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Abstract—The skin is the largest organ in the human body, 
serving as its outermost covering. The skin protects the 
human body from elements and viruses, regulates 
temperature, and provides cold, heat, and touch sensations. 
A skin lesion is a type of abnormality in or on the skin. 
Melanoma skin cancer is the most deadly and deadliest of the 
skin cancer family. Several researchers have developed non-
invasive approaches for detecting skin cancer as technology 
has advanced. The early detection of a skin lesion is crucial 
for its treatment. In this study, we introduce a deep neural 
network for diagnosing skin melanoma in its early stages 
using Convolutional Neural Network (CNN), Capsule Neural 
Network (CapsNet), and Gabor Capsule Neural Network 
(GCN). To train the models, the International Skin Imaging 
Collaboration (ISIC) melanoma data is used. Prior to 
deploying deep neural networks, methods such as 
preprocessing dataset images to remove noise and lighting 
concerns for better visual information are used. Deep 
Learning (DL) models are employed to classify the images’ 
melanoma lesions. The performance of the proposed 
approaches is evaluated using cutting-edge performance 
metrics, and the results show that the presented method beats 
state-of-the-art techniques. The models achieve an average 
accuracy of 90.30% for CNN, 87.90% for CapsNet, and 
86.80% for GCN, demonstrating their capability to recognize 
and segment skin lesions. These developments enable health 
practitioners to provide more accurate diagnoses and help 
government healthcare systems with early identification and 
treatment initiatives. 
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cancer, neural networks 
 

I. INTRODUCTION 

Skin is the biggest organ in the human body and the 
body’s outer layer [1]. The skin protects the human body 
from elements and microorganisms entering the body, aids 
in temperature regulation, and allows for the sensations of 
cold, heat, and touch [2]. A skin lesion arises when a piece 
of the skin is abnormal in relation to other parts of the skin. 
Skin lesions are caused by infections that occur in or on 
the skin [3]. Melanoma is the worst of the malignant 
disorders that affect the skin. Melanoma is the least 
common type of skin cancer, yet it is the deadliest. 
Melanoma can spread to other regions of the body and is 
caused by malignant transformation of melanocytes 
produced from neural crest neoplasia [4]. According to the 
World Health Organization (WHO), the prevalence of both 
non-melanoma and melanoma skin cancers has increased 
in recent decades. Each year, between 2 and 3 million non-
melanoma skin cancers and 132,000 melanoma skin 
cancers are diagnosed worldwide [5]. According to Skin 
Cancer Foundation Statistics, one in every three 
malignancies diagnosed is skin cancer, and one in every 
five Americans will acquire skin cancer throughout their 
lifetime [6].  

Skin cancer detection is challenging, and even 
experienced expert dermatologists had a 60% success rate 
until the advent of dermoscopic pictures, which boosted 
success to 75% to 84% [7]. The problem is that malignant 
lesions are frequently quite similar to benign moles, and 
both have tiny diameters that do not allow for decent 
images with standard cameras. Melanoma and nevus, for 
example, are both melanotic kinds, and as a result, the 
categorization difficulties between them are considerably 
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greater [8]. The most important aspect of treating skin 
cancer is detecting it early and accurately. For example, if 
melanoma is not detected in its early stages, it begins to 
develop and spreads over the outer skin layer, eventually 
infiltrating the deep layers and connecting with the blood 
and lymph arteries [9, 10]. Several individuals have turned 
to Compute-Aided Diagnosis (CAD) to diagnose skin 
cancer since the introduction of technology. The 
combination of Artificial Intelligence (AI) and non-
invasive skin imaging offers up a wide range of 
possibilities since AI can execute jobs that humans cannot 
do in a fair period of time. To identify skin cancer, several 
researchers have used Machine Learning (ML), as well as 
Deep Learning (DL) methods.  

For example, Grignaffini et al. [11] created a melanoma 
detection task that was performed with the help of a 
Convolutional Neural Network (CNN) and the handcrafted 
texture features of the dermoscopic images as additional 
input in the training phase. They attempted to determine if 
the dermoscopic image preparation and segmentation 
procedures might be skipped while retaining good 
classification performance. However, their research was 
hampered by the unbalanced nature of medical imagery. In 
another related study, Ichim et al. [12] introduced two 
neural network ensembles for the identification of four 
skin lesions, based on the fusing of the choices of the 
component neural networks. All models’ individual F1 
scores for each class and the global system varied from 
81.36% to 94.17%. Furthermore, Juan et al. [13] has 
presented SkinFLNet, a revolutionary skin cancer 
classification approach that makes use of model fusion and 
lifetime learning technology. The SkinFLNet’s deep 
convolutional neural networks were trained on a dataset of 
1,215 clinical pictures of skin malignancies diagnosed at 
Taichung and Taipei Veterans General Hospitals from 
2015 to 2020. Their research discovered an effective skin 
cancer classification system that can be trained on a 
relatively short dataset with an accuracy of 85% utilizing 
model fusion and lifetime learning methods. As previously 
stated, the use of CAD in the identification of skin cancer 
has been successful, for instance, (Fawzy et al. [14] 
proposed a Computer-Aided Diagnostic (CAD) system. 
Their experimental findings demonstrated that the 
proposed method enabled classification accuracy. Their 
proposed solution provides a less complex and cutting-
edge framework for automating skin cancer detection and 
accelerating the diagnosis procedure in order to save a life. 
It has been observed that, Riyadh et al. [15] demonstrated 
a unique convolutional neural network-based technique for 
identifying skin cancer in clinical skin pictures. Their 
experiments revealed that the strategy has a high level of 
categorization accuracy.  

Many studies have been undertaken on the effectiveness 
of using CNN to categorize skin cancer lesion [16]. 
Although, data imbalance has been a challenging factor in 
medical diagnosis, this study seeks to address the 
limitations of existing approaches by offering a unique 
method for detecting melanoma lesions on the skin using 
a deep neural network technology, namely Convolutional 
Neural Network (CNN), Capsule Neural Network 

(CapsNet), and Gabor Capsule Network (GCN). The goal 
is to advance the model’s performance by preparing the 
dataset and providing an acceptable technique for dealing 
with imbalanced datasets and missing values. The major 
contributions of the study are as follows: 

1) The study utilizes deep learning models of the 
CNN, CapsNet, and GCN to categorize melanoma 
lesions. 

2) The study also employs a novel strategy to 
detecting class imbalance by developing a cutting-
edge method for achieving higher loss values in 
terms of entropy loss. 

3) The efficacy of deep learning models is assessed 
utilizing cross validation approaches and cutting-
edge performance evaluation criteria. 

4) The study highlights the most current use of DL in 
the analysis and classification of melanoma lesions. 

The remainder of the paper is arranged as follows. 
Section II outlines the methodologies utilized in this study, 
which include a thorough evaluation of the data, 
preparation processes, and deep learning models. 
Section  III also includes an overview of the experimental 
outcomes. Section IV includes a detailed description of the 
study in the Discussion section. Section V addresses the 
study’s conclusion and shortcomings. 

II. MATERIALS AND METHODS 

This segment outlines the techniques used in this study. 
It covers everything from data collection to the models 
deployed and the metrics used to evaluate their 
effectiveness. The strategies are fully addressed in the 
subsections that follow. 

A. Data Collection  
The study utilized the publicly available dataset from 

the International Skin Imaging Collaboration (ISIC) 
platform [17] accessed on November 22, 2023. The dataset 
contains 18,133 images from 2,463 patients with a total of 
7,369 number of lesions. The dataset is binary with benign 
and malignant categories. The total dataset is exposed to 
the training techniques of the study. 

B. Proposed Framework of the Study  
The paradigm for categorizing skin cancer employed in 

this investigation is depicted in Fig. 1. Image augmentation, 
grayscale conversion, de-noising approach, Contrast 
Limited Adaptive Histogram Equalization (CLACHE), 
and feature extraction techniques were used to the dataset. 
The preparation procedures outlined above are utilized to 
generate clean data that the suggested models can interpret 
during training. For classifying skin cancer masses, the 
proposed deep learning models used in this study include 
CNN, CapsNet, and GCN. Preprocessed data was divided 
into three categories: training, validation, and testing. The 
research was divided into two parts: training (80%) and 
testing (20%). A subset of the testing set (20%) was used 
to validate the deep learning models. Deep learning model 
training outcomes are evaluated using a variety of 
performance assessment criteria. 
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Fig. 1. Proposed framework of the study. 

C. Data Preprocessing Techniques 
Data preparation is critical in Deep Learning (DL) 

analysis since it allows the models to be trained. Data 
preparation improves the quality, reliability, and efficacy 
of modeling approaches, making the data more suited for 
increasing deep learning model comprehension and 
performance [18]. The sections that follow describe the 
various methodologies employed in the current study. 

1) Data augmentataion technique: Data augmentation 
is a technique that artificially increases the training set by 
making modified copies of existing data. Data 
augmentation increases the performance and results of 
machine learning models by creating fresh and unique 
examples for training datasets [19]. When the dataset is 
huge and diversified, deep learning models perform well. 
Rotation and rescaling methods are employed in 
augmentation operations. The photos are loaded and 
enhanced in Keras version 2.13 (Google LLC, Mountain 
View, California, United States) using the Image Data 
Generator class. These strategies were used to enhance 
model prediction accuracy by adding more training data 
into models and avoiding data shortages. The Image Data 
Generator class properties and associated settings are 
shown in Table I.  

TABLE I. IMAGE DATA GENERATOR CLASS PARAMETERS 

Setting Value 
Rotation 10o 

Width shift 2 pixels 
Height shift 22 pixels 

Shear 0.2 radians 
Rescale [0, 255] to [0, 1] 

Fill mode Nearest  
 

2) Grayscale conversion technique: The RGB values 
of Red (R), Green (G), and Blue (B) are converted to 
grayscale for each picture. A grayscale picture is one 
composed of several shades of gray (or black and white). 
Grayscale images have the potential to reduce the 
computational cost of image processing activities. This is 
due to the reduction of the number of channels from three 
(RGB) to one (gray). The luminosity method was used to 
convert grayscale to black and white. The luminosity 
method is expressed in Eq. (1). 

 𝑌𝑌 = 0.299𝑅𝑅 + 0.587𝐺𝐺 + 0.114𝐵𝐵 (1) 

Grayscale conversion helps to simplify algorithms and 
eliminate difficulties related to processing demands. 

3) Noise resuction technique: Bilateral filtering is used 
to minimize noise in pictures. Bilateral filtering is a 
method of smoothing images while retaining their edges. 
Bilateral filtering is a form of non-local denoising. Non-
Local Means (NLM) denoising is a method of reducing 
noise from a photograph while preserving its edges and 
characteristics [20]. It compares each pixel in the image to 
all of the others, calculating their similarity and using that 
information to estimate the value of the noisy pixel [21]. 
Even if they are not in the same place, comparable patches 
in an image have comparable values for any NLM 
denoising algorithm. The algorithm can forecast the 
image’s structure and reduce noise without blurring or 
distorting the edges or features by comparing all patches 
to each other. The numerical representation of bilateral 
filtering is shown in Eq. (2). 

𝐵𝐵𝐵𝐵[𝐼𝐼]𝑝𝑝 =  1
𝑊𝑊𝑝𝑝
∑  [�𝐺𝐺𝜎𝜎𝜎𝜎��|𝑝𝑝 − 𝑞𝑞|��� ⋅ (𝐺𝐺𝜎𝜎𝜎𝜎(|𝐼𝐼𝑝𝑝 − 𝐼𝐼𝑞𝑞|))] ⋅ 𝐼𝐼𝑞𝑞𝑞𝑞∈𝑆𝑆 (2) 

where 𝐵𝐵𝐵𝐵[𝐼𝐼]𝑝𝑝 is the yield of bilateral filtering at pixel 𝑝𝑝, 
𝐼𝐼𝑞𝑞  is the intensity at pixel 𝑞𝑞, 1

Wp
 is the normalization factor, 

𝑊𝑊𝑝𝑝 is the normalization term, 𝐺𝐺𝜎𝜎𝜎𝜎 is the Gaussian function 
for the standard deviation of spatial Gaussian component, 
||𝑝𝑝 − 𝑞𝑞|| is the Euclidean distance between 𝑝𝑝 and 𝑞𝑞, and 
𝐺𝐺𝜎𝜎𝜎𝜎  is the Gaussian function for the standard deviation of 
the range Gaussian component, additionally, 𝐼𝐼𝑝𝑝  is the 
absolute intensity value at 𝑝𝑝 , and 𝐼𝐼𝑞𝑞  is the absolute 
intensity value at 𝑞𝑞.  

4) Contrast limited adaptive histogram equalization 
technique: To enhance the contrast of each picture, the 
Contrast Limited Adaptive Histogram Equalization 
(CLAHE) approach is used. CLAHE is a technique for 
boosting visual contrast by spreading the intensity values 
in a picture, which is especially useful in low contrast 
images. The CLAHE algorithm defined in the 
createCLAHE and OPENCV routines is used to process 
the normalized and denoised grayscale image. The 
CLAHE-enhanced image is then converted back to RGB 
format. 

5) Feature extraction technique: The labels are stored 
in separate lists, while the features are concatenated into a 
single array. The feature array has been rearranged in four 
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dimensions. The feature array is then normalized using the 
StandardScaler function from Scikit-learn [22]. The 
normalized features and labels are divided into training, 
validation, and testing sets using the K-fold cross-
validation method. The K-Fold object folds data 10 times. 
For each fold, the training data is divided into two sets: 
80% training and 20% validation. To avoid network 
overfitting, K-fold cross-validation is employed. Cross-
validation reduces overfitting by providing an estimate of 
the model’s performance on unseen data [23]. The 
validation sets are intended to be used to track a model’s 
performance throughout training. 

D. Deep Neural Networks  
This section goes into great detail about each model and 

its design. Convolutional Neural Networks (CNN), 
Capsule Neural Networks (CapsNet), and Gabor Capsule 
Networks (GCN) are the deep neural networks used in this 
study. The GCN utilizes a capsule network design, with 
the first layer being a convolutional Gabor layer. 

1) Convolutional neural network: A CNN is a deep 
learning system that can take an input image, prioritize 
different aspects/objects in the image (via learnable 
weights and biases), and differentiate one from the 
other  [24]. The CNN was used to classify the melanoma 
lesion in the current study. The CNN employs the VGG16 
architecture of the Visual Geometry Group Network 
(VGGNet). The CNN’s architecture incorporates 
convolutional and max-pooling layers. The SoftMax 
activation function was used, with a regularization factor 
of 0.0001 and a maximum iteration of 10. SoftMax is a 
CNN activation function frequently used in the output 
layer. 

In the sequential model, the CNN made use of 
convolutional and max-pooling layers. After the 
convolutional layers were finished, the data was flattened 
to generate three entirely linked layers for output using the 
SoftMax activation function. The total number of trainable 
parameters is 979,330, with a sampling of the total based 
on VGG16 pre-trained values. The CNN used in this work 
consists of two convolutional layers, two max pooling 
layers, two dropout layers, a flatten layer, and two fully 
linked layers. The two dropouts are important tools for 
improving CNN performance and generalization because 
they reduce overfitting, promote robust feature learning, 
and handle big and complex models fast. The first dropout 
reduces noise in the feature maps, while the second 
controls the entire CNN architecture for improved output. 
In addition, the flattened layer converts the spatially 
ordered feature maps into a one-dimensional vector that 
fully linked layers can use to produce predictions. The 
network’s architecture requires this flattened 
representation to connect convolutional layers to fully 
connected layers. Finally, the pictures are classed by the 
entirely linked layers, which allows the melanoma lesion 
to be identified. The fully connected layer makes final 
predictions using the hierarchical features learnt by the 
convolutional and pooling layers. Table II provides an 
overview of the layers employed in the CNN design.  

TABLE II. ARCHITECTURAL OUTLINE OF THE CNN 

Layer (type) Output Shape Param # 
Block1_Conv1 (Conv2D) (None, 126, 126, 64) 1792 

Block1_Pool (MaxPooling2D) (None, 63, 63, 64) 0 
Block2_Conv1 (Conv2D) (None, 61, 61, 128) 73856 

Block2_Pool (MaxPooling2D) (None, 30, 30, 128) 0 
Block3_Conv1 (Conv2D) (None, 28, 28, 256) 295168 

Block3_Pool (MaxPooling2D) (None, 14, 14, 256) 0 
Block4_Conv1 (Conv2D) (None, 12, 12, 256) 590080 

Block4_Pool (MaxPooling2D) (None, 6, 6, 256) 0 
Block4_Dropout (Dropout) (None, 6, 6, 256) 0 

Flatten (Flatten) (None, 9216) 0 
Dropout (Dropout) (None, 9216) 0 

Output (Dense) (None, 2) 18434 
Total params 979330 (3.74 MB)  

Trainable params: 979330 (3.74 MB)  
Non-trainable params: 0 (0.00 Byte)  

 
2) Capsule network: The CapsNet design consists of 

two convolutional layers, a primary capsule block and a 
class capsule block. A capsule network is a group of 
neurons in which the activity vector represents the 
instantiation parameters and the length of the vector 
signifies the likelihood of an entity’s existence [25]. 
Capsule networks can learn image attributes such as 
deformations, position, and texture thanks to this feature. 
The three most common methods for creating capsules are 
auto-encoders, vector capsules based on dynamic routing, 
and matrix capsules based on Expectation-Maximization 
(EM) routing. This study’s data was trained using vector 
capsules based on dynamic routing. Vector routings are 
used to express visual parameters in vector capsules. ReLU, 
Sigmoid, and Tangent functions are used as activation 
functions in CNNs [14]. As indicated in Eq. (3), the 
activation function for a vector capsule is known as a 
squash function. 

 𝑣𝑣𝑗𝑗  =
∥𝑠𝑠𝑗𝑗∥2

1+∥𝑠𝑠𝑗𝑗∥2
 
𝑠𝑠𝑗𝑗
∥𝑠𝑠𝑗𝑗∥

   (3) 

where 𝑣𝑣𝑗𝑗= output of capsule j, and 𝑠𝑠𝑗𝑗 = entire input of the 
capsule. The entire input value of capsule 𝑠𝑠𝑗𝑗 is found by 
the weighted sum of the forecast vectors (𝑈𝑈𝑖𝑖│𝑗𝑗) in lower-
layered capsules excluding in the first layer of the capsule 
network. The forecast vector is formed by multiplying the 
output 𝑢𝑢𝑗𝑗 of a capsule in the lower layer by a weight matrix 
presented in Eqs. (4) and (5).  

 𝑠𝑠𝑗𝑗 =  ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖│𝑗𝑗𝑖𝑖    (4) 

 𝑢𝑢𝑖𝑖│𝑗𝑗 =  𝑊𝑊𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖 (5) 

where 𝑐𝑐𝑖𝑖𝑖𝑖  = coupling coefficients that are resolute by the 
iterative lively routing process (Fig. 1). The coupling 
coefficients are determined by a SoftMax function which 
is expressed in Eq. (6). 

 𝑐𝑐𝑖𝑖𝑖𝑖 =  
𝑒𝑒𝑒𝑒𝑒𝑒 (𝑎𝑎𝑖𝑖𝑖𝑖)

∑ 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑎𝑎𝑖𝑖𝑖𝑖)𝑘𝑘
 (6) 
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where 𝑎𝑎𝑖𝑖𝑖𝑖= log prior probability. In capsule networks, a 
margin loss has been proposed to determine the presence 
of objects of a particular class [26]. This margin loss is 
calculated as presented in Eq. (7).  

𝐿𝐿𝑘𝑘 =  𝑇𝑇𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑚𝑚+ − ∥ 𝑣𝑣𝑘𝑘 ∥2)2 + 

 𝜆𝜆(1 −  𝑇𝑇𝑘𝑘) 𝑚𝑚𝑚𝑚𝑚𝑚 (0, ∥ 𝑣𝑣𝑘𝑘 ∥  − 𝑚𝑚−)2 (7) 

The CNN’s block 4 dropout layer’s feature maps are 
delivered to the first convolutional layer (Block5_Conv1). 
The convolutional technique is used to build 7×7 feature 
maps, using 128 filters, a kernel size of 7×7, and ReLU 
activation. The second convolutional layer uses a 
convolution of 128 filters, a 6×6 kernel size, and ReLU 
activation to create 2×2 feature maps. The main capsule 
block is made up of a convolutional layer and a reshape 
layer. The contour layer generates 32-channeled 1×1 
feature maps, which are then molded and compressed into 
two 16-dimensional capsules. The output of the main 
capsule layer is then sent to the Class capsule layer. The 
Class capsule’s output is delivered to the last tier, the 
lambda layer. As the output layer, this layer computes the 
class probabilities. Table III depicts the capsule neural 
network architecture. 

TABLE III. ARCHITECTURAL OUTLINE OF THE CAPSNET 

Layer (type) Output Shape Param # 
Block1_Conv1_input (InputLayer)  [(None, 128, 128, 3)] 0 

Block1_Conv1 (Conv2D)  (None, 126, 126, 64)  1792 
Block1_Conv2 (Conv2D)  (None, 124, 124, 64)  36928 

Block1_Pool (MaxPooling2D)  (None, 62, 62, 64)  0 
Block2_Conv1 (Conv2D)  (None, 60, 60, 128)  73856 
Block2_Conv2 (Conv2D)  (None, 58, 58, 128)  147584 

Block2_Pool (MaxPooling2D)  (None, 29, 29, 128)  0 
Block3_Conv1 (Conv2D)  (None, 27, 27, 256)  295168 
Block3_Conv2 (Conv2D)  (None, 25, 25, 256)  590080 

Block3_Pool (MaxPooling2D)  (None, 12, 12, 256)  0 
Block4_Conv1 (Conv2D)  (None, 10, 10, 256)  590080 

Block4_Pool (MaxPooling2D)  (None, 5, 5, 256)  0 
Block4_Dropout (Dropout)  (None, 5, 5, 256)  0 
Block5_Conv1 (Conv2D)  (None, 4, 4, 128)  131200 
Block5_Conv2 (Conv2D)  (None, 3, 3, 128)  65664 

primarycap_conv2d (Conv2D)  (None, 1, 1, 32)  16416 
primarycap_reshape (Reshape)  (None, 2, 16)  0 
primarycap_squash (Lambda)  (None, 2, 16)  0 

class__capsule_2 (Class_Capsule)  (None, 2, 16)  1024 
lambda_2 (Lambda)  (None, 2)  0 

Total params:  1949792 (7.44 MB)  
Trainable params:  1949792 (7.44 MB)  

Non-trainable params:  0 (0.00 Byte)  
 

3) Gabor capsule network: The architecture of the 
Gabor Capsule Network (GCN) is similar to that of the 
capsule network paradigm. The GCN architecture is made 
up of a convolutional block, a key capsule block, and a 
class capsule block. In image processing, a Gabor filter is 
a linear filter built by combining sinusoid and Gaussian 
functions [27]. The Gabor filter may be customized by 
changing its orientation, scale, aspect ratio, frequency, and 
phase. Eq. (8) can be used to express a Gabor filter 
numerically.  

 𝑔𝑔𝑔𝑔,𝜃𝜃,𝜎𝜎, 𝛾𝛾(𝑥𝑥, 𝑦𝑦) = 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑥𝑥′+𝛾𝛾𝛾𝛾′2

2𝜎𝜎2
� 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋 𝑥𝑥′

𝜆𝜆
+  𝜙𝜙)  (8) 

where  𝑥𝑥′ = 𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 ,  𝑦𝑦′ =  −𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 + 𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃. 
Gabor filters are powerful tools that may be used to 
recognize edges, analyze texture, and extract 
characteristics from pictures. Gabor filters may be used to 
extract features for use in CNNs as preprocessing 
approaches. In the convolution process, a group of global 
Gabor filters is utilized to extract properties from an input 
image. This convolution operation (*) applied to the image 
and the global Gabor filter bank G(x, y: w, θ), generates a 
set of features (Om, n(x, y)) that can be represented 
mathematically by the Eq. (9): 

 𝑂𝑂𝑚𝑚,𝑛𝑛(𝑥𝑥, 𝑦𝑦)  =  𝐼𝐼(𝑥𝑥, 𝑦𝑦)  ∗  𝐺𝐺(𝑥𝑥,𝑦𝑦: 𝑤𝑤,𝜃𝜃) (9) 

The Gabor capsule network (GCN) architecture is 
shown in Table IV. The CNN’s block 4 dropout layer’s 
feature maps are sent into the first convolutional layer 
(Block5_Conv1). The convolutional technique is used to 
build 7×7 feature maps, using 128 filters, a kernel size of 
7×7, and ReLU activation. The second convolutional layer 
then generates 7×7 feature maps using 256 Gabor filters, a 
7×7 kernel size, and ReLU activation. The primary capsule 
block consists of a convolutional layer and a reshape layer. 
The convoluted layer generates 32-channel 3×3 feature 
maps, which are then molded and compressed into 18 
capsules with 16 filters. The output from the main capsule 
layer is sent to the Class capsule layer. The Class capsule’s 
output is flattened and sent to the lambda layer. This layer 
is the output layer, which computes the class probabilities. 

TABLE IV. ARCHITECTURAL OUTLINE OF THE GCN 

Layer (type) Output Shape Param # 
Block1_Conv1_input (InputLayer)  [(None, 128, 128, 3)] 0 

Block1_Conv1 (Conv2D)  (None, 126, 126, 64)  1792 
Block1_Conv2 (Conv2D)  (None, 124, 124, 64)  36928 

Block1_Pool (MaxPooling2D)  (None, 62, 62, 64)  0 
Block2_Conv1 (Conv2D)  (None, 60, 60, 128)  73856 
Block2_Conv2 (Conv2D)  (None, 58, 58, 128)  147584 

Block2_Pool (MaxPooling2D)  (None, 29, 29, 128)  0 
Block3_Conv1 (Conv2D)  (None, 27, 27, 256)  295168 
Block3_Conv2 (Conv2D)  (None, 25, 25, 256)  590080 

Block3_Pool (MaxPooling2D)  (None, 12, 12, 256)  0 
Block4_Conv1 (Conv2D)  (None, 10, 10, 256)  590080 

Block4_Pool (MaxPooling2D)  (None, 5, 5, 256)  0 
Block4_Dropout (Dropout)  (None, 5, 5, 256)  0 
Block5_Conv1 (Conv2D)  (None, 4, 4, 128)  131200 
GaborLayer (GaborLayer)  (None, 2, 2, 128)  0 

primarycap_conv2d (Conv2D)  (None, 1, 1, 32)  16416 
primarycap_reshape (Reshape)  (None, 2, 16)  0 
primarycap_squash (Lambda)  (None, 2, 16)  0 

class__capsule_3 (Class_Capsule)  (None, 2, 16)  512 
lambda_3 (Lambda)  (None, 2)  0 

Total params:  1883616 (7.19 MB)  
Trainable params:  1883616 (7.19 MB)  

Non-trainable params:  0 (0.00 Byte)  

 
E. Performance Evaluation Metrics  

Model evaluation is critical since it evaluates a model’s 
performance as a generic model. A performance 
evaluation is used to test the generalization accuracy of a 
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model using unseen/out-of-sample data [28]. The models 
were evaluated using performance assessment criteria such 
as accuracy, loss, precision, recall, specificity, and 
Receiver Operating Characteristic Area under the Curve 
(ROCAUC). True Positives (TP), False Negatives (FN), 
False Positives (FP), and True Negatives (TN) are some of 
the measures assessed. 

The number of correctly classified instances is divided 
by the total number of occurrences in the dataset to 
measure accuracy. Eq. (10) represents accuracy.  

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

 (10) 

Loss in a machine learning model evaluates the 
inaccuracy or disparity between predicted and real data. In 
neural networks, the most commonly used loss function is 
cross-entropy. The loss function is represented by Eq. (11). 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  ∑ ∑ 𝑦𝑦𝑖𝑖 ,𝑗𝑗 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖 , 𝑗𝑗)𝑚𝑚
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1  (11) 

where n = number of samples, y = true label or ground truth, 
m = number of classes, j = class iterator, i = samples 
iterator and p = predicted probability or score. 

Precision assesses a model’s ability to accurately detect 
positive examples among all predicted instances. It 
assesses the precision of a model’s positive predictions. 
Recall (Sensitivity) measures a model’s ability to correctly 
identify all positive occurrences in a dataset [29]. The 
capacity of a model to correctly detect negative cases 
among all negative examples in a dataset is measured by 
specificity. It assesses the precision of a model’s positive 
predictions. Another term for it is the True Negative Rate 
(TNR). The ROC curve is used to show sensitivity vs the 
false positive rate (1-specificity) at different thresholds. In 
other words, the ROC curve indicates the performance of 
a classification model. A threshold is a number that 
determines how the prediction of a model is classed. 

The False Positive Rate (FPR) is the proportion of false 
positive events anticipated as positive by a model out of all 
genuine negative cases. The Area under the Curve (AUC) 
score assesses the model’s overall performance by 
calculating the area under the ROC curve. 

Eq. (12) is used to determine precision, whereas Eq. (13) 
may be used to calculate recall. Eq. (14) defines specificity, 
while Eqs. (15)–(17) reveal the formula that makes up the 
ROC.  

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (12) 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (13) 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (14)  

 FPR = 1 − Specificity (15) 

 𝐹𝐹𝐹𝐹𝐹𝐹 = 1 −  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (16) 

 𝐹𝐹𝐹𝐹𝐹𝐹 =  𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

 (17) 

III. EXPERIMENTAL RESULTS 

This section presents the experimental configuration 
setups and the results obtained by the deep neural network 
models employed in this study. 

A. Working Environment and Experimental Setup 
Configurations  

As a consequence, the deep learning models were 
trained using the Google Colab platform with Python 
version 3.11.4 (The Python Software Foundation (PSF), 
1209 Orange Street, Wilmington, Delaware, USA). The 
installed Random Access Memory (RAM) capacity is 12.0 
gigabytes (GB), and the operating system is 64-bit. Table 
V displays the system characteristics and experimental 
settings used to get the results. The experimental system is 
composed of five nodes, each having an Intel(R) Core(TM) 
i5-1155G7 @ 2.50GHz, eight cores, and twelve gigabytes 
of RAM. 

TABLE V. WORKING ENVIRONMENT AND SPECIFICATIONS 

Product Specification 
Processor 11th Gen Intel(R) Core(TM) i5-1155G7 @2.50Ghz 2.50GHz 

RAM 12.0 GB 
System 64-bit operating system 

 
The experimental formation used to acquire the training 

data is summarized in Table VI. With data volumes 
ranging from 5 GB to 15 GB, the deep learning models, 
thus, CNN, CapsNet, and GCN were created and evaluated. 
Each application is run by a windows bash script for each 
parameter values. 

TABLE VI. SYSTEM CONFIGURATION AND SETUPS 

Configuration parameter Minimum 
value 

Maximum 
value 

Number of executors (-num-executor) 2 10 
Number of cores per Executor (-

executor-cores) 1 8 

Executor memory (-executor-memory) 1 12 
Data capacity 1 GB 15 GB 

 

B. Performance of the Deep Learning Models 
The performance of the DL models on the melanoma 

dataset is presented in this section. The subsections that 
follow provide in-depth examination of the results 

1) Skin cancer data interpretability: The Class 
Activation Mapping (CAM) approach was used to identify 
the elements of an image that influence the judgment or 
classification of a DL model. CAMs help to explain the 
classifications or predictions of a deep learning model. 
This ensures that each model predicts using the relevant 
picture parts in each class. During this study, the models 
are tested and assessed using Gradient-weighted Class 
Activation Mapping (Grad-CAM). Using the gradients of 
the final convolutional layer, Grad-CAM generates a 
weighted mixture of feature maps. Figs. 2 and 3 depict the 
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Grad-CAM of each deep learning model on benign and 
malignant images, respectively. 

 

 
Fig. 2. Grad-CAM of the models on the benign image. 

 
Fig. 3. Grad-CAM of the models on the malignant image. 

2) Evaluation of the models on the skin cancer data: 
This study applied the Convolutional Neural Network 
(CNN), Capsule Neural Network (CapsNet), and Gabor 
Capsule Network (GCN) on the skin cancer dataset. It 
should be noted that the skin cancer dataset is binary, with 
two categories: benign and malignant. Table VII highlights 
the performance of deep learning models. The models 
were evaluated based on their accuracy, loss, precision, 
recall, specificity, and ROC values. According to Table 
VII, the CNN obtained the highest accuracy score of 
90.30%, followed by the CapsNet with a value of 87.90%, 
and the GCN with a value of 86.60%. 

TABLE VII. PERFORMANCE EVALUATION OF THE EEP LEARNING 
MODELS 

Model Accuracy Loss Precision Recall Specificity ROC score 
CNN 0.9030 0.3308 0.4953 0.5240 0.4660 0.5019 

CapsNet 0.8790 0.0199 0.4820 0.5100 0.4520 0.4841 
GCN 0.8680  0.0001 0.5000 0.4920 0.5080 0.4886 

 
Furthermore, in terms of precision scores, the GCN 

surpassed the CNN and CapsNet, with 0.5000 vs 0.4953 
and 0.4820 for the CNN and CapsNet, respectively. It 
should be noted that the GCN also had the lowest loss 
score of 0.0001, whereas the CNN and CapsNet had 
0.3308 and 0.0199, respectively. As can be observed, all 
of the models attained a significant value in loss score, 
minimizing this loss in all situations and boosting the 
models’ capacity to produce accurate predictions. In this 
study, the CapsNet model performed second best in terms 
of accuracy, producing significant results in recall (0.5100) 
compared to the GCN model’s score of 0.4920. The recall 
values of the models show that there is potential for 
improvement, but their significance is contextual. They 
emphasize the models’ capacity to recognize positive cases, 
and fine-tuning procedures may be used to increase this 
element, which is especially important when limiting false 
negatives. 

Figs. 4–6 show the confusion matrices of the CNN, 
CapsNet, and GCN, respectively, to help understand the 
aforementioned results. These visual representations 
provide a brief and complete assessment of a model’s 
categorization performance. The matrix categorizes 
predictions as TP, TN, FP, and FN, providing information 

about the models’ accuracy, precision, recall, and overall 
efficacy. The confusion matrix analysis allows for a more 
detailed view of the model’s strengths and limitations, 
directing additional development to improve its predictive 
skills and overall performance in classifying the skin 
cancer masses. 

 

 
Fig. 4. Confusion matrix of the CNN model.  

 
Fig. 5. Confusion matrix of the CapsNet model.  

 
Fig. 6. Confusion matrix of the GCN model. 

Fig. 7 also depicts the accuracies reached by the CNN, 
CapsNet, and GCN models in training the skin cancer data. 
In terms of accuracy, the CNN achieved 90.30%, followed 
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by CapsNet at 87.90% and the GCN at 86.60%. Among 
the deep learning models, CNN fared the best. The model 
accuracy results obtained by training the models 
demonstrate the superiority of the CNN in training skin 
cancer data, without undermining the performance of the 
CapsNet and GCN models. In terms of medical imaging 
prediction and analysis, CNN has shown to be more 
effective in many cases, and the findings of this study also 
highlight the capacity of CNN and DL models to train 
medical images in cases of data imbalance. 

 

 
Fig. 7. Visual representation of the models’ accuracy scores. 

Furthermore, Fig. 8 also displays the loss values score 
of the DL models used in this study. The GCN had the 
lowest loss score of 0.001, followed by the CapsNet, which 
had a value of 0.199, and the CNN, which had a value of 
0.3308. In general, lower model loss indicates higher 
performance in training processes. Monitoring the loss 
over time during training allowed us to determine whether 
the model is approaching an acceptable response. The 
models’ decreasing loss after the epochs suggests that the 
models are learning and adjusting their weights to better 
suit the training skin cancer data. 

 

 
Fig. 8. Visual representation of the loss function of the models. 

Furthermore, the Receiver Operating Characteristics 
(ROC) of the deep learning models were computed. The 
Receiver Operating Characteristics (ROC) scores are used 
to evaluate the efficacy of the models. A well-known deep 
learning assessment statistic is the ROC score. The ROC 
measures a classification model’s ability to distinguish 
between skin cancer data across many classification 
criteria. Fig. 9 depicts the ROC scores of the models used 
in the present study. Albeit, many medical imaging 
collections in clinical settings suffer from an imbalance 
problem, which makes it difficult to spot outliers (rare 

health care occurrences), because most classification 
algorithms assume equal incidence of classes. 

 

 
Fig. 9. The ROC curves of the models. 

The ROC values of the models used in this study are 
slightly over 0.5 for this task, which involves infrequent 
occurrences or uneven class distributions; yet, they 
indicate that the model is suitably categorizing instances 
of the minority class, proving efficacy above random 
chance. This is especially important in sectors such as 
medical diagnostics, where the emphasis is on recognizing 
rare events. A comparable analysis conducted by  
Juan et al. [13] and Zhen et al. [30] in the study of breast 
lesion and liver tumor yielded lower ROC values than the 
current study. The models’ results suggest that their 
capacity to recognize these infrequent occurrences, even 
with a ROC slightly over 0.5, adds useful information, 
underlining the need of context-specific judgments. 

3) Summary of the deep learning models: CNNs are 
commonly employed in deep learning for image 
identification applications, employing convolutional 
layers to identify hierarchical features. They frequently 
attain great accuracy, as this study demonstrates to the 
literature with an accuracy of 90.30%, making them useful 
for a variety of computer vision applications. Furthermore, 
Capsule Neural Networks (CapsNet) strive to circumvent 
some limitations of CNNs by more efficiently capturing 
hierarchical spatial connections. While CapsNet shows 
potential, their accuracy, precision, recall, specificity, and 
ROC curves might differ depending on the job and dataset. 
The CapsNet obtained 87.90% accuracy in this study, 
supporting the conclusion above. CapsNet are particularly 
appealing for image challenges involving part-whole 
interactions. Gabor Capsule Networks (GCN) include 
Gabor filters into the capsule structure, allowing the model 
to extract complex patterns and textures. Gabor Capsule 
Networks’ performance metrics are determined by the 
interaction of capsule routing techniques and Gabor filter 
responses, with possible advantages in collecting finer 
features when compared to regular CapsNet. The GCN 
attained 86.80% accuracy in this study, which is 
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significant. CNN performs well in a variety of visual 
recognition tasks, but CapsNet, including Gabor Capsule 
Networks, explores unique techniques to increase feature 
learning. Each model’s performance is task-dependent, 
and their evaluation includes taking into account accuracy, 
precision, recall, specificity, and ROC curves to acquire a 
full knowledge of their strengths and limits in various 
applications. Fig. 10 summarizes all of the assessment 
criteria used to examine the deep learning models 
employed in this study. 

 

 
Fig. 10. Summary of the performance evaluation of the deep learning 

models. 

IV. DISCUSSION 

Skin cancer is the abnormal growth of skin cells that 
most typically affects sun-exposed skin. This common 
kind of cancer, however, can develop on areas of the skin 
that are rarely exposed to sunlight. The three most frequent 
types of skin cancers are basal cell carcinoma, squamous 
cell carcinoma, and melanoma. Melanoma is the most 
severe type of skin cancer. This study used melanoma skin 
cancer data that was cleaned using multiple data 
preprocessing approaches so that the deep learning models 
could understand it. The categorization of skin cancer has 
improved with the advancement of technology. Because 
early identification and treatment of skin cancer can reduce 
its impact, this study used deep neural network models 
such as convolutional neural network, capsule neural 
network, and Gabor capsule network. The outputs of the 
methods used in this study gave significant empirical 
results in the realm of skin cancer categorization. The 
innovative technique and original analysis of deep learning 
models were assessed using a variety of performance 
metrics indicators. The convolutional neural network 
obtained 90.30% accuracy, the capsule neural network 
reached 87.9% accuracy, and the Gabor capsule network 
achieved 86.80% accuracy. The Gabor capsule network 
obtained the lowest loss score of 0.001, followed by the 
capsule neural network at 0.199 and the convolutional 
neural network at 0.3308. In general, lesser model loss 
suggests better training process effectiveness. We were 
able to detect whether the model is approaching an 
acceptable answer by tracking the loss over time 
throughout training. The diminishing loss of the models 
after the epochs implies that the models are learning and 
modifying their weights to better fit the training skin 

cancer data. This study has helped healthcare practitioners 
and stakeholders reduce and treat the effect of skin cancer 
based on melanoma lesions. The results are related to the 
state-of-the-art in the field of research, demonstrating that 
our models outperformed their results. Table VIII 
summarizes the proposed approach in comparison to 
previous research.  

TABLE VIII. COMPARISON OF THE RESULTS WITH OTHER STUDIES 

Research Dataset type Model employed Accuracy (%) 
Riyadh et al. [15] Melanoma skin CNN 89.50 

Saeed and Teemu [31] Melanoma skin Ensemble CNN 87.00 
Fawzy et al. [14] Melanoma skin CNN - 
Tahir et al. [32] Melanoma skin CNN 89.68 
Ajel et al. [33] Melanoma skin CNN 86.29 

Proposed model Melanoma skin CNN, CapsNet, 
GCN 

90.30, 87.90, 
86.80  

 
According to Table VIII, the proposed models 

outperformed the prior research in terms of accuracies. 
Furthermore, the majority of the models used CNN 
architectures without considering other standalone deep 
learning models. For instance, Riyadh et al. [15] 
considered only the CNN architectures of DenseNet201 
and MobileNetV2 in its configuration. Additionally, in the 
study by Ajel et al. [33], the authors employed only the 
ResNet-50 architecture of the CNN to configure their 
model. It must be emphasized that, CapsNet use capsules 
and dynamic routing to preserve feature hierarchies, 
whereas standard CNNs may lose this information owing 
to pooling. GCN expand on this by including Gabor filters 
for better edge detection and texture representation, 
simulating human visual perception [27]. CapsNet and 
GCN outperform standard CNNs in terms of 
transformation robustness and feature extraction 
sophistication. Both configurations of the CapsNet and 
GCN improve transformation robustness and spatial 
information preservation over conventional pooling 
techniques in CNN as employed by the state-of-the-art. 
The CapsNet and GCN architectures are used in the current 
study, and the researchers believe they are a valuable 
addition and innovation in the domain of DL models for 
medical imaging analysis and detection because they 
preserve spatial hierarchies while improving feature 
extraction and providing superior transformation 
robustness.  

V. CONCLUSION  

Melanoma incidence has steadily increased over the 
previous few decades and is predicted to continue rising 
internationally. Melanoma characteristics are surprising 
and determined by factors such as age, gender, race, and 
location. DL models are used in this article to describe the 
development of a computationally demanding strategy 
based on the use of melanoma skin cancer data. The dataset 
comprises images of varying resolutions, and it is also 
incredibly unbalanced, which is a common difficulty in 
medical imaging and may impact the final findings. 
Convolutional neural network, capsule neural network, 
and Gabor capsule network are the models employed. The 
models correctly distinguished between melanoma and 
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noncancerous instances. Several performance evaluation 
indicators are used to enhance the models’ performance. 
The results of the models indicate that the convolutional 
neural network is superior with an accuracy of 90.30%, 
followed by the capsule neural network with 87.90% and 
the Gabor capsule network with 86.80% in accuracies. To 
further evaluate the models’ performance, the loss scores 
obtained by the models are significant, with lower scores 
obtained by all models. The Gabor capsule network 
obtained the lowest loss score of 0.001, followed by the 
capsule neural network at 0.199 and the convolutional 
neural network at 0.3308. The proposed models 
outperformed existing deep learning-based strategies in 
terms of score, making it a potential strategy for skin 
cancer diagnosis, particularly on unbalanced datasets. Our 
findings contribute to the evidence that deep learning 
techniques are helpful in dermatology and other sectors of 
medicine. 

The results acquired by the models, like any empirical 
study, are prone to different biases, most notably data set 
imbalance, which is a prevalent difficulty in medical 
imaging. This is clarified such that the conclusions cannot 
be immediately applied to other datasets that have been 
trained using various approaches. To confirm the results, 
more study and experimentation on other high-quality, 
properly curated data sets are required. While we aimed to 
prevent overfitting by employing well-planned training, 
validation, and testing criteria, as well as carefully selected 
performance assessment measures, architectural 
optimization and hyperparameter tweaking. Architectural 
optimization and hyperparameter tuning are critical in 
deep learning to handle reproducibility issues and avoid 
overfitting. We can build more stable and generalizable 
models by carefully changing network design and fine-
tuning hyperparameters including learning rates, batch 
sizes, and regularization approaches. These methods serve 
to ensure that models function consistently across diverse 
datasets and experimental setups, increasing their 
reliability and practical application in real-world situations. 
The situation is exacerbated by the blurring of the border 
between techniques and data preparation, particularly in 
deep learning, making meaningful head-to-head 
comparisons difficult. To improve the performance of the 
models, the experimental setup used in this study can be 
expanded in terms of creating baseline and benchmark 
approaches. Although the study uses skin cancer data to 
classify melanoma lesions, the technique may be further 
enhanced by using generic combinations of various deep 
learning architectures. 
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