hierarchical and swarming behavior of 
chickens is integrated with the fictitious computing 
concept of the ROA to obtain the best possible 
classification results for massive datasets. The Adaptive 
RCOA is utilized to train both classifiers, the RNN and the 
DSAE, for large data classification. 

The Adaptable ROA incorporates the adaptive concept 
by combining ROA’s fictitious computing concept with 
the hierarchical and swarming behavior of virtual chickens. 
CSO, on the other hand, is a bio-inspired optimization 
method used to locate food within the swarm group. 
Chicks, roosters, and hens comprise the three subgroups of 
the swam group. Rider optimization is a fictitious 
computer concept based on four different types of riders: 
overtaker, attacker, follower, and bypass rider. The 

classification performance of swarm groups and rider 
groups may be improved by merging their characteristics. 

B. Data Pre-processing 
It includes two steps. To prepare the data for the model, 

pre-processing techniques are utilized which involve 
cleaning and organizing the data. 

1) Data cleaning and organization 
The dataset containing images of tomato leaves from 

ten different classes in the Plant Village dataset undergoes 
thorough cleaning to remove any corrupted or irrelevant 
images. This ensures that only high-quality data is used for 
training. 

The images are organized into folders corresponding to 
each of the ten classes, facilitating easy access and 
management during preprocessing and training. 

2) Image transformations for data expansion 
Various image transformations are applied to augment 

the dataset and increase its diversity. These 
transformations are crucial for exposing the model to a 
wide range of variations in tomato leaf images, helping 
prevent overfitting. 

For instance, images may be randomly rotated, 
translated, scaled, sheared, or flipped to simulate different 
perspectives and orientations of the leaves within each 
class. 

3) Resizing images to 128×128 
After augmentation, all images are resized to a standard 

size of 128×128 pixels. This uniform resizing ensures that 
the neural network model receives consistent input 
dimensions across all images in the dataset, simplifying 
the training process. 

4) CutMix augmentation 
CutMix augmentation is applied to pairs of images 

selected randomly from the ten classes in the dataset. For 
each pair, a rectangular patch is cut out from one image 
and replaced by a patch from the other image. 

By blending portions of two distinct tomato leaf images, 
CutMix encourages the model to learn from diverse 
examples within and across classes, enhancing its ability 
to generalize to unseen data. 

This process of mixing images from different classes 
promotes robust feature extraction and classification, as 
the model learns to recognize common patterns and 
variations shared among the different classes. 

5) Label blending 
In conjunction with the CutMix process, the ground 

truth labels of the resulting mixed images are blended 
based on the area ratios of the patches from each original 
image. 

This ensures that the labels assigned to the mixed 
images accurately reflect the content and characteristics of 
the combined patches, effectively incorporating 
information from both original images into the training 
process. 

By following this tailored preprocessing pipeline, the 
tomato leaf images from the ten classes in the Plant Village 
dataset are effectively prepared for training deep learning 
models. The combination of data augmentation techniques 
and CutMix regularization contributes to improved model 
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performance, robustness, and generalization across the 
diverse range of tomato leaf classes. 

C. Algorithm for Rider Chicken Optimization Algorithm 
The algorithm helps to determine the best solution by 

calculating the fitness function [19]. All of the greatest-
value chickens are approved as roosters, which is the finest 
option. Swarm groups, on the other hand, with each rooster 
acting as a leader. Chicks are given to the chickens with 
the lowest fitness values, while the rest of the chickens are 
designated as hens. It’s based on the Minkowski distance 
and the fitness function is mentioned in Eq. (1). 

𝐹𝐹 = �� |𝑥𝑥𝑟𝑟 − 𝑄𝑄𝑟𝑟|𝑡𝑡𝐷𝐷
𝑟𝑟=1 �

1∕𝑡𝑡
                          (1) 

where, F is fitness value, t is positive integer, Xr is output 
of classifier and Qr is estimated output in the proposed 
RCOA, the following are the algorithmic steps: 

Initialization of the population: All virtual chicks are 
assumed to be in the same location, with the time stamp 
“b” and the chick’s quest for food in “L” space. As a result, 
roosters are believed to have the greatest fitness value 
among chicks, whereas chicks are thought to have the 
worst. Calculation of the most optimum solution for data 
categorization is done using a fitness function, which is 
defined in Eq. (1). 

The updated position of the Rooster: The fittest roosters 
within the swarm groups are the ones who can access the 
food, while the other virtual chickens are kept away from 
it. 

Position update of the hen: Hen follows the rooster’s 
trail as they look for food. The hen grabs food discovered 
by other virtual chickens at random. However, the more 
powerful hens have greater benefits as in Eq. (2). 

Pb+1(x,y)=Pb(x,y)[1−N1rand−N2rand]+N1rand Pb(Q1,y) 
+N2 rand Pb(Q2,y)                                      (2) 

For successful data categorization, which is changed by 
a follower’s updated Eq. (3) in the rider groups. 

𝑃𝑃𝑏𝑏+1(𝑥𝑥, 𝑦𝑦) = 𝑃𝑃∗(𝐽𝐽,𝑦𝑦) +[𝑐𝑐𝑐𝑐𝑐𝑐 �𝑦𝑦𝑥𝑥,𝑦𝑦
𝑏𝑏 � × 𝑃𝑃∗(𝐽𝐽,𝑦𝑦) × 𝑔𝑔𝑥𝑥𝑏𝑏]  (3) 

The above equation is modified as further in Eq. (4): 

𝑃𝑃𝑏𝑏+1(𝑥𝑥, 𝑦𝑦) =
1 + 𝑐𝑐𝑐𝑐𝑐𝑐�𝑌𝑌𝑥𝑥1𝑦𝑦

𝑏𝑏 �𝑔𝑔𝑥𝑥𝑏𝑏

𝑐𝑐𝑐𝑐𝑐𝑐�𝑌𝑌𝑥𝑥,𝑦𝑦
𝑏𝑏 �𝑔𝑔𝑥𝑥𝑏𝑏 + 𝑁𝑁1 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑁𝑁2 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  

 

[N1 rand Pb(Q1,y) + N2 rand Pb(Q2,y)]           (4) 

Here’s the final modified formula for the planned 
RCOA, which incorporates both rider and chicken swarm 
elements in Eqs. (5) and (6). 

N1 = exp � (𝐹𝐹𝑙𝑙−𝐹𝐹𝑐𝑐1)
𝑎𝑎𝑏𝑏𝑎𝑎(𝐹𝐹1)+𝑑𝑑

�                            (5) 

N2 = exp (Fc2–Fl)                            (6) 

Chicks’ positions are updated as represented in Eq. (7): 

Pb(x,y) = Pb(x,y)+𝑘𝑘×(Pb(𝜆𝜆,𝑦𝑦)−Pb(x,y))           (7) 

Once the best solution has been found or the conditions 
have been met, these processes are repeated to get the 
optimal results. 

D. Experimental Setup 
The training and testing procedures of the 

experimentation were carried out using Pytorch and 
Python libraries including scikit-learn, pillow, and 
OpenCV, along with the fastai library with 3320 GB of 
SSD storage. The detailed description is shown in Table II. 

TABLE II. EXPERIMENTAL SETUP 

Parameter Details 
Processor Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 GHZ 

Server model DELL PowerEdge T640 Tower Server 
Graphics CUDA-based video cards 4X 1080TI 

OS Linux 
Language Python 3 

Framework Pytorch 
Image input size 256×256 

Drop out 0.5 
 

IV. DISCUSSION OF THE FINDINGS 

This section delves into a deeper analysis of the 
suggested RCOA-based RNN model, evaluating its 
performance using sensitivity, specificity, and accuracy 
metrics. Precision, Accuracy and F1-score are three 
common measures used to evaluate the performance of 
classification models. The datasets are typically divided 
into training and validation sets to train and evaluate 
models, respectively. A training split refers to the portion 
of the dataset that is used to train the model. Typically, a 
larger proportion of the dataset is used for training, as it is 
used to optimize the model’s parameters and weights 
through an iterative process. The goal is for the model to 
learn patterns and relationships in the training data that 
will enable it to make accurate predictions on new, unseen 
data. The performance of the model on the validation set 
can be used to tune hyperparameters, such as the batch size, 
learning rate, or regularization strength, which can 
improve the model’s efficiency on data as mentioned in 
Table III. 

TABLE III. PERFORMANCE METRICS 
Train 
Split 
(%) 

Validation 
Split (%) 

Train 
Loss 

Valid 
Loss 

Accuracy 
(%) 

Recall 
(%) 

Precision 
(%) 

F1-
Score 
(%) 

40 60 0.047 0.06 97 96.9 96.8 96.8 
50 50 0.043 0.07 97 97.5 97.2 97.6 
60 40 0.041 0.08 97 97.31 97.5 97.8 
70 30 0.033 0.06 98 98.4 98.2 98.6 
80 20 0.002 0.04 99 98.6 98.5 98.8 

 
Accuracy is typically improved when using an 80/20 

split of training and validation data, as opposed to using a 
smaller training set, for several reasons: 

• An 80/20 split gives the model more data to train 
on, allowing it to discover more intricate patterns 
and connections in the data. Better performance on 
the validation set and ultimately on fresh, untested 
data may result from this. 
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• Reduced overfitting: A larger training set can help 
reduce the risk of overfitting, which occurs when 
the model memorizes the training data rather than 
learning generalizable patterns. By having more 
data to learn from, the model is less likely to 
memorize specific examples and more likely to 
learn generalizable patterns that can be applied to 
new data. 

More representative validation set: With a larger 
validation set, the model is evaluated on a more 
representative sample of the data, which can provide a 
more accurate estimate of its performance on new, unseen 
data. A smaller validation set may not be as representative 
of the overall distribution of the data, which can lead to 
over-optimistic estimates of the model’s performance. 

Overall, an 80/20 split of training and validation data 
can provide a good balance between providing enough 
data or the model to learn and reducing the risk of 
overfitting, while still providing a representative sample of 
the data for evaluation. However, the optimal split may 
vary depending on the specific dataset and problem being 
solved. 

Figs. 4 and 5 illustrate the F1-Score outcomes for 
different ratios of train-validation data splits in the 
recommended RCOA-based RNN. Evaluate the F1-Score 
of the trained network on the validation set for each batch 
size and data split ratio. Plot the F1-Scores of the network 
against the batch size for each data split ratio, to visualize 
the correlation between batch size and network 
performance. Repeat the above steps for different network 
architectures, hyperparameters, and optimization 
algorithms to determine the optimal combinations for F1-
Score. It is important to note that the optimal combination 
may vary based on the precise dataset and problem being 
solved, so it is essential to experiment with different 
hyperparameters and network architectures to find the best 
combination. 

 
Fig. 4. F1-score for various validation data splits 

The findings in Figs. 4 and 5 illustrate the connection 
between the networks’ F1-Score and the train-validation 
data split ratio. These findings imply that the split ratio 
significantly affected the network’s performance. As the 
number of train samples is increased, Fig. 5 clearly 
demonstrates a difference in the performance value. 
Overall, using an 80/20 split of training and validation data 
can provide several benefits for improving F1-Score. By 
having more data for training and better hyperparameter 

tuning, the model is more likely to learn generalizable 
patterns and avoid overfitting. 

 
Fig. 5. F1-Scores for various testing data splits. 

The model was tested with various train-validation data 
split ratios. The outcomes of these tests are presented and 
discussed in this section. Table IV illustrates the 
correlation between batch size and network performance 
at different data split ratios. 

TABLE IV. PERFORMANCES OBTAINED FOR VARIOUS BATCH SIZES 

Batch 
Size 

Performances in Percentage (%) 
40/60 50/50 60/40 70/30 80/20 

100 96.70 97.40 97.8 98.20 98.80 
90 96.20 97.10 97.00 98.10 98.27 
80 95.13 95.78 96.68 97.60 98.19 
70 95.57 95.68 96.54 97.54 98.09 
60 95.34 95.54 96.23 97.34 97.91 
50 95.28 95.32 96.12 97.23 97.84 
40 94.98 95.12 96.09 97.12 97.68 

 
Table V depicts the time spent using different train-

validation split ratios and batch sizes. 

TABLE V. COMPUTATIONAL TIME FOR VARIOUS BATCH SIZE 

Batch 
Size 

Time (s) 
40/60 50/50 60/40 70/30 80/20 

100 180 194 199 215 220 
90 175 186 208 221 230 
80 169 182 204 225 232 
70 167 172 190 204 221 
60 159 167 178 196 201 
50 162 174 181 197 210 
40 172 185 192 202 215 

 
While our goal was to improve performance, not just 

speed, we were able to improve the network training and 
testing process by using more validation data than training 
data. This led to a non-optimized outcome despite faster 
processing times. Table V demonstrates that using an 
80/20 split ratio resulted in the best training and testing 
outcomes. Having more data for validation than for 
training sped up the network training and testing process, 
while our objective was to increase performance as well as 
speed. As a result, the result of the fastest time was not the 

92

94

96

98

100

20 30 40 50 60

F1
-s

co
re

 (%
)

Split ratio data used for testing
100 90 80 70 60

Journal of Advances in Information Technology, Vol. 16, No. 1, 2025

54



 

 

optimum result we had. As shown in Table IV the split 
ratio of 80/20 produced the best results in training and 
testing. 

TABLE VI. COMPREHENSIVE CORRELATION OF PROPOSED WORK WITH 
OTHER EXISTING WORKS 

Year Author 
Name 

Number of 
Images Technique Used Accuracy 

(%) 

2020 Agarwal  
et al. [20] 18160 VGG 16 93.15 

2020 Karthik  
et al. [21] 

5452 (4 
Classes) ResNet+DenseNet 98 

2021 Lamba  
et al. [22] 16012 CNN 97.2 

2021 Zhao et al. 
[23] 

18160 (10 
Classes) ResNet50 96.81 

2022 Zhao et al. 
[24] 18160 Spatial Attention 

CNN 98.49 

2022 Mukherjee 
et al. [25] 

10,839 (7 
classes) 

Gray 
Wolf+MobileNetV2 98 

2023 Proposed 18160 (10 
classes) RCOA-based RNN 98.8 

This study examined how well a recurrent neural 
network (RCOA-based RNN) could recognize healthy 
tomatoes and distinguish them from diseased ones across 
ten different classes of data with varying batch sizes and 
parameter values. Table VI presents a comprehensive 
comparison of our proposed approach with other advanced 
models in the field. Based on the data in Table VI, the 
proposed model performed better than previous models, 
including Mukherjee et al.’s [25] model, which had the 
closest performance of 98%. Our model also achieved a 
favorable performance with a +1.62% improvement 
compared to Lamba et al.’s [22] model. 

The results showed that the RCOA-based RNN 
performed admirably on both training and test data, with 
the highest recognition accuracy value of 98.8% and a 
train/validation data split size of 80/20 with a batch size of 
40. To find the best ratio for splitting training and testing 
data in a certain research field, several ratios were tried out: 
40/60, 50/50, 60/40, 70/30, and 80/20. The results showed 
that the 80/20 ratio was the most effective, followed by 
70/30. Additionally, various batch sizes were used, 
depending on the available GPU capacity in the laboratory, 
to see how they affected the model’s training and testing 
results. The graphs indicated that smaller batch sizes led 
to slightly better performance, but the most significant 
impact was on the training speed. 

V. CONCLUSION 

It is essential to pre-process internet-sourced data using 
normalization algorithms in order to properly organize 
data with diverse field characteristics. But in terms of data 
classification, this might be a difficult work. In order to 
overcome these difficulties, the RCOA approach—which 
combines ROA and CSO—was created. This technique 
achieves improved classification results by using the 
hierarchical structure and emulating behaviors of chickens. 
In addition, rider optimization is used to increase precision 
and dependability while reducing computing complexity. 
The new Adaptive RCOA accelerates training and does 
away with the requirement to choose a learning schedule 

and speed while providing a quick convergence rate and 
avoiding local minima. The study found that while 
increasing the batch size did not significantly affect overall 
performance, it did delay obtaining stable results. In 
addition, the optimal train/test split ratio was determined 
through experimentation with ratios of 40/60, 50/50, 60/40, 
70/30, and 80/20, with the 80/20 ratio being the most 
effective, followed by 70/30. The study also found that 
smaller batch sizes led to slightly better performance, but 
the most significant impact was on training speed. The 
proposed approach therefore performs better than the 
state-of-the-art methods. 
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