
An Efficacious Detecting Tomato Leaf Disease
Using RCOA-Based RNN Method

T. George Princess * and E. Poovammal
Department of Computing Technologies, SRM Institute of Science and Technology, Kattankulathur, Chennai, India

Email: georgeprincess1995@gmail.com (T.G.P.); poovamme@srmist.edu.in (E.P.)
*Corresponding author

Abstract—Plant diseases significantly affect both the world’s
agricultural economy and food security on a worldwide scale.
The likelihood of establishing efficient control measures is
increased by their early discovery and classification.
Convolutional Neural Networks (CNN)-based categorization
of tomato leaf diseases using RGB photos has shown
encouraging results in several recent research. Despite their
usefulness, CNN models have limitations. Sometimes, they
fail to focus on the specific areas affected by plant disease and
instead may include irrelevant backgrounds or healthy plant
parts in their categorization. This research introduces a new
approach for identifying diseased areas and extracting
relevant features for illness classification using an Rider
Chicken Optimization Algorithm (RCOA)-based Recurrent
Neural Network (RNN). Compared to traditional CNN
techniques, the RNN-based approach is more robust and can
better generalize to unknown crop species that are affected.
The classification is based solely on distinct features to
achieve the highest accuracy. The proposed RCOA-trained
RNN classifier is used to classify diseases. To improve the
accuracy of the classification results, fictional computing
combines the premise of rider optimization with the
hierarchical and swarming conduct of chickens to manage
huge volumes of data. The suggested RCOA-based RNN is
capable of precisely finding infectious illnesses by analyzing
the area of focus with 98.8% accuracy in tomato leaves.

Keywords—Recurrent Neural Network (RNN), Rider
Chicken Optimization Algorithm (RCOA), plant village,
Convolutional Neural Networks (CNN), plant disease

I. INTRODUCTION

Tomatoes are extensively grown vegetables worldwide,
serving as a significant source of nutrition for millions of
individuals. Nevertheless, tomato crops can be severely
affected by various diseases, resulting in considerable
economic losses for farmers and a shortage of food supply
for consumers [1]. Therefore, detecting and categorizing
tomato crop diseases has become a crucial area of study.
With new computer vision algorithms’ advancements,
accurate and efficient detection and classification of
tomato crop diseases are now achievable [2].

Previously, the process of identifying and categorizing
tomato crop diseases was carried out manually by human

experts, which is time-consuming and costly. However,
with the introduction of new technologies such as machine
learning and computer vision, it is now possible to
automate this process. Several algorithms have recently
been developed to detect and classify tomato crop diseases
with high accuracy [3].

In the realm of agricultural technology, machine
learning algorithms have emerged as powerful tools for
automating the detection and classification of crop
diseases. One such algorithm is Convolutional Neural
Networks (CNNs), which have demonstrated remarkable
efficacy in identifying various diseases affecting tomato
crops. CNNs operate by extracting features from images,
enabling them to discern intricate patterns essential for
accurate classification. However, a limitation of CNNs lies
in their inability to encode spatial information, thereby
necessitating a substantial volume of training data for
optimal performance [4].

Another notable algorithm in the domain of crop disease
classification is the Support Vector Machine (SVM).
SVMs excel in discerning complex boundaries between
different classes of data, maximizing classification
confidence by optimizing the decision surface. By
defining a hyperplane with a significant margin of
separation, SVM ensures robust categorization, even in
scenarios where linear separation in high-dimensional
space is unattainable [5].

Recurrent Neural Networks (RNNs) transitioning from
conventional machine learning methods to more
sophisticated techniques have garnered attention for their
ability to model sequential data effectively. In the context
of disease detection in tomato crops, RNNs offer a
promising avenue for capturing temporal dependencies in
disease progression. Building upon the principles of neural
networks, RNNs can analyze sequential data, such as time-
series observations of crop health, and discern patterns
indicative of disease onset or progression. This capability
makes RNNs well-suited for tasks requiring the analysis
of sequential data streams, including disease monitoring in
agricultural settings [6].

k-nearest neighbor is a common supervised machine
learning method that is straightforward and easy to use. As
a result of its simple interpretation and short computation
time compared to other machine learning algorithms.
Regression and classification issues may both be solved
using KNN. The drawback of this approach is that as the

Manuscript received December 9, 2023; revised February 21, 2024;
accepted April 28, 2024; published January 9, 2025.

Journal of Advances in Information Technology, Vol. 16, No. 1, 2025

49doi: 10.12720/jait.16.1.49-56

size of the data set increases, so does the algorithm’s
efficiency. KNN is well-known for its slowdowns. Due to
the requirement to keep all training examples and the
additional time required to calculate the distance to all
samples, this method is computationally costly. Missing
data can’t be handled [6].

Finally, Random Forest is another algorithm that has
shown promising results in detecting and classifying
tomato crop diseases. In the case of tomato crop disease
detection, Random Forest can be used to classify images
of tomato crops into healthy and diseased categories based
on the features extracted from them. This technique has
the drawback of being inefficient in real-time prediction
situations. Complex algorithm that is indeed difficult to
put into practice.

RNNs have been used in the development of a number
of agricultural applications in recent years. Pattern
recognition, such as in automated diagnostic systems, is a
popular use of RNNs. For classification, RNNs may make
use of nonlinear decision limits and state memory. Much
research has shown that RNNs can tell the difference
between linear and nonlinear data. RNNs have been shown
in previous research to be very effective in the healthcare
industry. This study found that the classification accuracy
of RNNs was better than MLPs when compared to other
research that examined their findings [7].

Chicken Swarm Optimization (CSO), a brand-new bio-
inspired method, is suggested for optimization
applications. Tests on twelve benchmark datasets were
carried out to correlate the performance of CSO with that
of other algorithms [8]. The outcomes demonstrate that
CSO may produce strong optimization outcomes in terms
of both robustness and accuracy. The work is bifold as:

(1) To achieve high accuracy in identifying diseases
in tomato leaves, we will employ an RNN with
RCOA and investigate its efficacy on the plant
village dataset.

(2) To examine how the train/test split size amount of
the dataset affects the performance of the network
model in identifying diseases in tomato leaf
images. For the chosen dataset it is analyzed with
different split ratios to determine their impact.

II. LITERATURE REVIEW

An important type of neural network is the Recurrent
Neural Network (RNN), which creates a directed graph of
connections between layer nodes that follow a series of
variables. This RNN-based method is popular for handling
sequential data and making predictions in areas such as
language translation or action recognition, as shown in
studies by Ma et al. [9]. Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) are improved
RNN models that address issues like disappearing
gradients and enable training on extended sequences.

Meanwhile, Zhao et al. [10] showed that LSTM could
capture distinguishing areas of images for accurate
categorization. RNNs can also use attention as a
mechanism to focus on certain inputs while predicting
specific outputs, which simplifies the learning process and
leads to higher-quality learning. For example, Ren and

Zemel [11] used an RNN with an attention mechanism to
capture spatial features.

Paudel et al. [12] suggested a brand-new RNN-based
framework for the detection of illnesses affecting maize
crops. Long Short-Term Memory (LSTM) cells of the
RNN architecture were used in the suggested framework
to efficiently describe the temporal relationships in the
sequence of input data. A publicly accessible dataset of
9,692 photos of maize leaves affected with common rust,
grey leaf spot and northern leaf blight was used in the
study. The suggested RNN-based framework
outperformed other cutting-edge techniques by
categorizing the various diseases with an accuracy of
95.5%. In a different research, Gouda et al. [13] suggested
a deep learning-based method for identifying and
categorizing illnesses affecting cotton crops. The
sequential patterns in the input data were recognized by
the research using an RNN architecture termed a Gated
Recurrent Unit (GRU). Images of cotton leaves afflicted
with bacterial blight, bacterial leaf spot, cotton leaf curl
virus, and powdery mildew made up the input data. The
suggested RNN-based strategy outperformed other
conventional and deep learning-based algorithms,
categorizing the various illnesses with an accuracy of
96.8%.

Lu et al. [14] developed an RNN-based method for
identifying and categorizing tomato illnesses. The
suggested method modelled the temporal relationships in
the input data series using an LSTM architecture. Images
of tomato leaves affected with six distinct illnesses made
up the input data: septoria leaf spot, grey mold, late blight,
mosaic virus, and bacterial wilt. The suggested RNN-
based strategy outperformed other conventional and deep
learning-based systems, categorizing the various illnesses
with an accuracy of 96.3%.

Li et al. [15] suggested an RNN-based method for
identifying and categorizing apple illnesses. The
suggested method modelled the temporal relationships in
the input data series using an Attention-based LSTM
(ALSTM) architecture. The input data consisted of
pictures of apple leaves with four different diseases: apple
scab, cedar apple rust, frogeye leaf spot, and healthy leaves.
The suggested RNN-based strategy outperformed other
conventional and deep learning-based systems,
categorizing the various illnesses with an accuracy of
96.5%.

An RNN-based strategy using RCOA was suggested by
Chen et al. [16] for the prediction of tomato leaf diseases.
The network weights were optimized using the suggested
method, which combined an LSTM architecture with the
RCOA algorithm [17]. Images of tomato leaves affected
with two distinct diseases—early blight and late blight—
made up the input data. The suggested RNN-based method
outperformed previous cutting-edge approaches,
predicting tomato leaf diseases with an accuracy of 95.2%.

While Vinoth and Ananth [17] may have utilized a
similar approach based on RCOA for RNNs in disease
detection, our research introduces several novel elements
that set it apart. Firstly, we have refined and optimized the
underlying algorithmic framework, enhancing its efficacy

Journal of Advances in Information Technology, Vol. 16, No. 1, 2025

50

in capturing subtle patterns indicative of tomato leaf
diseases. Our modifications include fine-tuning
parameters, adjusting optimization strategies, and
incorporating domain-specific knowledge to improve
overall performance. Additionally, we have extended the
scope of application by integrating auxiliary data sources,
such as environmental variables or genetic profiles, to
augment disease detection accuracy. Furthermore, our
research introduces innovative post-processing techniques
tailored to address specific challenges encountered in
agricultural settings, such as variability in lighting
conditions or leaf morphology. By leveraging these
advancements, our approach not only achieves superior
classification accuracy but also demonstrates robustness
and adaptability across diverse environmental contexts.
Overall, while Vinoth and Ananth [17] may provide a
foundation for RCOA-based RNNs in disease detection,
our research significantly advances the state-of-the-art by
introducing novel methodologies and optimizations
tailored specifically for the challenges inherent in tomato
crop disease detection

Tomato leaf prediction is a crucial task in the
agricultural industry for ensuring the health and quality of
tomato crops. Recurrent Neural Networks (RNNs) have
been investigated by researchers as a potential tool for
predicting tomato leaf diseases thanks to developments in
machine learning and artificial intelligence.

III. MATERIALS AND METHODOLOGIES

Plant Village dataset was utilized to construct the
tomato leaf dataset [18]. The collection comprises 54,306

leaf pictures with 38 class labels, including some healthy
tomato leaves and nine different forms of tomato leaf
illnesses is depicted in Table I. Ten of these categories,
which are especially connected to tomato plant leaves,
were the focus of the investigation. Due to its genetic
heritage, the tomato plant is vulnerable to several bacilli-
caused illnesses. There by eighteen thousand three
hundred and forty photos of tomato plant leaves were
included in the dataset for the study, along with
information on management methods, genetic heritage,
and environmental changes. Fig. 1 classifies the different
illnesses into those caused by fungus, bacteria, mold,
viruses, or mites.

TABLE I. PLANT VILLAGE DATASET SAMPLES WITH TABLE
DESCRIPTION

Type Class Origin Images Augmentation Trainset
Bacterial Spot 0 425 2125 1700
Early Blight 1 480 2400 1920

Healthy 2 481 2405 1924
Late Blight 3 463 2315 1852
Leaf Mold 4 470 2350 1880

Mosaic Virus 5 448 2240 1792
Septoria Leaf

Spot 6 436 2180 1744

Target Spot 7 457 2285 1828
Two-Spotted
Spider Mite 8 435 2175 1740

Yellow Leaf
Curl Virus 9 490 2450 1960

Total 4585 22,925 18,340

Fig. 1. Plant village dataset samples.

Journal of Advances in Information Technology, Vol. 16, No. 1, 2025

51

A. Comprehensive Architecture
Fig. 2 depicts the RNN classifier’s three layers: the

output layer, the hidden recurrent layer, and the input layer.
To train the RNN classifier, the RCOA approach is used,
which seeks to obtain the ideal weight for tweaking the
classifier for effective and accurate classification of huge
datasets. An assortment of time-dependent vectors makes
up the input layer. The RNN model’s hidden layer gets
information from the input layer, and the weight matrix
establishes connections between the hidden units.
Recurrent connections in the hidden layer of the RNN
unite the hidden units based on time.

Hence, the RNN produces its output vector by utilizing
the weight on the input vector. The recommended RCOA
approach is used to train the RNN classifier to ensure
precise classification of extensive data as shown in Fig. 3.

Fig. 2. RNN architecture.

Fig. 3. Overall architecture of RCOA-based RNN

To improve the accuracy of the classification results,
only unique selected features are used. The RCOA-trained
RNN classifier is employed for the classification of large
datasets. The hierarchical and swarming behavior of
chickens is integrated with the fictitious computing
concept of the ROA to obtain the best possible
classification results for massive datasets. The Adaptive
RCOA is utilized to train both classifiers, the RNN and the
DSAE, for large data classification.

The Adaptable ROA incorporates the adaptive concept
by combining ROA’s fictitious computing concept with
the hierarchical and swarming behavior of virtual chickens.
CSO, on the other hand, is a bio-inspired optimization
method used to locate food within the swarm group.
Chicks, roosters, and hens comprise the three subgroups of
the swam group. Rider optimization is a fictitious
computer concept based on four different types of riders:
overtaker, attacker, follower, and bypass rider. The

classification performance of swarm groups and rider
groups may be improved by merging their characteristics.

B. Data Pre-processing
It includes two steps. To prepare the data for the model,

pre-processing techniques are utilized which involve
cleaning and organizing the data.

1) Data cleaning and organization
The dataset containing images of tomato leaves from

ten different classes in the Plant Village dataset undergoes
thorough cleaning to remove any corrupted or irrelevant
images. This ensures that only high-quality data is used for
training.

The images are organized into folders corresponding to
each of the ten classes, facilitating easy access and
management during preprocessing and training.

2) Image transformations for data expansion
Various image transformations are applied to augment

the dataset and increase its diversity. These
transformations are crucial for exposing the model to a
wide range of variations in tomato leaf images, helping
prevent overfitting.

For instance, images may be randomly rotated,
translated, scaled, sheared, or flipped to simulate different
perspectives and orientations of the leaves within each
class.

3) Resizing images to 128×128
After augmentation, all images are resized to a standard

size of 128×128 pixels. This uniform resizing ensures that
the neural network model receives consistent input
dimensions across all images in the dataset, simplifying
the training process.

4) CutMix augmentation
CutMix augmentation is applied to pairs of images

selected randomly from the ten classes in the dataset. For
each pair, a rectangular patch is cut out from one image
and replaced by a patch from the other image.

By blending portions of two distinct tomato leaf images,
CutMix encourages the model to learn from diverse
examples within and across classes, enhancing its ability
to generalize to unseen data.

This process of mixing images from different classes
promotes robust feature extraction and classification, as
the model learns to recognize common patterns and
variations shared among the different classes.

5) Label blending
In conjunction with the CutMix process, the ground

truth labels of the resulting mixed images are blended
based on the area ratios of the patches from each original
image.

This ensures that the labels assigned to the mixed
images accurately reflect the content and characteristics of
the combined patches, effectively incorporating
information from both original images into the training
process.

By following this tailored preprocessing pipeline, the
tomato leaf images from the ten classes in the Plant Village
dataset are effectively prepared for training deep learning
models. The combination of data augmentation techniques
and CutMix regularization contributes to improved model

Journal of Advances in Information Technology, Vol. 16, No. 1, 2025

52

performance, robustness, and generalization across the
diverse range of tomato leaf classes.

C. Algorithm for Rider Chicken Optimization Algorithm
The algorithm helps to determine the best solution by

calculating the fitness function [19]. All of the greatest-
value chickens are approved as roosters, which is the finest
option. Swarm groups, on the other hand, with each rooster
acting as a leader. Chicks are given to the chickens with
the lowest fitness values, while the rest of the chickens are
designated as hens. It’s based on the Minkowski distance
and the fitness function is mentioned in Eq. (1).

𝐹𝐹 = �� |𝑥𝑥𝑟𝑟 − 𝑄𝑄𝑟𝑟|𝑡𝑡𝐷𝐷
𝑟𝑟=1 �

1∕𝑡𝑡
 (1)

where, F is fitness value, t is positive integer, Xr is output
of classifier and Qr is estimated output in the proposed
RCOA, the following are the algorithmic steps:

Initialization of the population: All virtual chicks are
assumed to be in the same location, with the time stamp
“b” and the chick’s quest for food in “L” space. As a result,
roosters are believed to have the greatest fitness value
among chicks, whereas chicks are thought to have the
worst. Calculation of the most optimum solution for data
categorization is done using a fitness function, which is
defined in Eq. (1).

The updated position of the Rooster: The fittest roosters
within the swarm groups are the ones who can access the
food, while the other virtual chickens are kept away from
it.

Position update of the hen: Hen follows the rooster’s
trail as they look for food. The hen grabs food discovered
by other virtual chickens at random. However, the more
powerful hens have greater benefits as in Eq. (2).

Pb+1(x,y)=Pb(x,y)[1−N1rand−N2rand]+N1rand Pb(Q1,y)
+N2 rand Pb(Q2,y) (2)

For successful data categorization, which is changed by
a follower’s updated Eq. (3) in the rider groups.

𝑃𝑃𝑏𝑏+1(𝑥𝑥, 𝑦𝑦) = 𝑃𝑃∗(𝐽𝐽,𝑦𝑦) +[𝑐𝑐𝑐𝑐𝑐𝑐 �𝑦𝑦𝑥𝑥,𝑦𝑦
𝑏𝑏 � × 𝑃𝑃∗(𝐽𝐽,𝑦𝑦) × 𝑔𝑔𝑥𝑥𝑏𝑏] (3)

The above equation is modified as further in Eq. (4):

𝑃𝑃𝑏𝑏+1(𝑥𝑥, 𝑦𝑦) =
1 + 𝑐𝑐𝑐𝑐𝑐𝑐�𝑌𝑌𝑥𝑥1𝑦𝑦

𝑏𝑏 �𝑔𝑔𝑥𝑥𝑏𝑏

𝑐𝑐𝑐𝑐𝑐𝑐�𝑌𝑌𝑥𝑥,𝑦𝑦
𝑏𝑏 �𝑔𝑔𝑥𝑥𝑏𝑏 + 𝑁𝑁1 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑁𝑁2 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

[N1 rand Pb(Q1,y) + N2 rand Pb(Q2,y)] (4)

Here’s the final modified formula for the planned
RCOA, which incorporates both rider and chicken swarm
elements in Eqs. (5) and (6).

N1 = exp � (𝐹𝐹𝑙𝑙−𝐹𝐹𝑐𝑐1)
𝑎𝑎𝑎𝑎𝑎𝑎(𝐹𝐹1)+𝑑𝑑

� (5)

N2 = exp (Fc2–Fl) (6)

Chicks’ positions are updated as represented in Eq. (7):

Pb(x,y) = Pb(x,y)+𝑘𝑘×(Pb(𝜆𝜆,𝑦𝑦)−Pb(x,y)) (7)

Once the best solution has been found or the conditions
have been met, these processes are repeated to get the
optimal results.

D. Experimental Setup
The training and testing procedures of the

experimentation were carried out using Pytorch and
Python libraries including scikit-learn, pillow, and
OpenCV, along with the fastai library with 3320 GB of
SSD storage. The detailed description is shown in Table II.

TABLE II. EXPERIMENTAL SETUP

Parameter Details
Processor Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 GHZ

Server model DELL PowerEdge T640 Tower Server
Graphics CUDA-based video cards 4X 1080TI

OS Linux
Language Python 3

Framework Pytorch
Image input size 256×256

Drop out 0.5

IV. DISCUSSION OF THE FINDINGS

This section delves into a deeper analysis of the
suggested RCOA-based RNN model, evaluating its
performance using sensitivity, specificity, and accuracy
metrics. Precision, Accuracy and F1-score are three
common measures used to evaluate the performance of
classification models. The datasets are typically divided
into training and validation sets to train and evaluate
models, respectively. A training split refers to the portion
of the dataset that is used to train the model. Typically, a
larger proportion of the dataset is used for training, as it is
used to optimize the model’s parameters and weights
through an iterative process. The goal is for the model to
learn patterns and relationships in the training data that
will enable it to make accurate predictions on new, unseen
data. The performance of the model on the validation set
can be used to tune hyperparameters, such as the batch size,
learning rate, or regularization strength, which can
improve the model’s efficiency on data as mentioned in
Table III.

TABLE III. PERFORMANCE METRICS
Train
Split
(%)

Validation
Split (%)

Train
Loss

Valid
Loss

Accuracy
(%)

Recall
(%)

Precision
(%)

F1-
Score
(%)

40 60 0.047 0.06 97 96.9 96.8 96.8
50 50 0.043 0.07 97 97.5 97.2 97.6
60 40 0.041 0.08 97 97.31 97.5 97.8
70 30 0.033 0.06 98 98.4 98.2 98.6
80 20 0.002 0.04 99 98.6 98.5 98.8

Accuracy is typically improved when using an 80/20

split of training and validation data, as opposed to using a
smaller training set, for several reasons:

• An 80/20 split gives the model more data to train
on, allowing it to discover more intricate patterns
and connections in the data. Better performance on
the validation set and ultimately on fresh, untested
data may result from this.

Journal of Advances in Information Technology, Vol. 16, No. 1, 2025

53

• Reduced overfitting: A larger training set can help
reduce the risk of overfitting, which occurs when
the model memorizes the training data rather than
learning generalizable patterns. By having more
data to learn from, the model is less likely to
memorize specific examples and more likely to
learn generalizable patterns that can be applied to
new data.

More representative validation set: With a larger
validation set, the model is evaluated on a more
representative sample of the data, which can provide a
more accurate estimate of its performance on new, unseen
data. A smaller validation set may not be as representative
of the overall distribution of the data, which can lead to
over-optimistic estimates of the model’s performance.

Overall, an 80/20 split of training and validation data
can provide a good balance between providing enough
data or the model to learn and reducing the risk of
overfitting, while still providing a representative sample of
the data for evaluation. However, the optimal split may
vary depending on the specific dataset and problem being
solved.

Figs. 4 and 5 illustrate the F1-Score outcomes for
different ratios of train-validation data splits in the
recommended RCOA-based RNN. Evaluate the F1-Score
of the trained network on the validation set for each batch
size and data split ratio. Plot the F1-Scores of the network
against the batch size for each data split ratio, to visualize
the correlation between batch size and network
performance. Repeat the above steps for different network
architectures, hyperparameters, and optimization
algorithms to determine the optimal combinations for F1-
Score. It is important to note that the optimal combination
may vary based on the precise dataset and problem being
solved, so it is essential to experiment with different
hyperparameters and network architectures to find the best
combination.

Fig. 4. F1-score for various validation data splits

The findings in Figs. 4 and 5 illustrate the connection
between the networks’ F1-Score and the train-validation
data split ratio. These findings imply that the split ratio
significantly affected the network’s performance. As the
number of train samples is increased, Fig. 5 clearly
demonstrates a difference in the performance value.
Overall, using an 80/20 split of training and validation data
can provide several benefits for improving F1-Score. By
having more data for training and better hyperparameter

tuning, the model is more likely to learn generalizable
patterns and avoid overfitting.

Fig. 5. F1-Scores for various testing data splits.

The model was tested with various train-validation data
split ratios. The outcomes of these tests are presented and
discussed in this section. Table IV illustrates the
correlation between batch size and network performance
at different data split ratios.

TABLE IV. PERFORMANCES OBTAINED FOR VARIOUS BATCH SIZES

Batch
Size

Performances in Percentage (%)
40/60 50/50 60/40 70/30 80/20

100 96.70 97.40 97.8 98.20 98.80
90 96.20 97.10 97.00 98.10 98.27
80 95.13 95.78 96.68 97.60 98.19
70 95.57 95.68 96.54 97.54 98.09
60 95.34 95.54 96.23 97.34 97.91
50 95.28 95.32 96.12 97.23 97.84
40 94.98 95.12 96.09 97.12 97.68

Table V depicts the time spent using different train-

validation split ratios and batch sizes.

TABLE V. COMPUTATIONAL TIME FOR VARIOUS BATCH SIZE

Batch
Size

Time (s)
40/60 50/50 60/40 70/30 80/20

100 180 194 199 215 220
90 175 186 208 221 230
80 169 182 204 225 232
70 167 172 190 204 221
60 159 167 178 196 201
50 162 174 181 197 210
40 172 185 192 202 215

While our goal was to improve performance, not just

speed, we were able to improve the network training and
testing process by using more validation data than training
data. This led to a non-optimized outcome despite faster
processing times. Table V demonstrates that using an
80/20 split ratio resulted in the best training and testing
outcomes. Having more data for validation than for
training sped up the network training and testing process,
while our objective was to increase performance as well as
speed. As a result, the result of the fastest time was not the

92

94

96

98

100

20 30 40 50 60

F1
-s

co
re

 (%
)

Split ratio data used for testing
100 90 80 70 60

Journal of Advances in Information Technology, Vol. 16, No. 1, 2025

54

optimum result we had. As shown in Table IV the split
ratio of 80/20 produced the best results in training and
testing.

TABLE VI. COMPREHENSIVE CORRELATION OF PROPOSED WORK WITH
OTHER EXISTING WORKS

Year Author
Name

Number of
Images Technique Used Accuracy

(%)

2020 Agarwal
et al. [20] 18160 VGG 16 93.15

2020 Karthik
et al. [21]

5452 (4
Classes) ResNet+DenseNet 98

2021 Lamba
et al. [22] 16012 CNN 97.2

2021 Zhao et al.
[23]

18160 (10
Classes) ResNet50 96.81

2022 Zhao et al.
[24] 18160 Spatial Attention

CNN 98.49

2022 Mukherjee
et al. [25]

10,839 (7
classes)

Gray
Wolf+MobileNetV2 98

2023 Proposed 18160 (10
classes) RCOA-based RNN 98.8

This study examined how well a recurrent neural
network (RCOA-based RNN) could recognize healthy
tomatoes and distinguish them from diseased ones across
ten different classes of data with varying batch sizes and
parameter values. Table VI presents a comprehensive
comparison of our proposed approach with other advanced
models in the field. Based on the data in Table VI, the
proposed model performed better than previous models,
including Mukherjee et al.’s [25] model, which had the
closest performance of 98%. Our model also achieved a
favorable performance with a +1.62% improvement
compared to Lamba et al.’s [22] model.

The results showed that the RCOA-based RNN
performed admirably on both training and test data, with
the highest recognition accuracy value of 98.8% and a
train/validation data split size of 80/20 with a batch size of
40. To find the best ratio for splitting training and testing
data in a certain research field, several ratios were tried out:
40/60, 50/50, 60/40, 70/30, and 80/20. The results showed
that the 80/20 ratio was the most effective, followed by
70/30. Additionally, various batch sizes were used,
depending on the available GPU capacity in the laboratory,
to see how they affected the model’s training and testing
results. The graphs indicated that smaller batch sizes led
to slightly better performance, but the most significant
impact was on the training speed.

V. CONCLUSION

It is essential to pre-process internet-sourced data using
normalization algorithms in order to properly organize
data with diverse field characteristics. But in terms of data
classification, this might be a difficult work. In order to
overcome these difficulties, the RCOA approach—which
combines ROA and CSO—was created. This technique
achieves improved classification results by using the
hierarchical structure and emulating behaviors of chickens.
In addition, rider optimization is used to increase precision
and dependability while reducing computing complexity.
The new Adaptive RCOA accelerates training and does
away with the requirement to choose a learning schedule

and speed while providing a quick convergence rate and
avoiding local minima. The study found that while
increasing the batch size did not significantly affect overall
performance, it did delay obtaining stable results. In
addition, the optimal train/test split ratio was determined
through experimentation with ratios of 40/60, 50/50, 60/40,
70/30, and 80/20, with the 80/20 ratio being the most
effective, followed by 70/30. The study also found that
smaller batch sizes led to slightly better performance, but
the most significant impact was on training speed. The
proposed approach therefore performs better than the
state-of-the-art methods.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest
in this work.

AUTHOR CONTRIBUTIONS

George Princess conducted the research gaps and
analyzed the data; Poovammal has given the ideas to
implement the paper in well manner; both authors had
approved the final version.

REFERENCES
[1] D. P. Hughes and M. Salathe, “An open access repository of images

on plant health to enable the development of mobile disease
diagnostics,” arXiv preprint, arXiv:1511.08060, 2015.

[2] S. Panno, S. Davino, A. G. Caruso et al., “A review of the most
common and economically important diseases that undermine the
cultivation of tomato crop in the Mediterranean basin,” Agronomy,
vol. 11, 2188, 2021.

[3] H. Durmus, E. O. Gunes, and M. Kirci, “Disease detection on the
leaves of the tomato plants by using deep learning,” in Proc. the
2017 6th International Conference on Agro-Geoinformatics,
Fairfax, 2017, pp. 1–5.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proc. the 3rd
International Conference on Learning Representations, ICLR 2015,
May 2015, pp. 1–14.

[5] F. A. P. Rani, S. Kumar, A. L. Fred et al., “K-Means clustering and
SVM for plant leaf disease detection and classification,” in Proc.
the 2019 International Conference on Recent Advances in Energy-
Efficient Computing and Communication (ICRAECC), 2019, pp. 1–
4.

[6] P. S. Kanda, K. Xia, and O. H. Sanusi, “A deep learning-based
recognition technique for plant leaf classification,” IEEE Access,
vol. 9, pp. 162590–162613, 2021.

[7] S. H. Lee et al., “Attention-based recurrent neural network for plant
disease classification,” Frontiers in Plant Science, vol. 11, 2020.

[8] S. M. A. Razzaq and B. I. Khaleel, “Detection of plants leaf
diseases using swarm optimization algorithms,” AL-Rafidain
Journal of Computer Sciences and Mathematics, vol. 15, no. 2, pp.
193–212, 2021.

[9] X. Ma, Z. Tao, Y. Wang et al., “Long short-term memory neural
network for traffic speed prediction using remote microwave sensor
data,” Transport. Res. C Emerging Technol., vol. 54, pp. 187–197,
2015.

[10] Z. Zhao, W. Chen, X. Wu et al., “LSTM network: A deep learning
approach for short-term traffic forecast,” IET Intell. Transp. Syst.,
vol. 11, pp. 68–75, 2017.

[11] M. Ren and R. S. Zemel, “End-to-End instance segmentation with
recurrent attention,” in Proc. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 293–301.

[12] D. Paudel, A. de Wit, H. Boogaard et al., “Interpretability of deep
learning models for crop yield forecasting,” Computers and
Electronics in Agriculture, vol. 206, 107663, 2023.

[13] J. Sahoo, A. Dass, M. A. Bhat et al., “Land suitability assessment
for improved land use planning in selected watersheds of Haryana,”

Journal of Advances in Information Technology, Vol. 16, No. 1, 2025

55

Journal of Environmental Biology, vol. 42, no. 2, pp. 285–294,
2021.

[14] Y. Lu, Y. Tian, R. Shen et al., “Precise genome modification in
tomato using an improved prime editing system,” Plant Biotechnol.
J., vol. 19, no. 3, pp. 415–417, Mar. 2021. doi: 10.1111/pbi.13497

[15] Y. Wang, W. Li, X. Xu et al., “Progress of apple rootstock breeding
and its use,” Horticultural Plant Journal, vol. 5, no. 5, pp. 183–191,
2019.

[16] X. Chen, G. Zhou, A. Chen et al., “Identification of tomato leaf
diseases based on combination of ABCK-BWTR and B-ARNet,”
Computers and Electronics in Agriculture, vol. 178, 105730, 2020.

[17] R. Vinoth and J. P. Ananth, “Rider chicken optimization algorithm-
based recurrent neural network for big data classification in spark
architecture,” The Computer Journal, vol. 65, no. 8, pp. 2183–2196,
August 2022.

[18] Plant village dataset. [Online]. Available:
https://github.com/spMohanty/PlantVillage-Dataset

[19] R. Vinoth and J. P. Ananth, “Deep recurrent encoder network and
spark model for angiographic disease risk classification,”
International Journal of Pattern Recognition and Artificial
Intelligence, vol. 36, no. 4, 2250010, 2022.

[20] M. Agarwal, S. K. Gupta, and K. K. Biswas, “Development of
efficient CNN model for tomato crop disease identification,”
Sustain. Comput. Inform. Syst., vol. 28, 100407, 2020.

[21] R. Karthik, M. Hariharan, S. Anand et al., “Attention embedded
residual CNN for disease detection in tomato leaves,” Appl. Soft
Comput., vol. 86, 105933, 2020.

[22] M. Lamba, Y. Gigras, and A. Dhull, “Classification of plant
diseases using machine and deep learning,” Open Comput. Sci., vol.
11, pp. 491–508, 2021.

[23] S. Zhao, Y. Peng, J. Liu, and S. Wu, “Tomato leaf disease diagnosis
based on improved convolution neural network by attention
module,” Agriculture, vol. 11, 651, 2021.

[24] Y. Zhao, C. Sun, X. Xu, and J. Chen, “RIC-Net: A plant disease
classification model based on the fusion of inception and residual
structure and embedded attention mechanism,” Comput. Electron.
Agric., vol. 193, 106644, 2022.

[25] G. Mukherjee, A. Chatterjee, and B. Tudu, “Identification of the
types of disease for tomato plants using a modified gray wolf
optimization optimized MobileNetV2 convolutional neural
network architecture driven computer vision framework,” Concurr.
Comput. Pract. Exp., vol. 34, e7161, 2022.

Copyright © 2025 by the authors. This is an open access article
distributed under the Creative Commons Attribution License which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited (CC BY 4.0).

Journal of Advances in Information Technology, Vol. 16, No. 1, 2025

56

https://creativecommons.org/licenses/by/4.0/

	JAIT-V16N1-49

