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Abstract—Thyroid nodules are a type of lesion, which doctors 
often need advanced diagnostic tools to detect and conduct 
follow-up diagnoses. Supervised deep learning techniques, 
particularly Generative Adversarial Networks (GANs), have 
been used to extract essential features, detect nodules and 
generate thyroid masks. However, these approaches suffer 
significant challenges in obtaining training data due to the 
high cost of identifying the cancer area and mode collapse 
during training. Therefore, this study proposed an 
improvement to one GAN model, namely, the pixel-to-pixel 
(pix2pix) model, for thyroid nodule segmentation, where the 
generator was incorporated with a supervised loss function to 
address instabilities during GAN training. The model used a 
generator with an encode-decoder structure inspired by U-
Net architecture to produce the mask. The discriminator of 
the model consists of a multilayered Convolutional Neural 
Network (CNN) to compare the real and generated masks. In 
addition, three loss functions, namely, binary cross-entropy 
loss, soft dice loss and Jaccard loss, combined with loss GAN 
were used to stabilise the GAN model. Based on the results, 
the proposed model achieved 97% detection accuracy of the 
cancer area from the ultrasound thyroid nodule images and 
segmented it using the stabilised model with a generator loss 
function value of 0.5. In short, this study showed that the 
improved pix2pix model produced greater flexibility in 
nodule segmentation accuracy compared with 
semisupervised segmentation models. 
 
Keywords—thyroid nodules segmentation, ultrasound image, 
deep learning, generative adversarial networks, pix2pix, loss 
function 
 

I. INTRODUCTION 

A thyroid nodule is the most prevalent disease in the 
neck and is caused by many factors, such as iodine 
deficiency and radiation exposure [1]. Thyroid nodules are 
currently diagnosed using ultrasonography and fine needle 

aspiration and through the determination of thyroid-
stimulating hormone levels in the blood [2]. Due to the 
small size of thyroid nodules, ultrasound imaging is the 
preferred tool to diagnose thyroid cancer [3]. Nevertheless, 
significant analytical expertise is needed to understand 
ultrasound images due to the poor image quality [4]. 
Boundary feature-based misdiagnoses may occur from 
inaccurate segmentation findings. Therefore, precise and 
accurate thyroid nodule segmentation in clinical 
applications is essential to differentiate between benign 
and malignant nodules [5]. The application of deep 
learning has progressed in image identification, 
classification and segmentation due to its capacity for self-
learning and generalisation [6]. Machine-learning-based 
approaches, especially deep learning-based methods, may 
further enhance their segmentation performance, making 
them the preferred analytical tool for thyroid nodule 
segmentation if a substantial quantity of marked training 
data is gathered [7, 8]. 

The limited amount of labelled data is one of the 
challenges when diagnosing thyroids using ultrasound 
images. Therefore, researchers have used unsupervised 
learning techniques, such as Generative Adversarial 
Networks (GANs), to segment thyroid regions [9]. The 
popularity of various GAN-based methods and their 
variations have aided in the advanced use of deep learning 
algorithms in medical image processing. 

However, GANs also suffer certain drawbacks, such as 
poor stability, repeatability and interpretability. Another 
problem with GANs is that all models in the cascade 
repeatedly extract identical low-level features. Achieving 
a proper balance between the generator and the 
discriminator is also a challenge [10].  

Therefore, this study aimed to develop an improved 
pix2pix GAN model for segmenting the cancer region 
from ultrasound images. The convolution layer of the 
generator was replaced with a new deep network layer 
based on the U-Net design that focused on target 
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structures. In this study, three loss functions, namely, 
binary cross-entropy loss (LB) [11], soft dice loss (LS) [12] 
and Jaccard loss [13], were combined and used for the 
generator to stabilise the model and assess segmentation 
quality. 

II. RESEARCH BACKGROUND 

Thyroid cancer cases have significantly increased 
worldwide in recent decades [14]. Situated in the front 
neck area, the thyroid is a vital endocrine gland in the 
human body [8]. The thyroid nodules consist of two types: 
benign and malignant nodules. The former is often not 
treated until symptomatic, whereas the latter requires 
surgical excision [15]. The thyroid nodule’s border and 
form are the key features for classifying thyroid nodules 
using ultrasonography. The edge of benign thyroid nodules 
is often smooth and clearly delineated, contrasting the 
atypical, poorly defined and vascularised appearance of 
malignant thyroid nodules [16, 17]. Accordingly, 
ultrasound image-based thyroid nodule evaluations 
primarily rely on radiologists’ clinical expertise, making 
the diagnosis findings relatively subjective. Aside from the 
poor quality, resolution and contrast of the ultrasound 
images, speckle noises and echo perturbations also pose 
analysis challenges [18]. 

It is difficult for doctors to quantify these thyroid 
characteristics without advanced computer systems. 
Thyroid nodule and thyroid gland segmentation 
approaches are required to detect thyroid-related disorders 
and provide doctors with useful information to help them 
make the best diagnostic choices [8]. Moreover, automated 
segmentation may aid in the proper diagnosis of nodules 
by medical students or less experienced practitioners. 
Therefore, many researchers have gathered datasets and 
used artificial intelligence techniques to assist hospitals 
and medical research centres. 

Traditional deep learning networks and hybrid models 
are two groups of deep learning-based thyroid and nodule 
segmentation techniques [19, 20]. Previous studies have 
suggested that various functional modules and networks 
can be added to the networks for precise segmentation. For 
instance, the multimodel method is useful to aid patch-
based networks [21], whereas cascaded Convolution 
Neural Networks (CNNs) are recommended to enhance 
the localisation and segmentation of nodules [22]. 
Moreover, pretrained CNNs [7] could learn appropriate 
features and extract the region of interest from images, 
although this process requires marked training data. 

Furthermore, missing or inaccurate automated detection 
might delay radiologists from making a timely diagnosis 
or even lead doctors to perform thyroid biopsies at the 
wrong location. Thus, a segmentation algorithm is more 
appropriate than an object detection algorithm, which can 
only describe a nodule’s general shape and size. 
Segmenting regions also provide doctors with a clear 
visualization of the specific nodule details, enabling 
accurate determination of the biopsy position [10]. Fig. 1 
shows an example of a segmentation nodule. The 
ultrasound image in Fig. 1(a) shows the thyroid cancer and 

the surrounding tissue, whereas Fig. 1(b) shows only the 
area of the thyroid cancer segmented from the images. 

Many segmentation and detection algorithms have been 
investigated in thyroid ultrasound imaging studies. One 
study found that unsupervised learning techniques, such as 
GANs, can segment thyroid regions [9]. GANs are deep 
neural networks involving two simultaneous training 
networks [23], the generator and discriminator, similar to 
a semantic segmentation network. Some studies have also 
discovered that GANs can increase the image’s accuracy 
when segmenting other organs [10]. Instead of identifying 
the mask as true or false, the discriminator determines the 
accuracy of the mask overlay using the original picture as 
a second input [10]. The two networks are also competitive 
because the discriminator targets the generator and forces 
it to advance to deceive it. 

 

 
 (a)                                                  (b) 

Fig. 1. Thyroid ultrasound images with masks showing (a) the thyroid 
cancer and the tissues surrounding it and (b) only the area of the thyroid 
cancer segmented from the images. 

Various studies have employed GANs in medical image 
segmentation. The first reported study used simple 
adversarial networks for image segmentation [24]. 
Comparatively, the segmentation of the liver using Three-
Dimensional (3D) Computed Tomography (CT) images is 
more computationally accurate than conventional deep 
learning segmentation networks. In addition, GANs can 
enhance the produced modality picture quality with more 
effective objective performance [25]. GANs also have 
better control over the morphological and structural details 
of the lesion in the resulting images at various levels, 
including brain tumour from Magnetic Resonance Imaging 
(MRI) images [26], retinal vessel images [27] and CT 
images for COVID-19 detection [28]. Furthermore, past 
studies [29–31] have successfully used GAN architecture 
to segment maligned brain tumours in the nervous system. 
Another study used U-Net as the generator for GANs used 
in image segmentation [32]. 

GANs offer a wide range of potential applications in 
medical image processing, where pixel-to-pixel (pix2pix) 
architecture has been used to diagnose low-dose CT [33] 
and reconstruct the MRI [34, 35]. Moreover, the popularity 
of various GAN-based techniques has facilitated the 
advanced use of deep learning algorithms in medical 
image processing. There are still many limitations to using 
GANs in image segmentation, such as the instability 
between training the Generator (G) and Discriminator (D) 
or the high performance of the discriminator compared 
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with the generator, which struggles with gradient 
vanishing [23]. 

Hence, some studies used GANs with additional loss 
functions for the generator to enhance the model and 
segment regions accurately, such as in the segmentation of 
retinal blood vessels [36]. Another study combined the 
Lovasz hinge loss with the generator loss to improve 
GANs for segmenting thyroid nodules [10]. 

Therefore, this study introduced an improved pix2pix 
model to segment thyroid cancer from ultrasound images 
using a small number of marked datasets. The model used 
a generator with 14 convolutional Two-Dimensional (2D) 
layers and a combination of three loss functions to increase 
the stability of the model. 

III. MATERIALS AND METHODS 

This section presents an overview of the proposed 
method in this study. A set of 2D ultrasound images of 
thyroid lesions and their surroundings were used and the 
images with their masks were generated by training the 
proposed pix2pix model. 

A. Image Dataset 
This work obtained approximately 747 thyroid nodule 

ultrasound images, which were collected from Hospital 
Sultan Abdul Aziz Shah in Malaysia (302 images) and an 
open-access dataset dedicated to thyroid nodule images 
(445 images) from [37]. Out of the total dataset, 545 
images were allocated for training purposes, whereas the 
remaining 202 images were dedicated to evaluating the 

effectiveness and accuracy of the proposed pix2pix model. 
The training images consist of the original ultrasound 
images and samples of the masked thyroid cancer region, 
as shown in Fig. 2(a) and (b), respectively. All images 
were reshaped to 256×256 pixels. 

 

  
 (a)                                                        (b) 

Fig. 2. Manual segmentation of the thyroid using the (a) original 
ultrasound image and (b) sample of the masked thyroid cancer region. 

B. U-Net 
Since 2015, U-Net has been recognised and commonly 

used as one of the fundamental deep learning architectures 
in medical image segmentation [38]. It comprises two 
networks: an encoder network that progressively decreases 
the input image’s spatial resolution while capturing 
significant features and a decoder network that upscales 
the features to the original image resolution, ensuring 
accurate segmentation. Skip connections connect the 
encoder and decoder layers, enabling the model to preserve 
intricate spatial details [39]. Fig. 3 shows the standard  
U-Net architecture [40]. 

 

 
Fig. 3. U-Net standard architecture reprinted [39]. 
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C. Pix2pix Model 
The pix2pix model is a conditional GAN model 

developed in 2016 [41]. It is designed to learn the 
translation of an input image from one domain to another. 
The standard structure of pix2pix consists of a U-Net as a 
generator network and a PatchGAN as a discriminator 
network [42]. In simple terms, the generator strives to 
produce an output image consistent with it, whereas the 
discriminator distinguishes between the generated and real 
images from the target domain. Through adversarial 

training, the generator becomes skilled at generating 
realistic outputs that deceive the discriminator [43]. 

D. Proposed Pix2pix Model Structure 
Fig. 4(a) shows the overall pix2pix GAN model, 

consisting of the generator and discriminator, as shown in 
Fig. 4(b) and (c), respectively. As medical image 
segmentation requires accurate pixel labelling, the output 
of classical GAN models may be ineffective in producing 
stable network feedback. 

 

 
Fig. 4. Proposed pix2pix model: (a) pix2pix GAN model, (b) generator, and (c) discriminator. 

Therefore, this study developed a deeper network 
inspired by a U-Net architecture, which is used as the 
generator to learn all features and generate masks. In 
addition, a discriminator with a new architecture was 
applied to critique the generator and force it to capture the 
features from the images. The first step of the process 
involves randomly selecting two images from the dataset: 
an input image and a reference image that serves as a 
manual segmentation. The images were transferred into 
the generator model, which attempts to generate a new 
mask for the original image as close as possible to the 
actual mask, which becomes the output of this step. 
Afterwards, the generated image was fed into the 
discriminator network to discern between the real and 
generated masks and determine the authenticity of the 
generated image (true or false). Meanwhile, Fig. 4(b) 
shows the setup generator comprising the fundamental 

blocks, each adopting the encoder–decoder architecture, 
producing the input image’s mask. There are seven 
downsampling blocks in the encoder, which were 
constructed as follows: 

• Convolutional 2D layers with a 3×3 kernel size and 
a stride of 2×2; kernel weights were initialised 
using the ‘He normal initialisation’. The padding 
was set to “same”. 

• A maxpooling layer with a 2×2 window plays a 
vital role in downsampling. 

• A dropout layer with a dropout rate of 0.5 was 
applied to the last two blocks. 

• The ‘Rectified Linear Unit’ (ReLU) activation 
function was used, which allows for a slight 
gradient when the unit is inactive. 

Conversely, the decoder blocks were constructed as 
follows: 
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• Transposed convolutional 2D layers with a 3×3 
kernel size and a stride of 2×2; kernel weights were 
initialised using the ‘He normal initialisation’. 

• Both the encoder and decoder blocks used 
connections for spatial information by 
concatenating layers that copy the features from 
the same network level. 

• The ReLU activation function was used in the 
activation layer. 

The initial number of kernels per block in the encoder–
decoder was 18 before doubling in the subsequent blocks. 
The discriminator employed a straightforward CNN, as 
shown in Fig. 4(c). The discriminator was used to validate 
the generated mask. Each block within the network 
consisted of multiple layers and each block comprised the 
following layers: 

• A 2D convolutional layer with a 3×3 kernel and a 
stride of 2×2; kernel weights were initialised using 
a “He normal initialisation”. 

• Padding was applied to ensure the output size 
remained the same as the input size. 

• The ReLU activation function was used. 

E. Loss Function 
The loss function in GAN models is essential in the 

model’s training and performance [12]. The GAN model’s 
loss function comprises separate loss functions for the 
generator and the discriminator [44], as expressed in  
Eq. (1). The generator loss function stimulates the 
generator to produce more realistic samples, which in turn 
can fool the discriminator. In other words, the generator 
loss function measures the generator’s ability to generate 
realistic data. 

The loss function of the pix2pix model is defined by  
Eq. (2) and an additional regularisation of the real and 
generated images [45]. This regularisation component is 
crucial in image translation tasks to improve the quality of 
the generated images. This also helps enhance the fidelity 
of the generated images, making them more comparable to 
the actual images, as stated in previous work [46]. 

min
G

max
D

 VcGAN (D,G) =  ΕX~Pdata(X) [ log D(x|y)] + 

                  Εz~Pz(z)[ log (1 −  D�G(z|y)�)]                  (1) 
V

 
Pix2Pix =  min

G
max

D
 VcGAN .

 
(D,G)+  

                         λEx,y,z[ ∥x −  G(z|y)∥1]                             (2) 

Here, VcGAN refers to the value function of the 
conditional GAN that pix2pix is inspired by. The generator 
(G) used a random number (z) to generate the fake image 
G(z) with a changing label (y). Concurrently, the 
discriminator (D) attempts to recognise the real image (x) 
from the fake image G(z), which uses the fake image space 
(Pz) to generate a high- quality image close to the real 
image (x) representing the real image space (Pdata). The 
generator model uses a hyperparameter lambda (λ) to 
control the balance between loss functions and adversarial 
loss. Lambda represents the coefficient that measures the 
relative importance of the Generator’s Loss (LG), 

adjusting the lambda value can influence the trade-off 
between the generator and discriminator objectives.  

Goodfellow et al. [12] reported that a higher lambda 
value might prioritise more realistic sample generation 
(better at fooling the discriminator) at the expense of 
stability or diversity, potentially leading to mode collapse. 
In contrast, a lower lambda value may stabilise the training 
model but generate less realistic samples [12]. Note that 
lambda has no established or standard value; instead, it is 
typically found through experimentation, trial and error 
and consideration of the particular dataset, model 
architecture and training dynamics. 

The gradual changes are essential for both the LG and 
the Discriminator’s Loss (LD) to ensure efficient 
optimisation. A minimal gradient signal reaches the 
generator if the discriminator becomes over-confident too 
early. This phenomenon, known as the vanishing gradient, 
could lead to an imbalanced training process where the 
generator cannot learn effectively. 

In such situations, the generator repeatedly produces 
only a single image, called mode collapse. Various 
methods can be used to overcome mode collapse in GAN 
training [47]. One approach involves incorporating a 
supervised loss function into the generator network, 
effectively transforming the technique into a 
semisupervised method [10]. Regarding the generator, the 
supervised loss function employed in this study is similar 
to the conventional pix2pix GAN. The model used two 
loss functions but failed to achieve perfect stabilisation. 
Alternatively, a combination of three supervised learning 
loss functions, namely, LS, LB and Jaccard loss, also called 
the intersection over union, was used to enhance the model 
training stabilisation, as expressed in Eq. (3). As GANs try 
to build the predicted mask through feature learning from 
the input images and the loss function of the pix2pix 
generator is LB [10], it is necessary to measure the 
similarity between input and predicted images. For this 
reason, the Jaccard loss function is considered ideal [48]. 
In addition, the LS function was used to directly measure 
the similarity between the predicted and truth masks 
without setting weights to imbalanced data [49]. 

The loss functions based on the region are used to solve 
the problems of unstable training and imbalanced data, 
especially in the segmentation of small tumours from 
medical images [50]. 

                            Ltotal =  LS+ LB + LIOU                        (3) 

where: 
• LS is widely used with segmentation tasks as it 

measures the overlap between the anticipated and 
ground truth segmentation masks, as described in 
Eq. (4). The basis for its calculation is the 
similarity between the two sets [11]. 

              Ls =  1 −  2yp� + 1
y + p� + 1

                          (4) 

• LB measures the difference between the predicted 
probability and true labels during training, as 
expressed in Eq. (5); it minimises the divergence 
between them [12]. 
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        LB =  −(y log (p�)  + (1 −  y)(log(1 −  p�)))     (5) 

• LIOU computes the ratio of the intersection to the 
union of two sets to determine how similar the two 
sets are, as explained in Eq. (6). It also works well 
for activities that need precise border delineation 
[13]. 

                   LIOU =  1 −  y.p� + ε
(y + p�−y.p�) + ε

                      (6)  

where y represents the true mask and �̂�𝑝 is the prediction 
mask and stops zero division. By merging the 
unsupervised GAN loss functions with the supervised Ltotal 
loss, a comprehensive semisupervised loss for G [51] and 
stabilisation of the model were achieved, as formulated in 
Eq. (7). 

               G =  arg min
G

max
D

 LcGAN (D,G)  +  λLtotal             (7) 

where LcGAN (D,G) is: 

                      LcGAN(D,G)=ΕX~Pdata(X) [ log D(x)] +               
Εz~Pz(z)[ log (1 −  D(G(z))]                  (8) 

where 𝜆𝜆 is a regularisation parameter between the 
generator and discriminator if the 𝜆𝜆 > 0 allows the loss 
function to be reduced. This study is based on the work of 
Meni et al. [52], where the lambda value starts from 0.001 
and is lightly increased to a more considerable value to see 
how it affects the model [52]. 

IV. EXPERIMENTAL SETUP 

A. Training Parameters 
The proposed model was built using the TensorFlow 

open-source framework (v2.10.1) and implemented in 
Python (version 3.10) on a Windows 10 operating system 
using a hardware system equipped with an NVIDIA 
GeForce RTX3050 GPU. The training process, involving 
200 iterations, was accelerated using the Compute Unified 
Device Architecture. The Adam optimisation function was 
chosen as the optimiser, with a learning rate of 2e−4 and a 
batch size of 16. These settings were selected to enhance 
the model’s training efficiency and achieve optimal 
results. 

B. Evaluation Metrics 
The primary metrics used to evaluate the quality of the 

newly generated masks include “Accuracy” (Acc.), 
“Specificity” (Spec.), “Precision” (Prec.), Recall, “Dice 
Coefficient” (Dice), and F1-Score. These metrics are 
commonly used in medical image segmentation 
evaluations [23] to provide objective measures that assess 
the rendering quality of different models. Most of these 
metrics were computed using a confusion matrix, which 
involves four fundamental components [53–55]: True 
Positive (TP) rate, True Negative (TN) rate, False Positive 
(FP) rate and False Negative (FN) rate, as shown through  
Eqs. (9)–(13). 

                     Acc. =  Tp + TN
TP + TN + FP + FN

                         (9) 

                 Spec. =  
 TN

 TN + FP
                              (10) 

                   Prec. =  TP
TP + FP

                               (11) 

                 Recall =   TP
 TP + FN

                         (12) 

                Dice = 2TP
(FP + FN + 2 × TP)

                      (13) 

               F1-score =  (1 +  β) (Prec. × Recall)
β2(Prec. + Recall)

          (14) 

where β = 1. 

V. RESULTS AND DISCUSSION 

A pix2pix network was developed and trained to 
segment thyroid cancer from ultrasound images. First, the 
model generator was processed and stabilised. 
Subsequently, the model was used with deeper layers to 
obtain good segmentation. Fig. 5 shows the input images, 
their true mask and the prediction masks. Fig. 5(a) shows 
the input image from the ultrasound dataset, whereas  
Fig. 5(b) shows the true mask of thyroid nodules for the 
same ultrasound images. Fig. 5(c) displays the prediction 
masks that resulted from the stabilised model, which is 
very close to the true mask found in Fig. 5(b). In addition, 
one of the critical findings of this study indicates that 
incorporating loss functions into GANs effectively 
alleviate the mode collapse problem. 

Fig. 6 demonstrates the loss function behaviour for the 
generator and the discriminator. In Fig. 6(a), the soft dice 
loss function was used for the generator to take the weight 
of the similarity region between the truth and predicted 
masks without assigning weight to the unbalanced data. In 
Fig. 6(b), the Jaccard loss function was used to enhance 
the convergence between the generator and discriminator, 
but it is obvious from the oscillating curve in both figures 
that the model is not stable. 

A combination of the soft dice and Jaccard loss 
functions was used during model training to benefit from 
both function properties and stabilise the model. 

As shown in Fig. 6(c), the value of the generator and 
discriminator oscillates; the generator loss function curve 
appeared unstable as it increased and decreased 
sequentially, even though different hyperparameter (λ) 
values were used. In addition, the values of the loss 
function for the discriminator were small; however, the 
downwards trend was not continuous and the values were 
not consistent with the generator values. 

After combining three loss functions, namely, soft dice, 
Jaccard and binary cross-entropy (the pix2pix standard 
functions), the optimal loss decreased, achieving a loss 
function value of 0.1, whereby the curve continuously 
decreased when using the same hyperparameter values, as 
shown in Fig. 6(d).  
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(a)                                                                                (b)                                                                                  (c)  

Fig. 5. Images of thyroid nodules and masks (a) input images based on the original dataset, (b) the true mask originally from the dataset, and (c) the 
predicted masks that resulted from the proposed model. 

 
 (a)                                                                                                                (b)  
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(c)                                                                                                                (d) 

Fig. 6. Generator and discriminator loss function behaviour. (a) Using soft dice loss function; (b) Using Jaccard loss function; (c) Using two loss 
functions; (d) Generator and discriminator loss function after stabilization. 

The stabilisation of the model means it is possible to 
control the learning speed between the generator and 
discriminator by taking advantage of each loss function, as 
reported in [49]. 

The stability of the generator also led to a stable 
discriminator, as the loss value began to decrease and 
match the LG values until it was completely stable. The 
difference between the collapse in the accuracy of the 
generator in the model with unsupervised and supervised 
functions affected the results during training. The 
influence of the supervised functions had a more 
significant effect on the generator’s behaviour, affecting 
the model weights and its updates. However, the effect was 
less significant after 200 iterations, as the model adapted 

to the functions. The model adaptation improved the 
unsupervised function and its effect on the weights. 

This is identical to the results reported in [10]. Table I 
presents the evaluation metrics (Acc., Spec., Prec., F1-
score and p-values) for the model performance and the 
Confidence Interval (CI) ranges for these metrics. CIs have 
been calculated for each metric in the table, representing a 
range of values containing lower and upper bounds. These 
values mean that the true accuracy of the model on the test 
set lies between them [56]. Table I shows that all the 
evaluations metrics are between the lower and upper 
bounds of the CI and that the p-value was 0.029, which 
means the model’s performance was statistically 
significant because it was less than 0.05. 

TABLE I. RESULTS OF THE PIX2PIX MODEL AFTER STABILISATION USING A GENERATOR AND DISCRIMINATOR 

Model Acc. Spec. Prec. F1-Score p-value 
Stable pix2pix 97% 94% 93% 92% 0.029 

CI (93.683%, 97.371%) (65.61%, 93.8%) (73.438%, 93.188%) (73.438%, 92.154%) (60.044%, 97.025%) 
 

Another output of the proposed model is the 
identification of cancerous areas in the ultrasound images 
and their subsequent segmentation based on the generated 
mask. Fig. 7 shows the result of the test ultrasound image, 
where Fig. 7(a) shows the original input image with the 
cancer region, whereas Fig. 7(b) shows the radiologist’s 
manually segmented cancer region image. Fig. 7(c) shows 
the predicted mask from the proposed pix2pix model in 
this work, whereas Fig. 7(d) presents the mask that was 
cropped from the original image using the model. The last 
column in Fig. 7 (e) shows the parts of the images that the 
model focused on for segmentation using Grad-CAM. 
Based on Fig. 7, the location of the nodules of the 
predicted mask (Fig. 7(c)) is similar as the location in the 
GRAD-CAM (Fig. 7(e)). The model was also tested with 
clinical ultrasound images from Hospital Sultan Abdul 
Aziz Shah in Malaysia, using manual segmentation by an 
experienced radiologist with more than 10 years of 
experience. 

 

Based on the results, combining more than one loss 
function led to good model performance in predicting the 
cancer area, which was almost identical to the radiologist’s 
image contours. Evidently, the proposed pix2pix model 
was more accurate with the stabilised generator and 
discriminator, where many λ values were used to 
determine the best value, as shown in Table II. 

The best λ value essentially balanced the combination 
of loss functions with the standard loss function of the 
model. The use of small λ values led to converged 
accuracy in the model before and after stabilisation, 
achieving good prediction accuracy, although it is 
essential to note that this does not prevent failure. When 
higher λ values were used, the results were precise in terms 
of the difference between the stable and unstable models. 
As such, the stabilised model recorded an excellent 
accuracy of up to 97% using λ = 25. The outstanding 
accuracy supports the proposed model for medical 
applications to facilitate cancer detection and 
segmentation of the cancer region. 
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(a)                                                         (b)                                                   (c)                                                      (d)                                                    (e) 

Fig. 7. Comparison masks’ results from the proposed model and the radiologist. (a) Input image; (b) Radiologist segmentation; (c) Predicted mask; 
(d)  Cropped mask; (e) Grad-CAM. 

TABLE II. EVALUATION MEASUREMENTS OF BOTH MODELS WITH 
DIFFERENT 

Lambda 
Values Model Acc. Spec. Prec. F1-score 

λ = 0.001 Unstable pix2pix 88% 88% 89% 
95% 

88% 
93% Stable pix2pix 92% 92% 

λ = 0.01 Unstable pix2pix 89% 89% 91% 
91% 

89% 
89% Stable pix2pix 89% 89% 

λ = 0.9 Unstable pix2pix 92% 92% 95% 
91% 

93% 
89% Stable pix2pix 89% 89% 

λ = 5 Unstable pix2pix 72% 71% 81% 
95% 

71% 
93% Stable pix2pix 92 92% 

λ = 15 Unstable pix2pix 77% 77% 75% 
89% 

75% 
88% Stable pix2pix 88% 88% 

λ = 25 Unstable pix2pix 92% 92% 95% 
93% 

93% 
92% Stable pix2pix 97% 94% 

λ = 35 Unstable pix2pix 72% 72% 81% 
95% 

71% 
92% Stable pix2pix 92% 92% 

Note: Acc., accuracy; Spec., specificity; Prec., precision; and F1-score 

For assessing the model’s performance, the 10-fold 
cross-validation method was employed; it was repeated ten 
times to make all data represented in training and 
validation sets. Table III  shows accuracies and standard 
deviations in 10-folds obtained by cross-validation; the 
average accuracy is about 95%. The high accuracy and 
relatively low standard deviation of the proposed model 
demonstrate the stability of the model [57]. 

TABLE III RESULTS OF TENFOLD CROSS-VALIDATION 

10-fold cross-validation Accuracy Standard deviation 
Fold1 88.78% 0.0001 
Fold2 90.90% 1.0600 
Fold3 95.80% 2.9399 
Fold4 95.80% 3.0728 
Fold5 96.58% 3.1330 
Fold6 97.11% 3.1493 
Fold7 98.08% 3.2220 
Fold8 96.81% 3.0921 
Fold9 97.44% 3.0158 

Fold10 97.97% 2.9747 
Average 95.53% 2.9747 

 

VI. COMPARISON WITH STATE-OF-THE-ART METHODS 

In Table IV, recent techniques, namely, TRFE+, FCG-
Net and GLFNet, show good performance in medical 
image segmentation. Using the adaptive region to enhance 
the performance of nodule segmentation, TRFE+ achieved 
a high accuracy of 92% and an F1-score of 72%. This is 
because the adaptive region prior guidance module was 
used to take full advantage of the thyroid region features. 
FCG-Net can extract multiresolution features while 
reducing the number of parameters by using a full-scale 
skip connection, resulting in an accuracy and F1-score of 
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95% and 82%, respectively. In contrast, the improvement 
of the model was small in the segmentation of the 
ultrasound image because the model requires more clinical 
verification. GLFNet combined local and global features 
that were extracted from the image using the self-attention 
convolution fusion block. Even though the model accuracy 
was high, the proposed model in this study outperforms 
this and other state-of-the-art segmentation networks. The 
accuracy and F1-score of the proposed model were 97% 
and 92%, respectively. Furthermore, the visual results that 
were assessed by the experienced specialist proved that the 
present model is the most suitable segmentation technique 
for thyroid nodules. 

TABLE IV. COMPARISONS BETWEEN THE PROPOSED MODEL AND THE 
STATE-OF-THE-ART SEGMENTATION MODELS 

Model Ref. Year Acc. F1-Score Dice 
TRFE+ [58] 2022 92% 72% 75.37% 

FCG-Net [59] 2023 95% 82% 80.42% 
GLFNet [60] 2024 96% 74% 74.62% 

Proposed model   97% 92% 87.97% 
 

The proposed model performed well because efficiently 
took advantage of GAN architecture for learning the 
model using a small number of labelled images. The other 
reason is that using three loss functions to stabilise the 
model, the model took the similarity region between the 
truth and predicted masks to benefit from the convergence 
between the generator and discriminator. This step led to 
better segmentation for the contour of the thyroid nodules, 
similar to the manual segmentation of the radiologist. 

The proposed model was compared with the standard 
pix2pix model with a U-Net generator and one loss 
function, as in Table V. Notably, a 97% accuracy was 
achieved in contrast with the standard model, in which the 
accuracy was achieved at 91%; this is because the stable 
pix2pix had more than one loss function that led to 
stabilising and enhancing the generator behaviour. 

TABLE V. PERFORMANCE COMPARISONS FOR THYROID NODULE 
SEGMENTATION MODEL 

Model Acc. Spec. Prec. F1-Score p-value CI Effect sizes 
Standard 
Model 91% 91% 90% 90% 0.018 98% 0.06 

Stable 
pix2pix 97% 94% 93% 92% 0.029 97 % 0.35 

Note: Acc., accuracy; Spec., specificity; Prec., precision; and CI, 
confidence intervals 

VII. CONCLUSION 

This study successfully introduced an improved novel 
algorithm based on the pix2pix model to enhance the 
segmentation of thyroid nodules in ultrasound images and 
reduce the manual labelling workload associated with 
medical image segmentation. The proposed method 
focused on accurately delineating cancerous regions by 
employing a deeper version based on the pix2pix model. 
The use of three types of loss functions enabled the 
generator and discriminator to reach a stable equilibrium, 
whereas extensive experiments carried out to validate the 
proposed model’s effectiveness and robustness 

demonstrated its superiority both visually and statistically. 
The findings also recorded enhanced nodule segmentation 
by incorporating unsupervised loss functions to prevent 
generator collapse. By leveraging this technology, a 
favourable balance between performance enhancement 
and reduction in annotation costs was achieved, leading to 
a fully automated computer-assisted segmentation system 
for thyroid ultrasound images without human intervention. 
Future efforts should aim to enhance the model’s 
capability to segment and classify diseased organ parts 
simultaneously. The model’s accuracy can also be 
improved by augmenting the dataset size.   
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