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Abstract—Traffic signs are vital in providing important 

information to drivers, ensuring their safety, and helping 

them follow the road rules. Object detection algorithms like 

You Only Look Once (YOLO) are used in autonomous 

vehicles to monitor traffic sign information. However, most 

object detection research focuses on identifying traffic signs 

rather than their physical condition. One major issue with the 

existing dataset is the lack of data on damaged traffic signs 

for training, which could adversely affect the performance of 

the object detection algorithm. To address this problem, our 

paper comprehensively reviews the Image-to-Image (I2I) 

algorithm to modify existing traffic sign images to showcase 

different physical statuses (normal and damaged). We 

conduct experiments using state-of-the-art unpaired image-

to-image translation techniques, UNet Vision Transformer 

cycle-consistent Generative Adversarial Network 

(UVCGAN) v2, and Energy-Guided Stochastic Differential 

Equations (EGSDE) to translate normal and damaged traffic 

sign images. Our experimental results are evaluated using 

Fréchet Inception Distance (FID) and side-by-side image 

comparison. We analyze and discuss possible and future 

improvements.   

 

Keywords—traffic sign detection, image generative, Image-

to-Image (I2I), Generative Adversarial Networks (GANs), 

Cycle Generative Adversarial Network (CycleGAN), 

diffusion model  

 

I. INTRODUCTION 

Traffic signals and signs play a crucial role in 

maintaining road safety. They provide necessary guidance 

and information to drivers and pedestrians, helping 

regulate traffic flow and prevent accidents. The Detection 

and Recognition of Traffic Signs (TSDR) [1] and 

interpretation of such signs are essential to the decision-

making processes of all drivers and autonomous vehicles. 

It is essential to continuously monitor the status of roads 

and traffic signs to ensure safe driving. However, 

monitoring extensive road networks can be challenging. In 

this regard, computer vision technology offers a promising 

alternative for consistent monitoring. Integrating computer 

vision technology into traffic sign monitoring systems can 

provide accurate and continuous monitoring. 

However, damaged, faded, obscured, or vandalized 

traffic signs can usually be seen in the road network, 

affecting drivers and autonomous vehicles [2]. Poor 

visibility and legibility due to this factor can significantly 

increase road risks, which is a practical issue [3].  

Traffic signs can lead to illegibility, fading, or damage, 

making it difficult for drivers to read and respond to them 

accurately. For the safety of road users, it is crucial to 

monitor and maintain traffic signs regularly. However, the 

traditional approach [4] of inspecting each sign is labor-

intensive, time-consuming, and costly. 

The effectiveness of computer vision systems heavily 

depends on the quantity and variety of data used to train 

them. However, there is currently a lack of datasets that 

include damaged traffic signs. This shortage of data limits 

the ability of these systems to accurately identify and 

classify damaged signs, which poses a significant 

challenge in developing reliable traffic sign damage 

monitoring systems. 

Generative models like Generative Adversarial 

Network (GAN) [5], Deep Convolutional Generative 

Adversarial Network (DGAN) [6], Wasserstein 

Generative Adversarial Network (WGAN) [7], and others 

have played a key role in overcoming the problem of 

insufficient data by creating synthetic images that can be 

used to train models. However, these models are limited 

because they are designed to generate images of specific 

objects, while object detection training requires images of 

entire scenes with multiple objects. 

The Diffusion Model (DM) [8] is an advanced 

generative approach that gradually creates high-quality 

images using conditional or text prompts. Although text-

to-image [9] can generate scenes of road traffic, 

controlling the design image can be difficult, and many 

images have problems with small details. Using images 

from DM to train object detection can lead the model to 

learn unrealistic patterns that can affect accuracy. 

In object detection applications [10–12], image 

generation can increase the data for the training by 
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generating or modifying only a part of an existing image. 

For example, to create a traffic image with a damaged 

traffic sign, crop it from the labeled boundary box, 

generate Image-to-Image (I2I), and then replace it in the 

original image. The process of modifying traffic sign 

conditions in road traffic images is illustrated in Fig. 1. 

This study used advanced I2I translation techniques to 

modify images of traffic signs from normal to damaged 

states, following the Fig. 1 approach. The research 

comprises a detailed experimental analysis of the state-of-

the-art unpaired I2I translation techniques, UNet Vision 

Transformer cycle-consistent Generative Adversarial 

Network (UVCGAN) v2 [13] and Energy-Guided 

Stochastic Differential Equations (EGSDE) [14].  

 

 

Fig. 1, Modify traffic sign from the road traffic image. 

The contributions of this research include (1) 

Comprehensive experiment and analysis of the result when 

using UVCGANv2 and EGSDE to translate between 

normal and damaged traffic sign images. (2) Analyze and 

discuss the issue in the experiment for future improvement. 

The paper is structured as follows: Section II presents 

the related work, while Section III outlines the research 

methodology, including details of the dataset and 

evaluation metric. Section IV provides the experimental 

results in Fréchet Inception Distance (FID) and image 

comparison, and Section V discusses the issues observed 

during the experiment and results for future improvement. 

Finally, Section VI concludes the research. 

II. RELATED WORK 

A large dataset is required for model training to improve 

the accuracy of traffic signals and signal detection [15]. 

However, the dataset may be required to handle specific 

scenarios, such as damaged traffic signs. More data for 

such cases can result in adequate model training, making 

it easier for models to handle real-world situations. 

Therefore, adding more data that includes information on 

damaged traffic signs is important to improve model 

training and enhance their performance in real-world 

scenarios. 

Data augmentation [16] methods have been employed 

to counteract data insufficient issues. These techniques 

artificially expand the dataset, enhancing the diversity of 

training samples. Traditional methods include geometric 

transformations, color space adjustments, and random 

cropping, which introduce variations in the dataset that 

mimic real-world conditions to an extent.  

Recent advancements in image generation techniques 

have created new opportunities for data augmentation. 

Generative models are one of the most successful methods, 

particularly the GAN-based approach [5–7]. These models 

have been able to produce realistic images by learning to 

generate new ones that are nearly identical to real images. 

Image generative model has provided a way to create 

diverse training data artificially. 

For example, Zhao et al. [17] uses Category-consistent 

and Relativistic Diverse Conditional Generative 

Adversarial Network (CRDCGAN) to increase the data for 

the training, improving the accuracy of classifying small-

scale rock images, and Sandfort et al. [18] uses Cycle 

Generative Adversarial Network (CycleGAN) to enhance 

CT image segmentation performance. This approach 

addresses the gap in traditional data augmentation 

techniques, offering a more nuanced and comprehensive 

method for dataset expansion. 

Generating datasets of scene images, such as road traffic 

images, is a challenging task for improving object 

detection training because the generated image may 

require more control and detailed realism. One potential 

solution is image modification or I2I [19] for specific 

objects since most images are real-world. 

I2I translation [13, 14, 19] has great potential for use in 

Data Augmentation [16]. The I2I approach can convert 

images from one domain to another, such as transforming 

a clear, undamaged traffic sign into one that appears aged 

or damaged. This ability is crucial for training models to 

recognize and interpret traffic signs that are faded, 

vandalized, or deteriorated due to environmental factors. 

CycleGAN [20] is a significant technique in unpaired 

image-to-image translation. It can convert images from 

one domain to another without corresponding image pairs. 

This innovative approach employs two generators and 

discriminators along with a cycle consistency loss to 

ensure that the crucial features of the original domain are 

preserved during translation. CycleGAN framework has 

opened up new possibilities in various fields, such as 

artistic style transfer and transforming real-world 

scenarios. It enables realistic and contextually appropriate 

image transformations. 

UVCGANv2 [13] is a new image translation approach 

based on CycleGAN. It improves the generator’s network 

architecture by combining UNet [21] and Vision 

Transformer (ViT) [22]. This hybrid approach enhances 

the model’s ability to accurately translate images with 

more detailed and contextual information, which is 

particularly important for complex tasks such as traffic 

sign transformation. 

UVCGANv2 has architectural improvements and 

refined training techniques compared to its predecessor, 

UVCGAN [23]. These updates allow UVCGANv2 to 

outperform other generative models in generating realistic 

image translations, making it highly suitable for 

applications where detail and accuracy are crucial. 
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The I2I using DM-based EGSDE [14] is a method for 

translating images from one domain to another without 

needing paired images. It achieves this by using a pre-

trained energy function that enhances the realism and 

faithfulness of the translation process. This energy 

function guides a pre-trained Stochastic Differential 

Equation (SDE) to infer the most accurate translation 

between the source and target domains. 

However, UVCGANv2 [13] and EGSDE [14] 

experimented with male-to-female, cat-to-dog, selfie-to-

anime, and remove-glasses tasks, which differ from 

normal-to-damaged traffic sign tasks. To evaluate the 

performance of UVCGANv2 and EGSDE in translating 

traffic signs from their normal state to a damaged state, we 

conducted an experiment using the official implementation 

code provided in the original papers. 

III. RESEARCH METHODOLOGY 

Our research objective is to find a translation model that 

can effectively create normal and damaged traffic signs. 

To achieve this, we are experimenting with two state-of-

the-art models: UVCGANv2 and EGSDE. It is important 

to note that UVCGANv2 is specifically designed for 

256256-pixel images, while the official implementation 

of EGSDE provides code that customizes each image size 

for each dataset. Therefore, we have adjusted the settings 

of EGSDE to produce images of the same size for a fair 

comparison. 

A. UVCGANv2 Training Detail 

Our experiment uses UVCGANv2 source code and 

training parameters from the official website. The training 

involves a two-step. In the first step, we pre-trained the 

generator self-supervised for image inpainting [24]. In 

contrast, the second step is the actual training of the 

unpaired I2I translation networks, starting from the pre-

trained generators. 

The generators are pre-trained on image inpainting tasks. 

This task is similar to the Bidirectional Encoder 

Representations from Transformers (BERT) 

pretraining  [25]. For the inpainting task, input images of 

size 256×256 pixels are divided into a grid of patches at 

32×32 pixels. Each patch is masked with a probability of 

40%. The masking is performed by zeroing out pixel 

values. The generator is responsible for recovering the 

original unmasked image. 

In the second step, translation training using the Adam 

optimizer with a beta equal to (0.5, 0.99), a learning rate of 

1×10−4, and training for 500 epochs. We have used the 

default values for hyperparameters from the male-to-

female tasks. Since our tasks differ from those in 

UVCGANv2’s research, we might need to explore the 

hyperparameters in the future. 

B. EGSDE Training Detail 

We follow the official implementation for EGSDE. The 

training process involves two steps: the diffusion model 

training and the SDE training. It’s important to note that 

the diffusion model training process differs from the 

general deep learning approach. Each iteration of the 

diffusion model includes “n” images with a random “t” 

value for each image. The training process is repeated until 

the design iterator or target loss is reached. 

Our experiment used the Ablated Diffusion Model 

(ADM) [26] instead of Denoising Diffusion Probabilistic 

Models (DDPM) for EGSDE, showing better results in the 

original paper. However, the training and usage of ADM 

and DDPM [27] are similar. In this step, we train two 

ADMs: one for normal traffic signs and another for 

damaged ones. Each model is trained using AdamW 

optimizer with a learning rate 1×10−4 for 300,000 iterations. 

The second step in EGSDE involves training the 

Domain-Specific Extractor (DSE). Although pre-train 

weights from the guided diffusion are typically used in 

original research, no existing tasks are similar to normal 

and damaged traffic sign images. Therefore, we trained the 

DSE from scratch using the AdamW [28] optimizer with a 

learning rate 3×10−4. The training process involved two 

classes of traffic signs and was repeated for 10,000 

iterations. 

The EGSDE model is utilized to predict noise and 

generate images. To generate an image using this model, 

noise must be added to the original image, with a 

maximum noise level of 1000 (T). The parameter M 

determines the amount of noise to be added to the image, 

ranging from 0.3 T to 0.7 T. 

C. Dataset 

As part of our experiment, we studied traffic sign 

images using an existing dataset [29]. While analyzing the 

data, we found that the images in the dataset lack damaged 

traffic signs, which could compromise the accuracy of our 

study. To address this issue and obtain more 

comprehensive data, we collected additional images from 

various sources on the internet. 

The experimental dataset consists of two types of 

images: normal and damaged. We have divided the data 

into training and testing sets to avoid overfitting. The 

training set contains a total of 3,619 images, with 2,919 

images labeled as normal and 700 images labeled as 

damaged. On the other hand, the testing set comprises 600 

images, with an equal number of normal and damaged 

images. Fig. 2 shows example images from our dataset. 

 

 

Fig. 2. Example image from the dataset. 

D. Evaluation Metrics 

To evaluate the model’s performance, we use the 

Fréchet Inception Distance (FID) method [30]. This 

method determines the similarity between two sets of 

images and is reliable for assessing visual quality. FID is 

commonly used to evaluate the performance of Generative 

Adversarial Networks. FID calculates the Fréchet distance 

Journal of Advances in Information Technology, Vol. 15, No. 9, 2024

1021



between two Gaussian distributions, which are based on 

the feature representations of the Inception network [31]. 

FID =  ‖μ1−μ2‖2 + Tr(σ1 + σ2−2√σ1 × σ2)   (1) 

Eq. (1) provides a detailed explanation of how FID is 

calculated. μ1 and μ2 represent the mean of features in real 

and generated images, while σ1 and σ2 are the covariance 

matrices for the feature vectors of real and generated 

images, respectively. ||μ1 − μ1||2 is the sum squared 

difference between the two mean vectors, and Tr is the 

trace linear algebra operation. Lower FID scores indicate 

that the two groups of images have more similar statistics 

or are similar. A score of 0.0 means that the two groups of 

images are identical. 

IV. RESULT 

This section evaluates the result of translating the image 

between normal to damaged and damaged to a normal 

traffic sign. The results of each model are compared using 

FID as score-based, where lower FID indicates better 

results. Moreover, we compare and visualize the results to 

see the differences between each model. 

A. FID 

Table I presents a comparison of results using FID. The 

EGSDE has been used to translate the original image by 

adding different noise levels (M). The parameter M has 

been set in the range of 0 to T, and the results presented 

here are for M values of 0.3 T, 0.4 T, 0.5 T, 0.6 T, and 

0.7  T. Lower values of M are preferred to preserve the 

original image structure. 

TABLE I. FID USING DIFFERENT METHODS TO TRANSLATE BETWEEN 

NORMAL AND DAMAGED TRAFFIC SIGNS (LOWER IS BETTER) 

Method 
Normal-to-

Damaged 

Damaged-to-

Normal 

UVCGANv2 174.22 255.29 

EGSDE (M = 0.3 T) 140.84 161.94 

EGSDE (M = 0.4 T) 143.75 172.25 
EGSDE (M = 0.5 T) 148.22 184.27 

EGSDE (M = 0.6 T) 153.24 182.57 

EGSDE (M = 0.7 T) 169.29 158.33 

 

 In the overview, FID results show that EGSDE 

performs better than UVCGANv2 in all translation tasks. 

However, the FID values are still high compared to other 

I2I translation models with other tasks (E.g., male-to-

female tasks have an FID of 40). These results suggest that 

the I2I translation between normal and damaged traffic 

signs may be successful.  

Regarding the FID, we observed that EGSDE performs 

better in normal to damaged translation tasks when M is 

low. However, upon examining the images, we found that 

most EGSDE results with M = 0.3 T are unsuccessful in 

translating, as the output remains similar to normal traffic 

signs. More detailed information is provided in the output 

image comparison section.  

It’s important to note that FID results may not reflect the 

quality of the translated images. Therefore, it’s necessary 

to analyze the inputs and outputs of each method to gain 

deeper insights. 

B. Translated Image Comparison 

The comparison results of normal-to-damage 

translation are presented in Fig. 3. We observed that the 

EGSDE parameter failed to produce the desired translation 

even when set to 0.7 T. On closer examination, The 

EGSDE results bore a striking resemblance to the original 

image, with only minor differences in the text or numbers, 

which appeared distorted or unclear. These differences 

were noticeable and could lead to misinterpretation of the 

translated information. 

 

 

Fig. 3. Translated results for normal-to-damaged. 

 

Fig. 4. Translated results for damaged-to-normal. 
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On the other hand, UVCGANv2 shows potential output, 

but it still lacks realism. Some traffic signs are also 

modified to a different shape, such as a circle turning into 

a triangle. This suggests that UVCGANv2 is not only 

learning to translate the texture of traffic signs but also 

modifying their shape, which is different from the 

objective of this research. 

In the analysis of the damage-to-normal translation 

comparison, Fig. 4 illustrates the outcome. The results 

obtained from UVCGANv2 exhibit a noticeable failure in 

translation. The possible reason behind this failure could 

be that the learning process should have prioritized the 

texture of the traffic sign specifically but rather focused on 

the overall texture of the entire image. 

EGSDE produces better results than UVCGANv2, 

especially between 0.3 T and 0.5 T. However, the model 

can only recover texture, not shape or structure, and 

realistic results are only possible with undamaged input 

images. 

V. DISCUSSION 

Based on our observations, we have noticed that the 

success or failure of translations relies on the traffic signs’ 

shape, texture, and color. EGSDE with a low M parameter 

could maintain the input image’s structure, whereas 

UVCGANv2 produced some results that altered the shape 

of the traffic signs. Fig. 5 illustrates an example of a failed 

translation and a distorted input traffic sign shape. 

 

 

Fig. 5. An example of failure translated from normal to damaged using 
UVCGANv2. 

Our assumption for this issue is that UVCGANv2 may 

mistake the shape of a traffic sign in the input with other 

shapes present in the training dataset. To avoid translating 

to the wrong shape issue, we can create a separate class for 

each traffic sign shape instead of just “normal” and 

“damaged”. However, this would require training 

UVCGANv2 for each shape, such as a normal circle traffic 

sign and a damaged circle traffic sign. Another approach 

to enhance the accuracy of translation is to provide 

information about the expected output shape in the input 

by adding a condition. 

For translated image texture, the EGSDE method with a 

low M value allows the texture to remain detailed. On the 

other hand, if you use a higher M value, the output may not 

be related to the input image. EGSDE still requires a lower 

M parameter to translate the traffic sign accurately. 

Based on our observations, we have noticed that traffic 

signs with faded colors often fail to be translated. We 

assume that our experimental dataset doesn’t have enough 

samples for this kind of damaged traffic sign. An example 

of this failure to translate is shown in Fig. 6. We suggest 

finding more samples and experimenting for more insight 

to avoid this faded-colored translation. 

 

 

Fig. 6. An example of failure to translate is when the input image has a 

faded color. 

For potential improvement, we recommend two 

possible solutions. The first is to include the output shape 

condition for the translate model. The second is to locate 

additional datasets and categorize them based on various 

labels rather than just normal and damaged ones. 

VI. CONCLUSION 

Our research paper encountered a significant issue: the 

existing dataset’s lack of damaged traffic signs. This issue 

can be negative impact the performance of autonomous 

vehicles or driver monitoring systems that rely on object 

detection because such systems require a large amount of 

diverse data to train the model effectively. To overcome 

this issue, we utilized the image-to-image (I2I) translation 

technique to modify existing images, thereby changing the 

traffic sign’s condition to create a suitable model to 

increase the quantity of road traffic data with different 

conditions. We conducted experiments by translating 

normal and damaged traffic signs using two state-of-the-

art unpaired I2I translations, UVCGANv2 and EGSDE. 

Our experiment revealed that UVCGANv2 effectively 

translates normal traffic signs to damaged ones, while 

EGSDE has more potential for translating damaged traffic 

signs to normal ones. 

However, UVCGANv2 and EGSDE are not specifically 

for translating normal and damaged traffic signs, and both 

models need improvement to work well with large-scale 

traffic sign datasets. In future work, we plan to customize 

the I2I translation for traffic sign tasks by adding 

conditional factors, such as the shape of the output, to 

guide the output and design the label. The dataset should 
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be properly collected and organized into appropriate labels 

or multilabel, such as (speed sign, normal, old) or (speed 

sign, damaged, new). Proper labels can help the image 

generative model gain more insight into the traffic sign. 
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