
 

A Dual-Branch Lightweight Model for Extracting 

Characteristics to Classify Brain Tumors 
 

Sangeetha G. 1,*, Vadivu G. 1, and Sundara Raja Perumal R. 2 

1 Department of Data Science and Business Systems, School of Computing, SRM Institute of Science and Technology, 

Kattankulathur, Tamilnadu, India 
2 Department of Radiology, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamilnadu, India 

Email: sg8517@srmist.edu.in (S.G.); vadivug@srmist.edu.in (V.G.); majsundp@srmist.edu.in (S.R.) 

*Corresponding author 

 

 

 
Abstract—Brain tumors present a significant challenge in 

healthcare, necessitating prompt and accurate detection for 

effective treatment. Pre-trained models were utilized to 

classify brain tumors without segmentation. Traditional 

pre-trained architectures like VGG16, VGG19, and ResNet, 

despite their accuracy, suffer from slow processing speed 

which leads to use them impractical for rapid diagnosis. 

Some of the other pre-trained models like Mobile Net and 

Efficient Net offer fast processing but overfitting problems 

occur in the small image dataset. To overcome these 

challenges a two-branch neural network model has been 

proposed which is lightweight feature extraction and multi-

class classification of brain tumors. The proposed two-

branch architecture begins with refining the size of the 

input images, then extraction of robust features, and 

concludes with a neural network classifier. The proposed 

model is also evaluated in the presence of image distortions 

including Gaussian, Poisson, and Speckle noise to ensure the 

robustness of the proposed solution. Experimental results 

state that the proposed model is capable of maintaining high 

accuracy in tumor classification when compared to the other 

pre-trained models with limited datasets and noise 

interferences. 
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I. INTRODUCTION 

 Secondary brain tumors are cancers that have spread 

to the brain from other parts of the body. The recovery 

rate for these tumors is still complicated but at the same 

time, it is increasing quickly. Advanced medical imaging 

tools help doctors detect these tumors early, which can 

make treatment and possible removal easier when the 

tumor is still small. However, there is a challenge that 

Magnetic Resonance Imaging (MRI) scans sometimes 

fail to correctly identify or classify the tumor. This can 

lead to serious problems, including difficulties with 

movement or even paralysis [1]. Brain cancer is sorted 

into four types: gliomas, meningiomas, non-tumorous 

conditions, and pituitary tumors. These tumors can lead 

to complications such as physical disabilities, requiring 

patients to undergo intense and often painful treatments 

to mitigate or diagnose these disabilities. Additionally, 

the impact of brain tumors on brain function varies 

greatly, depending on the tumor’s size, location, and 

type  [2]. 

A brain tumor can make a patient unable to move if it 

presses on the part of the brain that controls 

movement  [3]. The most common types of brain cancer 

are meningioma, glioma, and pituitary adenomas. 

Meningioma is a tumor that begins in the meninges, the 

protective membranes around the brain and spinal cord. 

Symptoms of meningioma often start slowly and can be 

subtle, making them easy to overlook in the early stages. 

Glioma is a type of tumor that can grow in the brain and 

spinal cord. It starts in the glial cells, which are the 

supportive cells around nerve cells, helping them function. 

Symptoms of a-glioma include imbalance, headache, 

nausea or vomiting, confusion or reduced brain function, 

memory loss, changes in behavior or mood, trouble 

controlling urination, vision problems like blurry vision, 

double vision, or loss of side vision, difficulty speaking, 

and seizures, especially in someone who has never had 

seizures before. The symptoms of a tumor depend on 

where it is in the brain or, less commonly, the spine. 

These symptoms can include vision changes like double 

vision or blurriness, headaches that are worse in the 

morning, hearing issues or ringing in the ears, memory 

loss, seizures, and weakness in the arms or legs. Pituitary 

brain tumors are abnormal growths in the pituitary gland. 

Sometimes, pituitary tumors can lead to less hormone 

production by the pituitary gland. The most common type 

of pituitary tumor is a benign adenoma, which is a non-

cancerous growth. 

Tumors often grow without showing any symptoms 

and are usually not found until the disease has become 

advanced which makes early detection difficult. 

Therefore, there’s a need to develop automated systems 

to help radiologists diagnose brain tumors more 

accurately. Pre-trained Convolutional Neural Network 

(CNN) models like VGG19 and Efficient Net B4, adapt 

their parameters for classifying different types of brain 

tumors The aim is to understand how far the tumor has 
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spread and to plan the appropriate treatment. Experts 

believe that Magnetic Resonance Imaging (MRI) is 

effective in creating detailed images of organs using 

magnetic fields and computers. MRI images are crucial 

for determining the condition of brain tumors. 

However, interpreting MRI images takes a lot of time 

and requires much expertise from doctors. Deep learning, 

a type of machine learning, works by learning to 

recognize patterns at multiple levels. It does this by 

building features hierarchically, where simple features 

form the basis for more complex ones. CNN is a deep 

learning technique that’s particularly good at categorizing 

image data. CNNs learn, recognize, and classify objects 

by using layers that include convolutional, pooling, and 

fully connected layers. These layers transform 2D 

features into 1D vectors for classification.  

To address these challenges, a two-branch neural 

network model has been proposed, focusing on 

lightweight feature extraction and multi-class 

classification of brain tumors. The primary objectives of 

the proposed framework are: (i) To extract robust features 

with a neural network classifier based on the lightweight, 

efficient two-branch architecture that has been designed 

for the multi-class classification of brain tumors. (ii) To 

develop a deep learning-based system for the 

identification and classification of brain tumors that can 

accurately detect the presence of tumors and determine 

their types; (iii) To evaluate the proposed model 

performance and robustness in the presence of image 

distortions, including Gaussian, Poisson, and Speckle 

noise, ensuring the model reliability under various 

conditions and its ability to maintain high accuracy in 

tumor classification compared to other pre-trained models, 

especially with limited datasets and in the face of noise 

interferences. 

This article is divided into five parts, Section II deals 

with a literature analysis, and Section III describes the 

proposed methodology, collection, and description of the. 

Section IV discusses the findings, and their implications 

for the evaluation methods are explained. Finally, the 

study concludes with a summary and recommendations 

for future research in Section V. 

II. LITERATURE REVIEW 

This section explores the content and themes typically 

addressed in the literature on brain tumor classification 

using deep learning, then focuses on how these 

innovative technologies are advancing diagnostic 

accuracy and treatment strategies. In Discrete Wavelet 

Transform (DWT) feature extraction and a probabilistic 

neural network classifier to recognize and categorize MRI 

images of brain tumors [1]. To improve performance in 

the future, the researchers recommend using several 

classifiers and integrating more effective segmentation 

and feature extraction approaches with actual and 

clinical-based instances using a big dataset [4]. A multi-

path adaptive fusion network was designed for the 

segmentation of multimodal brain tumors. Initially, it 

captures basic visual features and combines them with 

advanced semantic information [2]. This method 

maintains and transfers basic visual features using skip 

connections from ResNets to a dense block. It employs 

continuous memory by connecting the outcomes of 

previous dense blocks to all layers of the current dense 

block. During the upsampling process, a multi-path 

adaptive fusion dense block is utilized to dynamically 

adjust basic visual features and integrate them with 

complex semantic details. This innovative approach sets a 

new standard on the BRATS2015 dataset and requires 

fewer parameters compared to existing methods [5]. A 

Bayesian Optimization-based efficient hyperparameter 

optimization approach for CNN in the classification of 

brain cancers using MRI Images [3]. This technique is 

intended to improve accuracy with the limited amount of 

training data [6].  

In Ref. [5], CNN-based Brain Tumor Classification 

Model (BCM-CNN) employing Adaptive Dynamic Sine-

Cosine Fitness Grey Wolf Optimizer (ADSCFGWO) was 

developed and it includes adjusting hyperparameters and 

training Inception-ResnetV2 models. Amou et al. [6] 

employed a deep transfer learning strategy and a pre-

trained Google Net model to solve a 3-class classification 

issue distinguishing between glioma, meningioma, and 

pituitary cancers. In Ref. [7], deep Convolutional Neural 

Network (CNN) model is dubbed EfficientNet-B0, which 

is optimized with extra layers to recognize and categorize 

pictures of brain tumors. Brain tumor diagnosis is 

improved by pre-trained models that produce a binary 

categorization of normal or malignant. The BCM-CNN 

was 99.98% accurate on BRaTS 2021 Task 1 [8]. The 

method uses established classifier models to categorize 

the characteristics retrieved from brain MRI scans [9]. To 

enhance MRI pictures, several different filters are used in 

image enhancement methods. The suggested technique 

makes use of transfer learning and fine-tuning to train and 

optimize DL algorithms using a wide range of 

hyperparameters [10]. To identify brain tumors, the 

authors combine the K-means clustering method with the 

Fuzzy C-means algorithm, then use thresholding and 

level set segmentation. This method computation is 

higher with the result of the K-means clustering method 

and the preciseness of the Fuzzy C-means algorithm and 

combines them [8, 11]. 

The effectiveness of ten distinct gradient descent-based 

optimizers that are state-of-the-art, including Adagrad, 

AdaDelta, SGD, Adam, CLR, Adamax, RMS Prop, 

Nadam, and NAG,  to assess their performance in 

enhancing the accuracy of CNN segmentation. 

Additionally, the necessity of optimizer selection 

techniques to verify the use of a single optimizer in 

decision problems associated with segmentation or 

classification tasks [9, 12]. The CELLO2 machine 

learning model as well as the discovery of MYC as a 

predictor of glioma evolution and temozolomide 

resistance. In addition to this, the work sheds light on the 

molecular pathways that are at play in gliomas that 

undergo hypermutation. The researchers concluded that 

MYC gain or MYC-target activation at the time of 

diagnosis was related to treatment-induced hypermutation 

at the time of recurrence in all glioma subtypes [10, 13].   
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In Ref. [11], the three pre-trained convolutional neural 

network (CNN) architectures, VGG-16, Inception-v3, and 

ResNet50, was utilized to classify brain tumor. Based on 

convolution layer outputs and modified dense layer 

technique was used to classify the brain tumor from MRI 

images [14]. With the help of transfer learning to 

compare their CNN model against pre-trained VGG-16, 

ResNet-50, and Inception-v3 models [12]. Deep learning 

is used to enhance brain tumor classification in MRI 

images for medical imaging diagnosis [15]. In Ref. [13], 

a 2D CNN is suggested to identify brain cancers using 

MRI data. Little mispredictions were caused by inertial 

noise from patient movement during the scan. The model 

accuracy and recall were constant across training and 

testing data folds in 10-fold cross-validation on the whole 

dataset to determine its generalizability [16]. A two-stage 

feature ensemble of deep CNN was utilized for the 

classification of brain cancers using MRI datasets. With 

an average accuracy of 99.13%, the suggested model can 

distinguish between normal brain tissue and images with 

meningioma, glioma, or pituitary tumors. This framework 

paradigm is used to develop a User Interface (UI) for 

real-time testing [17].  

Deep learning approaches, metaheuristic techniques, 

and hybridizations were all part of the research that was 

undertaken to conduct a comprehensive literature review 

on strategies for the segmentation of brain tumors and the 

categorization of abnormality and normalcy from MRI 

images. A technique for the automated segmentation of 

brain tumors based on three incremental deep 

convolutional neural networks (2CNet, 3CNet, and 

Ensemble Net) has been suggested. This approach makes 

use of Ensemble Learning and limited hyper-parameters 

to speed up the training process [15, 18] and discussed 

the importance of medical imaging for early disease 

treatment. Tumors are often identified by radiologists 

using imaging techniques like Computed Tomography 

(CT) and Magnetic Resonance Imaging (MRI) scans. 

However, this method of diagnosing tumors is time-

consuming, prone to mistakes, and heavily depends on 

the radiologist’s expertise and knowledge [19]. Jalali and 

Kaur [20] focused on brain tumor detection and the 

challenges associated with it. The study compares various 

automatic brain tumor detection techniques using medical 

imaging. Techniques include machine learning, soft 

computing, and deep learning-based classifiers that 

analyze these techniques based on accuracy, sensitivity, 

and specificity. A study of GAN-based image denoising 

segmentation and classification was discussed in [21]. 

Table I describes the summary of segmentation and 

classification approaches for brain tumor detection. 

Table II summarizes the medical image analysis by 

various studies, showcasing remarkable brain tumor 

detection. These developments underscore the potential 

of machine learning in revolutionizing medical 

diagnostics and patient care. Table III summarizes 

various approaches for brain cancer detection, including 

ensemble classification using fine-tuned models, 

segmentation and classification with transfer learning, 

feature extraction employing hierarchical methods, and 

hyperpermutation forecasting after treatment. These 

methods achieve accuracies ranging from 93.5% to 

98.3%, indicating promising outcomes in brain cancer 

diagnostics and prognosis. 

TABLE I. SUMMARY OF SEGMENTATION AND CLASSIFICATION 

APPROACHES FOR BRAIN TUMOR DETECTION 

Ref. No Inferences 

[22] 
Multi Atlas Algorithm segmentation and Cascade CNN-based 

classification 

[23] 
Brain tumor segmentation, optimization, and recognition 
framework. 

[24] 
Segmentation based on VAE 3D U-Net, Densenet, and 

Resnet Based Classification 

TABLE II. LITERATURE SUMMARY OF DATASET, ALGORITHMS, AND 

RESULTS  

Ref. No Dataset  Algorithms Results 

[19] 
MPII human 
pose dataset 

VGG16 transfer 

learning 

algorithm, 
CNN and 

Multilayer 

Perceptron (MLP) 

Accuracy of 
90.2%, 87.5 % and 

89.9 using VGG16, 

CNN 
And MLP 

[25] − EfficientNet Accuracy 97.5% 

[26] − 
Exemplar deep 

features algorithm 
Accuracy 92.5% 

[27] − U-Net and 3D CNN Precision 98.35% 

[7] 

Customized 
Dataset of 3264 

with four tumor 

classes such as 
Glioma, 

Meningioma, 

Pituitary, and 
No Tumor 

CNN Accuracy is 96% 

[12] 
BraTS2015 

dataset 

Gradient descent-

based optimizers 
for CNN 

Accuracy 99.2 % 

[28] fMRI datasets 
Densenet Based 

SNN 
Accuracy 98.46 % 

[29] 
BRATS and 
FigShare 2020 

SCAO with 
Densenet 

Accuracy 93 % 

[30] FigShare Modified Xception Accuracy 96 % 

[31] 
FIgshare Brain 

MRI dataset 

SGD, SVM, Naïve 

Bayes 

Accuracy 94.9%, 

96.8%, 92.9% 

TABLE III. SUMMARY OF BRAIN CANCER DETECTION APPROACHES 

AND ASSOCIATED ACCURACIES 

Ref. No Inferences Accuracy 

[32] 

Fine-Tuned Inception-v3 and Fine-Tuned 

Xception Model-based Ensemble classification 
for four classes of brain cancer 

93.79 % 

[33] 

Mask RCNN with transfer learning approach of 

Densnet-41 based segmentation and 

classification 

98.3 % 

[34] 

Dual path parallel Hierarchical-based Feature 

extraction, Dual input + No features, 
Pathomorphological features 

93.5 % 

[35] 
CELLO2, ML model Forecast hyper 
permutation after the treatment 

94.2 % 

 

Pascal [36] developed a scaled Swin model for brain 

MRI image classification, introducing the Hybrid Shifted 

Windows Self Attention module and replacing the MLP 

with a Residual-based MLP for enhanced accuracy and 
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efficiency, achieving improved accuracy and 

demonstrating superior performance over existing models 

in brain tumor detection.  

A new MRI-based model for tumor multiclassification 

was developed [37], tested across four individual and two 

combined datasets against five existing models, and 

includes a feature for generating masks from MRIs, 

which improves but slightly outperforms traditional 

segmentation-first methods. In Ref. [38], discussed the 

combination of convolutional neural network with an 

SVM classifier, achieving approximately 99% accuracy 

on two brain MRI datasets, surpassing previous models 

while also improving sensitivity, specificity, and 

precision with significantly fewer training parameters. In 

Ref. [39] CNN with meticulously adjusted 

hyperparameters such as filter characteristics and learning 

specifics, which significantly enhances performance and 

model reliability across typical medical imaging 

benchmarks. This approach surpasses traditional methods 

in accuracy and diagnostic metrics, confirming its 

superiority in brain tumor detection. Sandhiya et al. [40] 

developed unique feature extraction, filtering, and hybrid 

deep learning techniques, tested on two major datasets, 

yielding superior performance across multiple metrics 

and surpassing existing methods in tumor detection 

accuracy. 

III. PROPOSED METHODOLOGY 

This section provides details of the thorough 

classification system for brain tumors. The proposed 

architecture has been designed for efficient computation 

and effective feature extraction, which is particularly 

important for medical imaging tasks where precision is 

critical. The steps are as follows: dataset description, 

preprocessing, and Robust features extraction model and 

classifier. Fig. 1 represents the general block diagram of 

the proposed work. The process begins with a dataset that 

undergoes image preprocessing to prepare the images for 

input into the network.  

 

 

Fig. 1. General block diagram of proposed framework. 

 Kaggle and SRM College datasets were combined, 

and all images were resized to 150×150×3 pixels. 

Following that, the dataset was divided into training and 

testing groups with a 70:30 ratio. After preprocessing, the 

data is split into two sets: a training set for teaching the 

model and a test set for evaluating its performance. The 

test set is further processed by adding Gaussian, Poisson, 

and Speckle noise, simulating real-world conditions to 

test the robustness of the model. Finally, the extracted 

features were loaded into a Neutral network classifier for 

performance classification (see Fig. 2).  
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(a)                       (b)                    (c)                   (d) 

Fig. 2. Datasets from left to right, (a). glioma tumor, (b). Meningioma 
tumor, (c). No tumor, (d). pituitary tumor. 

A. Dataset Details 

The brain tumor dataset was compiled from two 

sources: Kaggle and SRM Medical College. The Kaggle 

dataset is preprocessed into separate folders for training 

and testing, with each folder further categorized into four 

classes based on tumor type No tumor, Glioma tumor, 

Meningioma tumor, and Pituitary tumor. The training 

folder contains 826 glioma images, 822 meningioma 

images, 395 images without tumors, and 827 pituitary 

tumor images. The testing folder includes 100 glioma 

images, 115 meningioma images, 150 images without 

tumors, and 74 pituitary tumor images. Relative to other 

online databases, the Kaggle dataset is comparatively 

small. This dataset has been augmented with additional 

images obtained from SRM Medical College, enhancing 

the diversity and volume of data available for analysis is 

tabulated in Table IV. 

TABLE IV. DISTRIBUTION OF BRAIN TUMOR IMAGES IN KAGGLE 

DATASET AND SRM MEDICAL COLLEGE 

Tumor Source 
Dataset 

Training Testing 

Glioma Kaggle 826 100 

Meningioma Kaggle 822 115 
No Tumor Kaggle 395 150 

Pituitary Kaggle 827 74 

Glioma ARM 30 10 
Meningioma SRM 30 10 

No Tumor SRM 30 10 

Pituitary ARM 30 10 
 

B. Image Preprocessing 

In the proposed study a model is designed for robust 

feature extraction to enhance performance. Consequently, 

there are many operations such as image scaling, image 

rotating, image sheering, and image resizing to emphasize 

the preprocessing stage. But in the proposed architecture 

the input images are simply resized to dimensions of 

150×150×3. Following the preprocessing, the images are 

fed into the robust feature extraction model and SoftMax 

classifier. 

C. Feature Extraction 

A robust feature extraction model named the Two-

Branch Lightweight CNN Architecture (TBLWFE). As 

stated in the literature various pre-trained models have 

been utilized for brain tumor classification. High-density 

architectures like VGG16, VGG19, and the ResNet result 

in excellent performance but require substantial training 

time. On the other hand, low-density architectures such as 

MobileNet, EfficientNet, and DenseNet have fewer 

parameters, resulting in shorter training times but causing 

overfitting problems with small datasets. To overcome 

this issue, low-density architectures primarily use 

depthwise convolution layers instead of standard 

convolution layers to reduce the number of parameters. In 

many instances, low-density architectures have achieved 

performance comparable to high-density architectures. 

However, they may face overfitting issues with small 

datasets as they tend to focus less on capturing spatial 

features. To enhance performance using the proposed 

two-branch Lightweight Feature Extraction Model 

(TBLWFE) to extract precise features from images. This 

model is intentionally designed with two branches, each 

specializing in different aspects of feature extraction. One 

branch focuses on capturing spatial features within and 

across channels, emphasizing higher-level and complex 

patterns. The other branch is dedicated to extracting low-

level features, contributing to a thorough representation 

of spatial information. This dual-branch approach allows 

the model to effectively gather a wide range of variables, 

balancing complexity and flexibility. 

1) Branch 1: Extraction of complex spatial patterns 

and cross-channel dependencies 

Branch 1 has been designed to focus on capturing 

higher-level features and relationships within and 

between channels. This branch consists of four blocks, 

each comprising a Depthwise Convolution 2D layer 

followed by a Convolution 2D layer. The first block 

employs 32 filters with a 33 kernel size to capture initial 

spatial information while reducing dimensionality. 

Instead of using strides in the convolutional layers with 

the help of a max pooling layer at the end of each block 

to further process the data. The layout remains consistent 

across successive blocks, same time the number of filters 

increases: the second block uses 64 filters, the third block 

128 filters, and the fourth block returns to 64 filters. This 

hierarchical design allows Branch 1 to extract more 

complex and higher-level spatial information effectively, 

with a spatial down-sampling effect, thereby enhancing 

the model’s overall feature extraction capability. 

2) Branch 2: Extraction of low-level features and 

efficient spatial and cross-channel representations 

Branch 2 is focused on extracting basic details and 

patterns in a lightweight and flexible manner. It 

comprises four blocks, each featuring a Separable 

Convolution layer. The first block utilizes 32 filters with 

a 33 kernel size and a stride of 2, aimed at efficiently 

capturing spatial features. Subsequent blocks maintain a 

similar configuration but increase the number of filters: 

64 in the second block, 128 in the third block, and 64 in 

the fourth block again. This setup is intended to 

efficiently and adaptably capture spatial and cross-

channel information, resulting in a lightweight effective 

feature extraction approach within the model. 

The integration of both branches strengthens better 

feature extraction. Branch 1 is tasked with capturing 

high-level characteristics, such as complex patterns and 

relationships across channels, while Branch 2 focuses on 

the efficient extraction of low-level features. Together, 

they simultaneously capture hierarchical features, 

offering a comprehensive representation of the input data. 
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This strategy not only enhances speed by detailing 

intricate patterns but also minimizes the number of 

parameters, boosting the model’s overall efficiency. The 

proposed methodology outcomes performance analysis 

has been compared with benchmarked existing methods 

such as EfficientNet, MobileNet, and DenseNet121. To 

verify our methodology’s robustness, employed a 

rigorous training regimen using noise-free images. For 

testing purposes, various types of noise into the images, 

including Gaussian, Poisson, and speckle noise. This 

extensive evaluation process allows us to assess the 

model’s performance across different scenarios, shedding 

light on its ability to manage noisy data and 

demonstrating its resilience against various noise types. 

basic details and patterns in a lightweight and flexible 

manner. It comprises four blocks, each featuring a 

Separable Convolution layer. The first block utilizes 32 

filters with a 33 kernel size and a stride of 2, aimed at 

efficiently capturing spatial features. Subsequent blocks 

maintain a similar configuration but increase the number 

of filters: 64 in the second block, 128 in the third block, 

and 64 in the fourth block again. This setup is intended to 

efficiently and adaptably capture spatial and cross-

channel information, resulting in a lightweight effective 

feature extraction approach within the model. 

The integration of both branches strengthens feature 

extraction. Branch 1 is tasked with capturing high-level 

characteristics, such as complex patterns and 

relationships across channels, while Branch 2 focuses on 

the efficient extraction of low-level features. Together, 

they simultaneously capture hierarchical features, 

offering a comprehensive representation of the input data. 

This strategy not only enhances speed by detailing 

intricate patterns but also minimizes the number of 

parameters, boosting the model’s overall efficiency. The 

proposed methodology outcomes performance analysis 

has been compared with benchmarked existing methods 

such as EfficientNet, MobileNet, and DenseNet121. To 

verify our methodology’s robustness, employed a 

rigorous training regimen using noise-free images. For 

testing purposes, various types of noise into the images, 

including Gaussian, Poisson, and speckle noise. This 

extensive evaluation process allows us to assess the 

model’s performance across different scenarios, shedding 

light on its ability to manage noisy data and 

demonstrating its resilience against various noise types. 

D. Classifier Model 

Following feature extraction, they are fed into a neural 

network classifier for classification. Three dense layers 

are used in this classifier. The first layer is made up of 

1028 concealed units that are activated by a ReLU. The 

second layer contains 128 hidden units, each of which has 

a ReLU activation. The last layer employs four hidden 

units with SoftMax activation.  

E. Pre-trained Models 

1) MobileNet 

MobileNet is a lightweight architecture designed for 

image categorization on mobile and embedded devices in 

real time. Its suitability for resource-constrained 

environments stems from its speed and efficiency in 

terms of parameters. By employing depthwise separable 

convolutions, MobileNet significantly reduces 

computational requirements. It has been refined across 

versions, including MobileNetV1, V2, and V3, to 

enhance efficiency and accuracy. The architecture 

consists of depthwise separable blocks, downsampling 

layers, and bottleneck layers, focusing on the balance 

between model size and performance. MobileNet’s 

versatility and rapid inference capabilities make it an 

excellent choice for mobile applications and edge devices 

for tasks such as image recognition and object detection. 

However, the limited discriminative power of MobileNet 

may affect its ability to recognize detailed patterns, and 

its reliance on depthwise separable convolutions could 

restrict its capacity to capture complex dependencies. 

2) EfficientNet 

EfficientNet is an advanced neural network 

architecture engineered to deliver high accuracy while 

utilizing fewer parameters, enhancing computational 

efficiency. It introduces a compound scaling strategy that 

uniformly scales the model’s depth, width, and resolution, 

leading to improved performance across diverse 

workloads. This design strikingly achieves a balance 

between model size and accuracy, rendering it 

exceptionally suitable for resource-constrained 

applications. 

3) DenseNet-121 

DenseNet-121, a variant of the DenseNet architecture, 

comprises 121 layers. DenseNet, short for Densely 

Connected Convolutional Networks, features a unique 

connection pattern where each layer receives inputs from 

not just the preceding layer but from all prior layers. This 

architecture promotes feature reuse, addresses the 

vanishing gradient problem, and enhances the efficiency 

of model training. During validation, we introduced 

different types of noise into the testing images to assess 

the adaptability of the feature extraction model. 

IV. RESULT AND DISCUSSION 

This study evaluates the proposed TBLWFE-NN 

classifier against predefined models, highlighting its 

better accuracy and resilience to noise in brain tumor 

classification. In this analysis performance comparison of 

the proposed TBLWFE-NN classifier with three standard 

classifiers such as EfficientNetB4, MobileNetV1, and 

DenseNet121. This comparative study aimed to evaluate 

the effectiveness and superiority of the proposed model 

against these well-established models. We utilized 

various metrics for comparison, including accuracy, 

precision, recall, kappa, F1−Score, number of parameters, 

and execution time, to comprehensively understand each 

classifier’s strengths and weaknesses in brain tumor 

classification. To test the robustness of our proposed 

approach, three noises such as Gaussian, Poisson, and 

Speckle imposed on the test images. The objective is to 

observe how the proposed TBLWFE-NN classifier would 

perform under challenging conditions, simulating real-

world scenarios with visual distortions or noise. This 

thorough examination aimed to assess the durability of 
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our strategy and its ability to deliver consistent 

performance amidst different types of noise.  

TABLE V. TEST PERFORMANCE ANALYSIS OF PROPOSED FEATURES 

EXTRACTION MODEL WITH OTHER MODELS—WITHOUT NOISE 

Algorithms 
EfficientNet 

B4 

DesnseNet 

121 

MobileNet

V1 

TBLWFE

-NN 

Accuracy 95.10 95.61 97.65 98.14 

Precision 95.24 96.39 97.70 98.04 

Recall 95.54 95.19 97.79 97.56 

Kappa 93.39 94.04 96.81 96.89 

F1 Score 95.32 95.66 97.74 97.47 

 

Table V presents the test classification performance for 

images without noise. In noise-free conditions during the 

validation phase, our model achieved the highest 

performance with an accuracy of 98.14%. In comparison, 

MobileNetV1 achieved 97.65% accuracy, EfficientNetB4 

attained 95.10% accuracy, and DenseNet121 reached 

95.65% accuracy. These findings highlight the superior 

performance of our proposed feature extraction model 

and neural network in noise-free conditions, 

outperforming both the baseline models and our proposed 

model. evaluates the proposed TBLWFE-NN classifier 

against predefined models, highlighting its better 

accuracy and resilience to noise in brain tumor 

classification. In this analysis performance comparison of 

the proposed TBLWFE-NN classifier with three standard 

classifiers such as EfficientNetB4, MobileNetV1, and 

DenseNet121. This comparative study aimed to evaluate 

the effectiveness and superiority of the proposed model 

against these well-established models. We utilized 

various metrics for comparison, including accuracy, 

precision, recall, kappa, F1−Score, number of parameters, 

and execution time, to comprehensively understand each 

classifier’s strengths and weaknesses in brain tumor 

classification. To test the robustness of our proposed 

approach, three noises such as Gaussian, Poisson, and 

Speckle imposed on the test images. The objective is to 

observe how the proposed TBLWFE-NN classifier would 

perform under challenging conditions, simulating real-

world scenarios with visual distortions or noise. This 

thorough examination aimed to assess the durability of 

our strategy and its ability to deliver consistent 

performance amidst different types of noise.  

Table V presents the test classification performance for 

images without noise. In noise-free conditions during the 

validation phase, our model achieved the highest 

performance with an accuracy of 98.14%. In comparison, 

MobileNetV1 achieved 97.65% accuracy, EfficientNetB4 

attained 95.10% accuracy, and DenseNet121 reached 

95.65% accuracy. These findings highlight the superior 

performance of our proposed feature extraction model 

and neural network in noise-free conditions, 

outperforming both the baseline models and our proposed 

model.  

Table VI presents the test performance of images with 

noise, including Gaussian, Poisson, and speckle noise. 

While all models demonstrate good performance in noise-

free conditions, their robustness varies in the presence of 

noise. The proposed feature extraction model excels, 

particularly considering its minimal computational cost. 

However, it exhibits sensitivity to speckle noise tabulated 

in Table VII. The proposed model proves to be the most 

robust against all types of noise, maintaining high 

accuracy in the presence of Gaussian, Poisson, and 

Speckle noise. MobileNet, however, maintains optimal 

accuracy only for Gaussian and Poisson noise but 

struggles with speckle noise, which is often considered 

more challenging and visually disruptive. Fig. 3 

illustrates the performance comparison of different neural 

network models. Fig. 4 illustrates the test accuracy 

performance with and without noise. 

TABLE VI. TEST PERFORMANCE ANALYSIS OF PROPOSED FEATURES 

EXTRACTION MODEL WITH OTHER MODELS—WITH NOISE 

Metrics 

Gaussian 

EfficientB4/ 

DenseNet121/ 

MobileNetV1/

TBLWFE-NN 

Poisson 

EfficientB4/ 

DenseNet121/ 

MobileNetV1/

TBLWFE-NN 

Speckle 

EfficientB4/ 

DenseNet121/ 

MobileNetV1/ 

TBLWFE-NN 

Accuracy 

85.61/ 

91.22/ 

97.04/ 

97.45 

95/ 

95.91/ 

97.24/ 

97.32 

15.61/ 

78.57/ 

24.48/ 

89.78 

Precision 

88.79/ 

92.34/ 

97.17/ 

97.24 

95.10/ 

96.57 

/97.28/ 

97.21 

13.23/ 

80.73/ 

60.30/ 

88.78 

Recall 

86.72/ 

90.31/ 

97.20/ 

97.78 

95.40/ 

95.53/ 

97.44/ 

97.74 

25.09/ 

79.30/ 

33.13/ 

89.89 

Kappa 

80.66/ 

88.10/ 

95.98/ 

96.78 

93.26/ 

94.47/ 

96.26/ 

96.41 

19/ 

71.25/ 

0.9/ 

85.14 

F1−Score 

86.45/ 

91.01/ 

97.16/ 

97.89 

95.22/ 

95.95/ 

97.35/ 

97.45 

7.1/ 

77.44/ 

21.45/ 

88.14 

TABLE VII. PERFORMANCE ANALYSIS OF PROPOSED FEATURES 

EXTRACTION MODEL WITH OTHER MODELS 

Methods 
Without 

Noise 

With Noise 

Gaussian Poisson Speckle 

EfficientnetB4 95.10 85.61 95.00 15.61 

DenseNet121 95.61 91.22 95.91 78.57 

MobileNetV1 97.65 97.04 97.24 24.48 

TBLWFE 98.14 97.45 97.32 89.78 
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(a) (b) 

 
(c) (d) 

Fig. 3. Performance comparison of different neural network models, (a) Accuracy; (b) Precision, (C) Recall, (d) Kappa. 

 

Fig. 4. Performance analysis of proposed features extraction model with other models 

In the test dataset involving speckle noise, the 

proposed model achieves a 12.72% higher accuracy 

compared to DenseNet121. Both MobileNet and 

EfficientNet exhibit lower performance in handling 

speckle noise. Fig. 5 shows the model accuracy under 

different noise conditions. 

 

 

Fig. 5. Model accuracy under different noise conditions. 
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Table VIII and Fig. 6 show the average execution time 

per epoch. The proposed model stands out by 

significantly reducing training time, underscoring its 

efficiency compared to other established models. 

Specifically, it shows a 68.27% reduction in time 

compared to MobileNet, an 87.47% reduction compared 

to DenseNet121, and a remarkable 92.5% reduction 

compared to EfficientNet.  

TABLE VIII. NO OF PARAMETERS VS TIME CONSUMPTION 

Metrics 
EfficientNet 

B4 

DesnseNet 

121 

MobileNet 

V1 

TBLWFE-

NN 

No of Total 

Parameters 17680995 7041604 3232964 214980 

Average 

training 

execution time 
per epoch 

990 ms 618 ms 244.2 ms 77.4 ms 

 

 

Fig. 6. Average execution time taken per epoch (in ms). 

Fig. 7 depicts the confusion matrix of the proposed 

TBLWFE-NN classifier with and without noise. Fig. 8 

depicts the ROC curves for various classifiers. The curves 

reveal that, compared to other types of noise, speckle 

noise significantly impacts the performance of 

EfficientNet, DenseNet, and MobileNet. During this 

investigation found that the proposed model maintains 

commendable accuracy, even in the presence of speckle 

noise.  

 

 
(a)                                   (b) 

 
(c)                             (d) 

Fig. 7. Proposed features model confusion matrix (a). Without noise, (b). 
Gaussian noise, (c). Poisson noise, (d). Speckle noise. 

This research aims to achieve high accuracy amidst 

noise while reducing model complexity. Our model 

excels in challenging conditions involving speckle noise, 

offering superior accuracy with a streamlined architecture 

that requires fewer parameters than its competitors. 

Additionally, it boasts a significantly reduced average 

execution time per epoch (77.4 ms), demonstrating 

efficient computational resource use. 

 

 
(a) 
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(b) 

  
(c) 

 
(d) 

Fig. 8. Proposed features extraction model ROC Curve, (a). without 
noise, (b). Gaussian noise, (c). Poisson Noise, (d). Speckle noise. 

This efficiency makes the proposed approach an 

attractive option for applications demanding both 

precision and speed. The robustness of the proposed 

model, especially against speckle noise, underscores its 

suitability for real-world applications. Overall, our 

method balances accuracy, parameter efficiency, and 

training speed, marking a valuable advancement in noise-

tolerant image classification. Table IX showcases the 

performance of various fall detection methods, including 

the proposed TBLWFE-NN model, alongside other 

established algorithms and neural network architectures, 

illustrating their respective accuracies in percentage 

TABLE IX. COMPARATIVE ANALYSIS OF MODEL ACCURACIES 

Methods Accuracy (%) 

Proposed TBLWFE-NN 98.14 

ADSCFGWO [8] 92.66 
VGG 16 [13] 96 

DWT with PNN [4] 96 

Inception-V3–Ensemble [24] 94.34 
Xception–Ensemble [24] 93.79 

 

V. CONCLUSION 

In this research, a novel TBLWFE-NN, a dual-branch 

feature extraction neural network classifier, demonstrates 

outstanding performance in brain tumor classification 

under noisy conditions. This innovative architecture leads 

to a substantial decrease in both model complexity and 

training duration, achieving a reduction in training time 

by over 68% relative to MobileNet, 87% compared to 

DenseNet121, and more than 92% when benchmarked 

against EfficientNet. Its robustness to noise is particularly 

evident in the presence of speckle noise, where it 

surpasses the aforementioned models. By delivering high 

accuracy and computational efficiency, the TBLWFE-NN 

stands out as a significant contribution to medical image 

analysis, especially in scenarios with limited 

computational resources. Further investigations will 

expand upon this work, exploring the resilience of the 

model against a variety of noise disruptions and 

leveraging advanced methodologies such as transfer 

learning, attention mechanisms, and ensemble models to 

enhance performance in real-world clinical settings, 

where noise and image quality can vary significantly. The 

goal is to ensure that the model not only maintains its 

classification integrity in diverse and challenging 

environments but also facilitates quicker and more 

reliable medical diagnoses. 
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