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Abstract—This paper presents a new approach to improve 
the detection of network security by combining feature 
selection with Long-Short-Term-Memory (LSTM) 
approaches. The SHapley Additive exPlanations (SHAP) 
values approach is utilized for feature selection, in 
conjunction with cross-validation, to identify the most 
effective set of features that improve model recall for each 
specific sort of assault. We employ the Network Security 
Laboratory-Knowledge Discovery in Databases (NSL-KDD) 
dataset to train and assess the efficacy of our model. The 
suggested model exhibits greater performance in 
comparison to standard LSTM models when utilizing all 
features. Furthermore, it surpasses current leading models 
with an accuracy of 99.74%, precision of 95.42%, recall of 
94.92%, and F1-Score of 94.90%. In addition, the model 
demonstrates outstanding aptitude in precisely detecting 
Remote-to-Local (R2L) and User-to-Root (U2R) attacks, 
which are complex forms of intrusions that exploit 
vulnerabilities to gain unauthorized access to systems or 
networks. Although infrequent, these assaults provide a 
substantial risk because they have the ability to do 
substantial harm and compromise confidential data.   
 
Keywords—intrusion detection systems, deep learning, 
SHapley Additive exPlanations (SHAP) values, Long-Short-
Term-Memory (LSTM), feature selection 

I. INTRODUCTION 

The swift progress of computer and communication 
networks has enabled the global distribution of more 
convenient services through Internet technology. 
Nevertheless, the escalating quantity and assortment of 
cyberattacks encompassing network infections, 
malevolent eavesdropping, and other harmful endeavors, 
present substantial hazards to the security of persons’ 
information and property. Therefore, it is of utmost 
importance to prioritize the protection of information and 
communications for both individuals and society as a 
whole [1, 2]. Although firewalls are commonly used and 
essential security mechanisms, their dependence on 
manual configuration and their slow response to new 
attack methods make them inadequate for highly secure 
entities, such as government and military institutions [3]. 
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Network security researchers suggest implementing 
Intrusion Detection Systems (IDSs) as a method to 
promptly detect and respond to abnormal network 
intrusions.  

An Intrusion Detection System (IDS) has demonstrated 
its effectiveness and potential as a cybersecurity solution. 
It functions by identifying established dangers and 
malevolent actions by monitoring traffic data in computer 
systems [4]. Upon identification of these risks, the system 
generates alerts to promptly inform appropriate parties 
about the found security vulnerabilities. 

Typically, Intrusion Detection Systems (IDSs) can be 
classified into three primary types [5]: those employing 
the behavioral approach (which aims to discover 
anomalies), the scenario method (which focuses on 
detecting signatures), and the specification approach. 

Behavioral analysis comprises two distinct phases: a 
learning phase that enables the system to comprehend and 
identify typical behavior, and a detection phase devoted 
to uncovering anomalies. This approach exhibits 
remarkable efficacy in pinpointing unfamiliar 
attacks [6, 7]. Despite its effectiveness, behavioral 
analysis is not without limitations. It may produce false 
positives or negatives, as the definition of “normal” 
behavior can be intricate, and attackers can adapt to 
evade these systems. The precision of outcomes is 
significantly influenced by the quality of the training data, 
and certain systems might experience delayed anomaly 
detection. 

On the other hand, scenario analysis utilizes a 
predetermined collection of attack scenarios, considering 
them as distinctive patterns and producing alerts when 
there are matches. However, it requires regular updates to 
the signatures [5]. 

The specification technique integrates the benefits of 
the behavioral approach with scenario analysis. It 
involves manually defining requirements, which allows 
for the identification of previously unidentified assaults 
with a minimal percentage of false positives. 

The deployment of Intrusion Detection Systems (IDS) 
that use machine learning [8] and deep learning 
techniques [9] is frequently hampered by class imbalance, 
a common issue in this field. Class imbalance occurs 
when the number of intrusion instances is significantly 
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lower than the number of routine activities, which are 
more prevalent in real network systems. Within the 
Network Security Laboratory-Knowledge Discovery in 
Databases (NSL-KDD), the User-to-Root (U2R) and 
Remote-to-Local (R2L) attacks have a substantial impact 
on system security and data confidentiality. These attacks 
are classified as minority classes, with just 995 and 52 
incidences, respectively, in comparison to other types of 
attacks like Denial of Service (DoS) attacks or regular 
events. As a result of this imbalance, many current 
approaches prefer to give more importance to the 
majority class and ignore the minority classes due to their 
little data. Frequently, this results in models exhibiting 
bias towards the dominant class, even though it is crucial 
to reliably detect intrusions. Misclassifying typical 
behavior as intrusive might have more severe 
repercussions than failing to identify an incursion. In 
order to tackle these issues, we propose the 
implementation of a customized model designed to 
enhance the detection and classification of R2L and U2R 
attacks. Our model incorporates the utilization of 
SHapley Additive exPlanations (SHAP) values alongside 
cross-validation to carefully choose features that are 
tailored to each form of attack. In addition, we improve 
the classification abilities of our model by implementing 
Long-Short-Term-Memory (LSTM) networks. We also 
utilize cross-validation throughout both the training and 
testing stages to optimize performance. 

The document is structured into various sections, 
commencing with an introduction. Section II provides an 
overview of prior research, while Section III discusses the 
methodology employed in this paper. Section IV 
comprises the proposed approach and the accompanying 
empirical data. Section V functions as the culmination of 
the study, offering a succinct overview of the primary 
findings and insights. 

II. RELATED WORK 

Many academics strongly recommend integrating 
intrusion detection and Machine Learning (ML) 
technologies to detect network threats by creating 
efficient models.  

Amaizu et al. [10] leverage Principal Component 
Analysis (PCA) to extract features and employ multiple 
deep learning classification models. By comparing the 
performances of different models, it was continuously 
found that the Deep Neural Network (DNN) achieved the 
maximum accuracy across all datasets utilized in the 
inquiry, including the Network Security Laboratory-
Knowledge Discovery in Databases (NSL-KDD), 
University of New South Wales-Network Based 2015 
(UNSW-NB15), and Canadian Institute for 
Cybersecurity-Intrusion Detection Systems 2018 (CSE-
CIC-IDS2018) datasets. 

Imrana et al. [11] introduced a bidirectional LSTM 
deep learning method for identifying different sorts of 
attacks, with a specific focus on U2R and R2L attacks. 
The suggested model outperforms the traditional LSTM 
in terms of accurately detecting these attack types. 

Le et al. [12] presented a classifier for Intrusion 
Detection Systems (IDS) that utilizes Recurrent Neural 
Networks (RNN). They conducted an investigation using 
six different optimization algorithms for LSTM-RNN 
(Long Short-Term Memory-Recurrent Neural Network). 
Among these, Nadam demonstrated the highest level of 
effectiveness in identifying threats. The proposed 
approach exhibited enhanced capabilities in identifying 
each assault in comparison to LSTM-RNN with the 
Stochastic Gradient Descent (SGD) optimizer. 
Nevertheless, it is worth mentioning that although there 
has been progress, the performance indicators are still 
regarded as mediocre. 

Laghrissi et al. [13] presented a novel Intrusion 
Detection System (IDS) that utilizes Long Short-Term 
Memory (LSTM) and an attention mechanism. They used 
this system to the NSL-KDD dataset, which consists of 
five different attack types. Although the model has 
generally great performance, it frequently misclassifies 
U2R attacks as normal. Laghrissi et al. [14] introduce an 
Intrusion Detection System (IDS) that utilizes Long 
Short-Term Memory (LSTM). Principal Component 
Analysis (PCA) and Mutual Information (MI) are used as 
methods to reduce the number of dimensions and pick 
relevant features. The model is tested on the Knowledge 
Discovery in Databases 1999 (KDD99) benchmark 
dataset, and the findings show that PCA-based models 
attain the maximum accuracy for both training and testing. 
This applies to both binary and multiclass classification, 
with accuracies of 99.44% and 99.39% respectively. In 
addition, the authors include R2L and U2R attacks 
together in the same categories because of the limited 
number of incidents connected with these attacks in 
comparison to others. 

Dong et al. [15] presented Multi-Channel Attention-
Long Short-Term Memory (MCA-LSTM), an Intrusion 
Detection System (IDS) that utilizes Multivariate 
Correlation Analysis (MCA) and Long Short-Term 
Memory (LSTM) as part of its Machine Learning 
approach. The model utilized the Information Gain (IG) 
technique for selecting features. The process involved the 
selection of a specific collection of characteristics, which 
were then converted into a matrix representing the 
triangle areas. This matrix, known as the Triangle Area 
Map (TAM), was subsequently utilized in the LSTM 
algorithm to predict intrusions. The authors evaluated the 
model’s performance by utilizing the NSL-KDD and 
UNSW-NB15 datasets. The experimental results 
demonstrated that MCA-LSTM attained a test accuracy 
of 82.15% for 5-way classification using the NSL-KDD 
dataset. For the 10-way classification job, MCA-LSTM 
achieved a test accuracy of 77.74% in the case of UNSW-
NB15. MCA-LSTM achieved an accuracy of 80.52% for 
binary classification using the NSL-KDD dataset and 
88.11% using the UNSW-NB15 dataset. Despite the 
superior performance of these findings compared to 
earlier methods, the authors did not investigate the impact 
of dataset size. Furthermore, they neglected to consider a 
diverse range of performance measurements such as 
recall and F1-Score. Fu et al. [16] introduce a model for 
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detecting abnormal traffic patterns in their paper, titled 
“A Deep Learning Model for Network Intrusion 
Detection” (DLNID). This model integrates an attention 
mechanism with the Bidirectional Long Short-Term 
Memory (Bi-LSTM) network. The authors propose the 
use of an Adaptive Synthetic Sampling (ADASYN) 
oversampling algorithm as a data augmentation technique 
to solve the issues of data imbalance and low detection 
accuracy in network intrusion data. In addition, they 
employ a stacked autoencoder with an augmented 
dropout structure as a technique for reducing data size, 
hence improving the model’s capacity to generalize. The 
network structure is enhanced by integrating the channel 
attention mechanism with the bidirectional LSTM 
network. The network model provided attains a precision 
of 90.73% and an F1-Score of 89.65% on the KDD Test+ 
test set. Nevertheless, even with the use of data 
augmentation, it is seen that the U2R category had a 
higher probability of being misclassified. 

Mohammad et al. [17] utilized a traditional neural 
network to classify network hazards within a system. A 
two-layer multi-layer perceptron was built using the 
backpropagation learning approach. The proposed 
technique attained a classification accuracy rating of 
90.78%. The work employed the KDDCUP99, ISCX3 
(ISCX FlowMeter Traffic dataset version 3), and NSL-
KDD4 datasets for both training and testing the model. 
Nevertheless, it is important to mention that the dataset 

used is obsolete and does not adequately represent current 
attack scenarios. 

Opoola et al. [18] devised a hybrid methodology called 
Layer-wise Aggregation and Embedding-Bidirectional 
Long Short-Term Memory (LAE-BLSTM) for the 
identification of botnets. The model was trained using the 
BotIoT6 dataset and successfully shown the capability to 
differentiate between attacks and normal traffic [18]. The 
study’s evaluation results revealed a remarkable accuracy 
rate of 91.89%, even after reducing the bulk of the data. 

Table I presents a comprehensive summary of different 
well-established models used for Intrusion Detection 
Systems (IDS).  

Table I shows the intricacies associated with 
identifying Remote-to-Local (R2L) and User-to-Root 
(U2R) attacks. Many models struggle to differentiate 
between these two sorts of attacks, frequently 
misclassifying them as regular behaviors. Occasionally, 
the R2L and U2R categories are merged because they 
have relatively few examples compared to other groups. 
In order to enhance the detection of these specific classes, 
various techniques may exclude other attack types or 
employ methods to create more instances. This study 
presents a strategic approach specifically developed to 
address the aforementioned challenges. Through the 
implementation of several methodologies, we want to 
improve the detection capabilities for R2L and U2R 
attacks, enabling us to more effectively distinguish and 
precisely classify these types of attacks. 

TABLE I. PAPERS SUMMARY OF THE PAST WORK MENTIONED ABOVE, IN ADDITION TO THEIR RESPECTIVE LIMITATIONS 

Ref. Architecture Dataset Limitation 

[9] LSTM NSL-KDD The model provides poor performance for Remote-to-Local (R2L) and 
User-to-Root (U2R) attacks 

[13] LSTM-Attention mechanism NSL-KDD The model frequently faces difficulties in accurately classifying U2R 
attacks, resulting in frequent misclassifications as normal instances. 

[14] Principal Component Analysis-Long 
Short Memory (PCA-LSTM) KDD99 

Due to the limited number of instances associated with both R2L and 
U2R attacks compared to other categories, the authors combine these 
two attack types into the same classes. 

[15] Multi-scale Attention (MCA-LSTM) NSL-KDD and UNSW-NB15 The strategies employed to prevent overfitting during the training 
process were not explicitly emphasized by the authors. 

[19] Artificial Neural Network (ANN)  High time execution 

[20] K-Nearest Neighbors (KNN), Feature 
Selection, Unsupervised model Bot-IoT Poor performance 

[21] Malicious Activity Detection using 
Random Forests (MAD-RF) NSL-KDD The detection accuracy for ICMP and UDP DDoS attacks is less and 

can be improved 

[22] Naïve Bayes feature embedding-
Support Vector Machine (SVM) 

NSL-KDD, UNSWNB15, CIC-
IDS2017 (Canadian Institute for 

Cybersecurity), Kyoto 2006+ 

The model does not yield better performance for all the data sets 
except NSL-KDD. 

[23] KNN and Recurrent Selection 
Algorithm (RSL) 

Industrial Control System Cyber 
attack Dataset Accuracy can be improved. 

[24] Correlation-Fisher Linear 
Discriminant Analysis (FLDA) KDD99 They only relied on accuracy as the sole performance evaluation 

metric 

[25] Principal Component Analysis 
(PCA)-Naïve Bayes NSL-KDD To enhance the detection of U2R and R2L attack classes, they 

excluded other types of attacks. 
 

III. BACKGROUND 

Within this part, we will initially explore the 
fundamental principle underlying the LSTM architecture. 
The structure of SHAP values is thereafter established. 
We provide a more comprehensive description of the 
NSL-KDD dataset utilized for the training and validation 
of our model. 

A. Long Short-Term Memory (LSTM) 
Long Short-Term Memory (LSTM) is a specific form 

of Recurrent Neural Network (RNN) architecture that 
was proposed by Hochreiter and Schmidhuber in 1995. It 
is commonly used in deep learning to represent time 
series data [26]. LSTM, in contrast to conventional feed-
forward neural networks, integrates feedback connections 
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among hidden units that are interconnected at predefined 
time intervals. This feature enables the model to acquire 
knowledge and make predictions about long-term 
relationships within a sequence by analyzing the patterns 
in the prior data [27].  

LSTMs were specifically developed to address the 
difficulties encountered when training conventional 
RNNs, such as the problem of gradients vanishing or 
exploding during the learning process. The models are 
equipped with three separate gates: the input, forget, and 
output gates. These gates are responsible for controlling 
modifications to specific memory units called cell states 
(ct), as illustrated in Fig. 1. Given its capacity to 
efficiently regulate the dissemination of data, LSTMs 
have become a fundamental component in the domain of 
intrusion detection, as demonstrated by prominent 
research and our personal expertise. Due to their shown 
effectiveness in this field, we have chosen to incorporate 
them as a vital component of our strategy. 
 

  
Fig. 1. The architectural configuration of the Long Short-Term Memory 

(LSTM) neural network [28]. 

B. Feature Selection: SHapley Additive exPlanations 
(SHAP) Values 

The process of selecting features in an intrusion 
detection system is a crucial step because of the intricate 
nature and inherent interference of network data, 
particularly in specific circumstances. Hence, the 
utilization of feature selection techniques is crucial in 
mitigating these issues and subsequently diminishing the 
dimensionality of a dataset [25]. The SHapley Additive 
exPlanations (SHAP) value method, introduced in 2017 
by Lundberg and Lee [29], is a technique that aims to 
provide an explanation for the output of machine learning 
models. It draws inspiration from game theory and 
determines the SHAP values by comparing model 
predictions with and without a specific feature. This is 
achieved through combinatorial calculation and retraining 
of the model on all possible combinations of attributes 
that involve the feature of interest [30]. The values 
facilitate the computation of the significance of each 
characteristic for every data point by taking the average 

of the absolute Shapley values computed for a certain 
dataset, so producing “overall” values for each variable. 

IV. MATERIALS AND METHODS 

A. NSL-KDD Dataset 
The NSL-KDD dataset  is an improved version of the 

original KDD-99 dataset, which was developed for the 
International Knowledge Discovery and Data Mining 
Tools Competition [31]. It consists of 4,898,431 instances 
that were obtained from the raw data of the KDD Cup 
1999. This dataset has been optimized by the removal of 
redundant information [32, 33]. The dataset includes a 
total of 42 attributes that are classified into four types: 
Categorical, Binary, Discrete, and Continuous, as 
specified in Table II. The dataset assigns a standardized 
identifier to each entry and encompasses around 22 
distinct attack categories, including smurf, nmap, back, 
teardrop, neptune, Satan, ipsweep, portsweep, 
loadmodule, buffer_overflow, warezmaster, land, imap, 
rootkit, load-module, ftp_write, multihop, phf, perl, and 
spy. The normal activity class is the most prevalent, with 
67,343 samples, while the “neptune” attack category is 
the most frequent, occurring 41,214 times. By 
comparison, the “spy” assault is exceptionally uncommon, 
documented just on two occasions in the dataset. 

The NSL-KDD dataset is extensively employed by 
several academics to train and assess their suggested 
methodologies in the domain of intrusion detection. 
Consequently, we would like to integrate this dataset into 
our work for comparable objectives. 

TABLE II. PAPERS SUMMARY OF THE PAST WORK MENTIONED ABOVE, 
IN ADDITION TO THEIR RESPECTIVE LIMITATIONS 

Feature type Feature Number 
Categorical 2, 3, 4, 42 

Binary 7, 12, 14, 20, 21, 22 
Discrete 8, 9, 15, 23 to 41, 43 

Continuous 1, 5, 6, 10, 11, 13, 16, 17, 18, 19 
 

B. Methodology Proposal And Experimental Findings 
The proposed approach depicted in Fig. 2 comprises 

multiple steps, commencing with Dataset preparation and 
culminating in Classification. The model has four 
essential stages: data preprocessing, data partitioning, 
feature selection, and classification. The first phase 
entails performing data cleaning to improve the quality of 
the data. Afterwards, the features are standardized by 
scaling them to a certain range, and non-numeric data is 
transformed into numeric data. During the second stage, 
the data is divided into subsets according to the four 
distinct assault types (DoS, Probe, U2R and R2L), with 
each subset having occurrences exclusively from a certain 
attack type. The final phase involves utilizing SHAP-
values in conjunction with cross-validation, using recall 
as a metric, to determine the most significant 
characteristics. Ultimately, the chosen characteristics are 
utilized as input for the Long Short-Term Memory 
(LSTM) model throughout the classification procedure. 
Below, a detailed elucidation of this methodical inquiry is 
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presented. In the following section, we will provide the 
results of data preprocessing and give a detailed 
description of the implementation specifics, as well as the 
evaluation metrics used in this study. 
 

 
Fig. 2. Flow chart oh the proposed approach. 

C. Simulation Environment 
The suggested model is evaluated on a Windows 10 

operating system-equipped PC (personal computer) with 
a 4GB GEFORCE GTX 1650 Ti graphics card, 6 GB of 
RAM (Random Access Memory), and an Intel Core i7–
4790 processor functioning at 3.60 GHz. The model is 
implemented in Python 3.8. The purpose of this 
simulation environment is to facilitate the replication of 
our implementation and to guarantee that it does not 
necessitate a significant amount of resources. Our 
objective is to illustrate that our model can be effectively 
evaluated on a standard personal computer configuration 
by providing these specifications, thereby making it 
accessible to a broader spectrum of researchers and 
practitioners. 

D. Datasets Preprocessing 
The dataset has undergone numerous preparation 

methods, which are elaborated upon below: 
(1) The attacks in the NSL-KDD dataset were 

classified into four distinct categories: 
• Denial of Service (DoS) involves various 

assaults, including neptune, back, land, pod, 
smurf, teardrop, udpstorm, mail-bomb, 
apache2, processtable, and worm. 

• The probe includes the following tools: 
ipsweep, nmap, portsweep, satan, mscan, and 
saint. 

• R2L: This category includes a range of attacks, 
including ftp write, guess passwd, imap, 
multihop, phf, spy, warezcli-ent, warezmaster, 
sendmail, named, snmpgetattack, snmpguess, 
xlock, xsnoop, and httptunnel. 

• U2R: The U2R attack involves the exploitation 
of vulnerabilities such as xterm, loadmodule, 
buffer overflow, perl, rootkit, ps, and sqlattack. 

(2) The NSL-KDD dataset categorizes attacks into 
four distinct classifications, with numerical values 
allocated to each attack type as outlined below: 0 
represents the category of “Normal,” 1 represents 

“Denial of Service (DoS),” 2 represents “Probe,” 
3 represents “Remote to Local (R2L),” and 4 
represents “User to Local (U2L).” 

(3) The pandas. Factory function is employed to 
transform symbolic-valued features, such as 
protocol, service, and flag, into attributes with 
numeric values. 

(4) The Standard Scaler method is utilized to 
standardize features using the rescaling technique. 

The dataset is partitioned into four distinct subsets, 
with each subset only containing instances of one of the 
four types of attacks. The sets are named DoS-set, Probe-
set, R2L-set, and U2L-set. 

E. Feature Selection 
The SHAP value technique with cross-validation is 

employed to identify the most pertinent features for each 
type of assault. This method aims to select a suitable 
subset of features that optimizes the model’s recall. The 
use of recall as an evaluation metric to select the most 
optimized subset is of great importance in the field of 
intrusion detection. Indeed, this metric provides the 
detection percentage, thus making it possible to evaluate 
to what extent the model identifies intrusions. 

Our approach utilizes SHAP values in conjunction 
with the XGBoost model and a cross-validation 
procedure to determine the optimal set of features. The 
main objective is to optimize recall, prioritizing the 
model’s ability to properly identify positive instances, 
such as attacks. Through the use of iterations, SHAP 
values are utilized to evaluate different subsets of features. 
This procedure is executed iteratively until all features 
have been considered. The ultimate outcome involves 
demonstrating the collection of characteristics that 
achieve high levels of recall and sensitivity, which are 
crucial aspects in the classification of attacks. 

This feature selection method was applied to the 4 
attack subsets (DoS-set, Probe-set, R2L-set and U2R-set), 
in order to choose for each subset the optimal set of 
features that maximizes the recall and sensitivity value. 
Fig. 3 depicts the results obtained with SHAP values. 

Table III provides a succinct summary of the unique 
features within each subset. Specifically, 25 features are 
chosen for the Dos-set, 17 features for the Probe-set, 24 
features for the R2L-set, and 28 features for the U2R-set, 
employing the method described above. 

The selected features for each subset are combined and 
considered relevant for NSL-KDD dataset. The 
combination of features yields a total of 38 important 
features (‘src_bytes’,’dst_bytes’,’count’, ‘service’, 
‘srv_count’, ‘protocol_type’, 
‘dst_host_same_src_port_rate’, ‘dst_host_diff_srv_rate’, 
‘dst_host_srv_count’, ‘logged_in’, 
‘dst_host_same_srv_rate’, ‘flag’, ‘dst_host_count’, 
‘same_srv_rate’, ‘dst_host_rerror_rate’, 
‘dst_host_srv_diff_host_rate’, ‘dst_host_serror_rate’, 
‘dst_host_srv_rerror_rate’, ‘num_outbound_cmds’, ‘land’, 
‘srv_diff_host_rate’, ‘root_shell’, 
‘dst_host_srv_serror_rate’, ‘num_file_creations’, ‘hot’, 
‘srv_rerror_rate’, ‘num_access_files’, ‘num_root’, 
‘wrong_fragment’, ‘num_compromised’, ‘is_host_login’, 
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‘urgent’, ‘is_guest_login’, , ‘num_failed_logins’, 
‘su_attempted’, ‘srv_serror_rate’, ‘num_shells’, 
‘duration’) that will be utilized throughout the entire 
dataset to improve the classification of the different 
attacks, particularly R2L and U2R attacks. 

 

 
Fig. 3. SHAP scores for each feature in every subset. 

The classification was done with an LSTM model 
using cross-validation, while evaluating the metrics of 
Accuracy, Recall, Precision and F1-Score. 

The LSTM model is distinguished by specific 
parameters designed to govern its behavior during 
training and testing. These parameters are listed in the 
Table IV. 

 

TABLE III. LIST OF SELECTED FEATURES FOR EACH SUBSET ATTACK 

Subset Selected features 

DoS-set 

‘count’, ‘dst_bytes’, ‘logged_in’, 
‘dst_host_srv_serror_rate’, ‘dst_host_count’, 
‘same_srv_rate’, ‘dst_host_same_srv_rate’, 
‘dst_host_srv_count’, ‘flag’, ‘protocol_type’, 
‘wrong_fragment’, ‘num_compromised’, ‘src_bytes’, 
‘dst_host_srv_rerror_rate’, ‘su_attempted’, ‘root_shell’, 
‘land’, ‘num_failed_logins’, ‘hot’,’urgent’, 
‘num_file_creations’, ‘service’, ‘num_root’, 
‘is_host_login’,’num_shells’, ‘srv_rerror_rate’, 
‘dst_host_serror_rate’ 

Probe-set 

‘src_bytes’, ‘service’, ‘logged_in’, ‘same_srv_rate’, 
‘dst_host_rerror_rate’, ‘dst_bytes’, 
‘dst_host_same_src_port_rate’, ‘dst_host_diff_srv_rate’, 
‘flag’, ‘dst_host_same_srv_rate’, ‘duration’,’count’, 
‘dst_host_srv_serror_rate’, ‘srv_count’, 
‘hot’,’dst_host_count’, ‘num_compromised’, 
‘num_failed_logins’ 

R2L-set 

‘service’, ‘dst_host_same_src_port_rate’, ‘hot’, 
‘is_guest_login’, ‘count’, ‘num_failed_logins’, 
‘dst_host_srv_diff_host_rate’, 
‘duration’,’dst_host_srv_count’, ‘num_root’, 
‘dst_host_same_srv_rate’, ‘num_shells’, ‘src_bytes’, 
‘num_access_files’, ‘srv_serror_rate’, ‘dst_bytes’, 
‘srv_diff_host_rate’, ‘land’, ‘su_attempted’, ‘urgent’, ‘flag’, 
‘protocol_type’, ‘logged_in’, ‘num_compromised’, 
‘root_shell’ 

U2R-set 

‘root_shell’, ‘dst_host_srv_count’, ‘num_file_creations’, 
‘src_bytes’, ‘dst_bytes’, ‘num_compromised’, ‘service’, 
‘same_srv_rate’, ‘duration’,’num_failed_logins’, 
‘dst_host_count’, ‘num_root’, ‘su_attempted’,’logged_in’, 
‘urgent’, ‘hot’, ‘num_access_files’, 
‘wrong_fragment’,’land’, ‘flag’, ‘protocol_type’, 
‘num_shells’,’dst_host_srv_rerror_rate’, 
‘num_outbound_cmds’, ‘dst_host_rerror_rate’, 
‘dst_host_srv_serror_rate’, ‘dst_host_serror_rate’, 
‘dst_host_srv_diff_host_rate’ 

TABLE IV. THE LSTM MODEL PARAMETERS 

Parameter Value 
Activation function Softmax 

Loss function Sparse categorical crossentropy 
Optimizer Nadam 

Learning rate 0.002 
Epsilon 1e-08 

Schedule decay 0.004 
Epochs 10 
Dropout 0.3 

 

A. Experimental Results and Discussion 
The results of LSTM using every feature of NSL-KDD, 

and our proposed model are presented in Tables V and VI, 
respectively. Furthermore, Fig. 4 demonstrates the 
comprehensive performance of our model and LSTM 
when considering all features. Accuracy, recall, precision, 
and F1-Score are used as performance measurements in 
this context. The effectiveness of our strategy has been 
verified by the utilization of the 5-fold cross-validation 
technique. 

Table V presents the classification performance for 
each attack type using the entire collection of features. 
Multiple measures, including as precision, recall, and F1-
Score, were assessed for each attack category. 
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Fig. 4. Performance accuracy of proposed model and LSTM with all 

features. 

TABLE V. CLASSIFICATION PERFORMANCE OF EACH ATTACK OF 
LSTM WITH ALL FEATURES 

Attacks Precision % Recall % F1-Score % 
Normal 99.72 99.79 99.76 

DoS 99.92 99.97 99.95 
Probe 99.85 99.45 99.65 
U2R 75.36 92.04 82.87 
R2L 66.67 33.33 44.44 

 
In the “Normal” category, LSTM exhibits outstanding 

classification performance, achieving a precision of 
99.72%, recall of 99.79%, and an F1-Score of 99.76%. 
Regarding “DoS (Denial of Service)” attacks, the model 
demonstrates exceptional precision of 99.92%, recall of 
99.97%, and an F1-Score of 99.95%, which emphasizes 
its efficacy in detecting DoS attacks. The “Probe” 
category has exceptional accuracy with a precision rate of 
99.85%, however the recall rate somewhat decreases to 
99.45%, resulting in an overall F1-Score of 99.65%. The 
model’s performance in detecting “U2R (User to Root)” 
assaults has declined, resulting in a precision of 75.36%, 
recall of 92.04%, and an F1-Score of 82.87%. The LSTM 
model performs poorly for detecting “R2L (Remote to 
Local)” attacks, with a precision of 66.67%, recall of 
33.33%, and an F1-Score of 44.44%. These results 
indicate that the LSTM model faces difficulties in 
accurately identifying these types of attacks. 

In general, R2L and U2R demonstrate significantly 
worse performance metrics in comparison to other assault 
types. 

Table VI displays the results of the proposed model. It 
is evident that the proposed model demonstrated superior 
performance compared to LSTM with all features in 
categorizing R2L and U2R. 

TABLE VI. CLASSIFICATION PERFORMANCE OF EACH ATTACK OF OUR 
PROPOSED METHOD 

Attacks Precision % Recall % F1-Score % 
Normal 99.71 99.81 99.76 

DoS 99.91 99.97 99.94 
Probe 99.88 99.43 99.65 
U2R 77.61 92.04 84.21 
R2L 100 83.33 90.91 

 
The results of the proposed approach are presented in 

Table VI. The suggested model clearly exhibited higher 
performance in classifying R2L and U2R compared to 
LSTM when all features were considered. Indeed, our 
suggested model improves the performance marginally 
compared to the LSTM model with every feature in 
“Normal” and “DoS (Denial of Service)” assaults. 

In the “U2R” category, the precision increases slightly 
from 75.36% to 77.61%, while the model maintains a 
stable recall of 92.04%. Furthermore, the F1-Score rises 
to 84.21%, indicating a beneficial effect on the model’s 
capacity to precisely detect instances of U2R attacks. Our 
suggested model has successfully addressed and 
enhanced the performance in identifying U2R assaults 
compared to the prior LSTM model that included all 
features. 

The proposed model’s results in identifying the “R2L” 
category in Table VI are notably significant. The 
precision for “R2L” attacks is 100%, with a recall of 
83.33% and an amazing F1-Score of 90.91%. This 
demonstrates a significant improvement in the model’s 
capacity to reliably classify instances of R2L assaults, 
highlighting the efficacy of our proposed model in 
achieving the specific objective of enhancing the 
detection performance for both “U2R” and “R2L” attack 
types. 

Fig. 4 compares the performance metrics of an LSTM 
model using all features with the proposed model. 
Although both models provide a high level of accuracy, 
the one proposed displays significant enhancement in 
precision, recall, and F1-Score. The precision experiences 
a notable increase from 88.3% to 95.42%, demonstrating 
a significant decrease in the occurrence of false positives. 
Simultaneously, the recall rate rises from 84.92% to 
94.92%, indicating a significant decrease in the number 
of false negatives. The F1-Score demonstrates a 
significant enhancement, increasing from 85.33% to 
94.9%, so emphasizing the improved equilibrium 
between precision and recall achieved by the suggested 
model. The results highlight the higher classification 
abilities of the proposed model in comparison to the 
LSTM model using all features. 

Table VII presents a detailed comparison of different 
models’ performance in identifying U2R and R2L attacks. 
It emphasizes the superiority of the proposed model 
compared to previous research in this field. The table 
compares the metrics of the proposed model with those of 
previous models such as DLNID (Distributed learning 
Network Intrusion Detection), LSTM, and BidLSTM. 
The suggested model demonstrates superior performance 
compared to others in classifying U2R attacks, achieving 
a precision of 77.61%, a recall of 92.04%, and an F1-
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Score of 84.21%. This signifies a significant 
enhancement compared to the DLNID model, which 
exhibited a considerably lower recall rate of 24.00% and 
poor precision. The suggested model demonstrates 
improved accuracy and effectiveness compared to the 
LSTM and BidLSTM models, which achieved F1-Scores 
of 40.56% and 54.90% respectively. The suggested 
model achieves a precision of 100%, a recall of 83.33%, 
and an F1-Score of 90.91% for R2L attacks. This 
represents a significant improvement compared to the 
LSTM and BidLSTM models, which achieved F1-Scores 
of 81.69% and 84.42% respectively. The DLNID model 
had a recall rate of 65.76% in detecting R2L attacks, 
however the accuracy value was not stated. The 
comparison analysis highlights the superior capability of 
the proposed model to effectively detect and categorize 
U2R and R2L assaults, which is crucial for enhancing the 
security of computer systems against these intrusions. 
The model’s strong precision and recall rates indicate its 
effectiveness in reducing false positives and assuring 
accurate attack detection. 

TABLE VII. A COMPARISON BETWEEN OUR METHOD AND SEVERAL IDS 
TECHNIQUES 

Approach 
in Ref. No. Model Attacks Precision% Recall% F1-Score% 

[16] DLNID U2R - 24.00 - 
R2L - 65.76 - 

[34] LSTM U2R 37.99 43.50 40.56 
R2L 97.97 70.04 81.69 

[34] BidLSTM U2R 62.42 49.00 54.90 
R2L 98.97 73.60 84.42 

Proposed model U2R 77.61 92.04 84.21 
R2L 100 83.33 90.91 

 
The model demonstrates an amazing ability to achieve 

heightened sensitivity in the classification of instances of 
attacks, a critical aspect of this specific domain. Our 
approach is applicable to a variety of application domains 
that exhibit a substantial class imbalance, in addition to 
attack detection. The adaptability of our approach allows 
it to be effectively employed in a variety of contexts 
where the precise identification of uncommon 
occurrences is crucial, providing a robust solution to 
analogous challenges in other industries. 

V. CONCLUSION AND FUTURE WORK 

This study introduces a new approach aimed at 
enhancing the efficiency of network traffic classification, 
specifically targeting U2R and R2L attacks. The 
integration of SHapley Additive exPlanations (SHAP) 
values and Long Short-Term Memory (LSTM) networks 
in our method improves the effectiveness of Intrusion 
Detection Systems (IDS) in detecting uncommon assaults 
such as U2R and R2L. The experimental data 
demonstrate significant progress in the classification of 
all four types of assaults, particularly U2R and R2L. The 
performance of our model outperforms current techniques, 
achieving an F1-Score of 84.21%, accuracy of 77.61%, 
and recall of 92.04% for U2R attacks. For R2L attacks, 
our model achieves a recall of 83.33%, precision of 100%, 

and an F1-Score of 90.91%. These results validate the 
effectiveness of our method in greatly enhancing 
classification accuracy, particularly in successfully 
identifying U2R and R2L attacks. 

In the future, our research will investigate additional 
methods for selecting features in order to improve the 
detection capabilities of our model. Additionally, we 
intend to incorporate sophisticated techniques such as 
transformers into our plans. Furthermore, our objective is 
to evaluate the efficiency of our approach by employing 
current intrusion detection datasets that accurately 
replicate real-life traffic situations, such as the CIC-
IDS2017 (Canadian Institude for Cybersecurity Intrusion 
Detection Evaluation) dataset. 
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