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Abstract—In response to the growing need for privacy-

preserving mobile intelligence, this study introduces a new 

approach that combines Generative Pre-trained 

Transformer 4 (GPT-4), a state-of-the-art large language 

model, with Particle Swarm Optimization (PSO) in a two-

step process. This method is designed to find efficient neural 

network structures in federated learning and address issues 

like high communication costs and unstable network 

conditions. Leveraging the prowess of GPT-4 for initial 

population guidance in the Neural Architecture Search 

(NAS) process, our approach focuses on optimizing neural 

network architectures that demand minimal data exchange 

between clients and servers. This is achieved through a 

variable-length PSO encoding and decoding mechanism at 

the upper level, ensuring not only a thorough search for 

efficient architectures but also their optimization for 

compactness and effectiveness. Additionally, a standard PSO 

technique is applied at the lower level to optimize neural 

network weights, thus boosting model performance with 

reduced communication load. Our methodology’s superiority 

is demonstrated via benchmark comparisons with FedAvg 

and FedPSO on the CIFAR-10 dataset, under both normal 

and compromised network scenarios.  

 

Keywords—Generative Pre-trained Transformer 4 (GPT-4), 

federated learning, Particle Swarm Optimization (PSO), 

Neural Architecture Search (NAS), communication cost  

 

I. INTRODUCTION 

In recent times, the field of deep learning has garnered 

significant interest across various domains,  

including robot control [1, 2], task planning [3, 4], 

manufacturing [5, 6], and smart transportation [7, 8]. 

Convolutional Neural Networks (CNNs), in particular, 

have shown exceptional capability in extracting 

sophisticated feature representations, albeit requiring 

extensive labor and specialized knowledge. For instance, 

the Visual Geometry Group-16 (VGG-16) model is 

characterized by its extensive architecture, encompassing 

over 130 million parameters and necessitating 

approximately 500 MB of memory. To process an image 

measuring 224224 pixels, it performs 15.3 billion 

floating-point operations. On the other hand, ResNet-50, 

distinguished by its meticulously crafted residual and 

bottleneck blocks, contains more than 25 million 

parameters. This model requires 98 MB of memory and 

executes 3.8 billion floating-point operations to analyze an 

image of the same dimensions. 

Addressing the challenges of manual design in neural 

network architectures, Neural Architecture Search (NAS) 

emerges as a resource-intensive way aimed at identifying 

the optimal architecture from a broad spectrum of 

possibilities. The primary hurdle in NAS lies in the 

extensive training required for numerous potential models, 

often necessitating thousands of hours on advanced 

Graphics Processing Unit (GPU) setups [9]. For example, 

Zoph et al. [10] trained a well-designed recurrent neural 

network with 28 days of training on 800 GPUs. To mitigate 

the heavy computational demands, some strategies 

propose compromises, such as limiting training duration, 

utilizing smaller data sets, or simplifying the  

architecture [11–13]. Yet these approaches do not fully 

leverage NAS’s potential for parallel processing. 

Moreover, these strategies often centralize training data, 

overlooking the benefits of a decentralized approach 

across various computational frameworks, thus raising 

concerns over data privacy and security, especially with 

sensitive information on personal and medical data that 

cannot be freely transferred or accessed online due to 

stringent data protection regulations in regions like the 

European Union [14]. 

Federated learning emerges as a potent solution to the 

challenges previously outlined, offering a way to harness 

the power of decentralized deep-learning model 

development. This approach leverages parallel computing 

resources effectively, enabling the exploration of 

sophisticated models without the need to frequently 

exchange large volumes of sensitive data between clients 

and servers. The distinctions between federated learning 

and traditional distributed learning are numerous and 

significant, encompassing aspects such as [15]: the 

purpose of privacy protection, mass data collection cost, 

the unknown training data distribution, heterogeneous 

computation platforms, low computation capability, 

security threat, and the potential for inconsistent 

connectivity or device failures. These complexities present 
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considerable obstacles to the practical implementation of 

federated learning. 

Integrating federated learning with NAS is crucial 

because it allows for the development of optimized models 

that respect user privacy while enhancing performance 

across distributed networks [15]. Federated learning 

maintains data privacy by processing data locally on user 

devices, but this can lead to challenges with non-

Independent and Identically Distributed (non-IID) data, 

affecting model performance. NAS addresses this by 

automatically discovering optimal neural network 

architectures that are better suited to the unique data 

distributions and resource constraints of each device in the 

network. This combination not only boosts model 

efficiency and accuracy but also tailors models to diverse 

application requirements, making it a powerful approach 

for deploying intelligent systems in privacy-sensitive 

environments. Liu et al. [16] demonstrate that effectively 

integrating federated learning with NAS optimizes the 

capabilities of edge computing, achieving a significant 

reduction in completion time by 30.6%. Similar findings 

are found at [17]. 

Unlike the standard NAS processes, as shown in Fig. 1, 

federated learning operates under a unique paradigm 

where each participant relies solely on their proprietary 

data for model training and refinement. Meanwhile, a 

central server orchestrates the collective effort, merging 

updates from client models, steering the exploration 

strategy without direct access to raw data, and 

disseminating refined parameters and model structures 

back to the participants. 

Among the strategies for model integration in federated 

settings, FedAvg [18] stands out for its simplicity, 

aggregating the parameter updates from client-side neural 

networks. Nevertheless, this method encounters 

challenges as model complexity increases, particularly 

with deeper layers, where the volume of parameters to be 

shared escalates communication costs significantly. In 

federated learning scenarios, the bandwidth consumed by 

data transmission often surpasses that used in 

computations, underscoring the need to minimize network 

communication times to enhance overall efficiency. This 

necessity is further compounded by the challenges of 

fluctuating network conditions, necessitating stable Wi-Fi 

connections and accommodating limited bandwidth to 

facilitate federated learning processes. 

 

 

Fig. 1. Comparison of client-server training and inference architectures: traditional NAS (left) vs. Federated NAS (right). 

This manuscript introduces an innovative bi-level 

Particle Swarm Optimization (PSO) strategy aimed at 

enhancing the speed of NAS and the efficiency of model 

training, particularly in scenarios characterized by 

unstable internet connectivity. PSO is selected for its 

simplicity, cost-effectiveness, and minimal parameter 

tuning requirement. In detail, at the upper level, a flexible 

variable-length PSO [19] is taken to automatically evolve 

the server’s initial deep-learning model. The IP-based 

encoding and decoding strategy [20] is taken to represent 

the deep-learning model in the parameter searching space. 

Furthermore, the advent of generative AI breakthroughs, 

notably Generative Pre-trained Transformer-4  

(GPT-4) [21], signifies a pivotal advancement towards 

achieving comprehensive “general AI”, endowed with 

expert capabilities in both neural architecture design and 

programming. Zheng et al. [22] study the feasibility of 

using GPT-4 purely without fine-tuning operation to 

provide the directions of NAS. As is known, with the 

assistance of Retrieval-Augmented Generation (RAG) and 

fine-tuning operation [23], the GPT-4 model can provide 

better-quality and specific answers. In this study, we 

utilize specific prompts to guide GPT-4 model to generate 

a population of neural architectures based on the current 

global-optimal particle individual in PSO at the 

initialization stage. At the lower level, another typical PSO 

optimizer is taken to update the weights of neural network 

parameters to decrease the communication further. Instead 

of transmitting the blocks of neural network weights, only 

the best individual scores are shared without the limitation 

of the neural network size. To prove the effectiveness of 

the proposed approach under an unstable communication 

context, we focus on the image classification task with 

CNN models and compare our approach with two 

benchmarks on the CIFAR-10 dataset [24]. 

The contribution of this paper can be summarized as 

follows: 

(1) To our best knowledge, this work is the first to 

harness the inference capabilities of a large 

language model, specifically GPT-4, within the 

population optimization process of PSO. We 

leverage GPT-4 to intelligently fine-tune neural 

network architectures, significantly enhancing the 
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quality and effectiveness of the search process in 

neural architecture search. 

(2) We establish a comprehensive prompt engineering 

benchmark tailored for GPT-4 in the population 

search of PSO, facilitating further research and 

refinement in this area. 

(3) We propose a new bi-level PSO approach that 

efficiently handles neural architecture search and 

parameter optimization in a federated learning 

context, reducing the communication overhead 

and enhancing computational efficiency. 

(4)  Utilizing a practical dataset and comparing our 

method against two state-of-the-art federated 

learning approaches, we demonstrate the 

robustness and reliability of our proposed 

framework under conditions of network instability. 

The remainder of this paper is organized as follows: 

Section II illustrates related literature. Section III presents 

details of the proposed approach. In Section IV, 

simulations are conducted to prove the effectiveness of the 

proposed approach. Finally, conclusions and future studies 

are discussed in Section V. 

II. LITERATURE REVIEW 

Neural Architecture Search (NAS) is an evolving field 

focused on enhancing the automation of neural network 

design. This area has seen the proposal of various 

exploration strategies to optimize the design process 

including reinforcement learning [9, 10], evolutionary 

strategies [25], Bayesian optimization [26], gradient-based 

approaches like Differentiable Architecture Search 

(DARTS) [27], EfficientNAS [28], and Particle Swarm 

Optimization (PSO) [29, 30]. Specifically, Sun et al. [29] 

represent the deep-learning model with a fixed-length 

encoding-decoding schema. Junior et al. [30] propose an 

innovative particle-updating strategy by estimating the 

differences among variable-length particle neighbors. 

Google originally introduced the concept of Federated 

Learning as a solution to enhance collaboration across 

Android devices. Existing works can be categorized as 

vertical federated learning, horizontal federated learning, 

federated transfer learning, cross-silo federated learning, 

and cross-device federated learning [31]. Because of the 

data heterogeneity, there are large gaps among client-

trained models. Corrections and regularizations are taken 

to reduce the differences between local models [32, 33]. 

To fully utilize computation resources, Nishio et al. [34] 

select the proper clients based on their resource 

information. However, this will cause a bias since a large 

amount of work will be assigned to clients with large 

computation resources. Luo et al. [35] propose an energy-

aware federated selection approach considering battery 

limitations. Parl et al. [36] propose a PSO-based federated 

learning approach to decrease the communication cost, 

where neural network parameters are optimized by a PSO. 

Different from our proposed approach, our bi-level PSO 

approach optimizes the neural network design during the 

federated learning process. 

III. BI-LEVEL PSO ARCHITECTURE WITH GPT-4 FINE-

TUNED NEURAL NETWORK DESIGNS 

Our methodology leverages GPT-4, a state-of-the-art 

language model, to fine-tune the initial population 

generation in the upper-level PSO. This integration aims 

to optimize the neural architecture search by providing 

highly informed starting points, thus enhancing the 

efficiency and effectiveness of the search process. A 

lower-level PSO is taken to optimize the neural network 

parameters. In this section, we first explore the 

fundamentals of PSO, followed by the particle encoding 

and decoding methods in upper-level PSO for NAS. We 

then discuss leveraging GPT to fine-tune populations in 

upper-level PSO. Finally, we touch the lower-level PSO. 

A. Particle Swarm Optimization 

PSO enhances federated learning by minimizing 

computational and communication burdens. Unlike 

traditional methods such as FedAvg that require extensive 

data exchanges, PSO optimizes model updates using a 

population-based approach where only key updates like 

scores or partial weights are transmitted. This strategy 

significantly reduces the volume of data communicated, 

thereby improving network efficiency and processing 

speed on client devices. Additionally, PSO’s ability to 

adapt to the distributed and heterogeneous nature of 

federated environments ensures robust model updates even 

under unstable network conditions, accelerating 

convergence and enhancing model performance. 

PSO is recognized as a population-centric search 

algorithm, known for its minimal computational 

complexity, straightforward implementation, and rapid 

convergence rates. Within this framework, each entity 

functions as a particle, dynamically adjusting its position 

in the search space by updating its velocity. As shown in 

Eqs. (1) and (2), this process allows for efficient 

exploration and optimization of complex problem spaces, 

leveraging the collective intelligence of the swarm to 

navigate toward optimal solutions [37, 38]. 

 

𝑣𝑖,𝑗
𝑡+1 = 𝜔𝑣𝑖,𝑗

𝑡 + 𝑐1𝑟1(𝑝𝐵𝑒𝑠𝑡𝑖,𝑗 − 𝑥𝑖,𝑗
𝑡 )

+ 𝑐2𝑟2(𝑔𝐵𝑒𝑠𝑡𝑗 − 𝑥𝑖,𝑗
𝑡 ) 

 

(1) 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝑣𝑖,𝑗
𝑡+1 (2) 

 

where 𝑥𝑖,𝑗 denotes the position of the ith particle in the jth 

dimension, while 𝑣𝑖,𝑗  represents the velocity of the ith 

particle in the jth dimension. The term 𝑔𝐵𝑒𝑠𝑡𝑗 is the global 

optimal fitness value among all particles at the jth 

dimension. 𝜔 , 𝑐1 , and 𝑐2  are trainable parameters that 

influence the algorithm’s behavior, including inertia, 

cognitive component, and social component, respectively. 

Random factors 𝑟1 and 𝑟2 are introduced to enhance the 

exploratory capability of the swarm, ensuring a diverse 

search across the potential solution landscape. The core 

principle of PSO lies in tracking and updating the swarm’s 

movement towards these optimal points, leveraging 

individual discoveries (local bests) and collective wisdom 

(global best) to navigate the search space efficiently [39]. 
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B. Particle Encoding and Decoding Schema 

In the upper-level PSO, a robust particle encoding and 

decoding scheme is essential for representing diverse 

neural network architectures within PSO particles.  

Wang et al. [20] have introduced a compact encoding and 

decoding schema inspired by internet protocols. As shown 

in Table I, the details of the encoding schema are 

presented, including the convolutional, pooling, fully 

connected, and disabled layers. The largest number of bits 

is 12. Classless Inter-Domain Routing (CIDR) [20] is 

taken to represent all types of CNN architectures. As 

shown in Table II, the IP range starts from 0.0 representing 

the convolutional layer with a mask length of 4, followed 

by the fully connected layer with a mask length of 5, 

pooling layer with a mask length of 5 and the disabled 

layer with a mask length of 5. Moreover, the disabled layer 

represents the combinations of different layers during the 

evolving process. For example, an integer string [2, 61, 18, 

143, 2, 61, 18, 143, 27, 255] represents the architecture 

[Convolutional Layer (IP 2.61), Pooling Layer (IP 

18.143), Convolutional Layer (IP 2.61), Pooling Layer (IP 

18.143), Fully connected Layer (IP 27.255)]. After several 

rounds of exploration, the new integer string can be [2, 61, 

18, 143, 2, 61, 35, 255, 27, 255] representing the 

architecture [Convolutional Layer (IP 2.61), Pooling Layer 

(IP 18.143), Convolutional Layer (IP 2.61), Disabled 

Layer (IP 35.255), Fully connected Layer (IP 27.255)]. 

More details can be found at Wang et al.’s work [20]. 

TABLE I. PARTICLE ENCODING AND DECODING SCHEMA OF CONVOLUTIONAL, POOLING, FULLY CONNECTED AND DISABLED LAYERS 

Layer Type Parameter Range Number of Bits Example Value 

Conv 

Filter size [1, 8] 3 2(001) 

Number of feature maps [1, 128] 7 32(000 1111) 

Stride size [1, 4] 2 2(01) 

Summary  12 001 000 1111 01 

Pooling 

Kernel size [1, 4] 2 2(01) 

Stride size [1, 4] 2 2(01) 

1(Maximal);2(Average) [1, 2] 1 2(1) 

Place holder [1, 128] 6 32(00 1111) 

Summary  11 01 01 0 00 1111 

Fully connected 
Number of Neurons [1, 2048] 11 1024(011 11111111) 

Summary  11 011 11111111 

Disabled 
Place holder [1, 2048] 11 1024(011 11111111) 

Summary  11 011 11111111 

 

TABLE II. CIDR AND IP ADDRESS ASSIGNING OF CONVOLUTIONAL, 

POOLING, FULLY CONNECTED AND DISABLED LAYERS 

Layer Type CIDR IP Range 

Convolutional Layer 0.0/4 0.0–15.255 

Fully Connected Layer 16.0/5 16.0–23.255 
Pooling Layer 24.0/5 24.0–31.255 

Disabled Layer 32.0/5 32.0–39.255 

 

C. GPT-4 Boosted Population Initialization 

In the field of population-based optimization, PSO 

begins by generating a varied set of individual particles, 

each representing a unique neural network architecture. 

However, designing effective neural networks requires not 

only domain-specific knowledge but also sophisticated 

techniques validated by existing works. Relying solely on 

random search can be inefficient, as it consumes 

considerable time and computational resources. 

Furthermore, directly translating human expertise into 

design rules can be complex and fraught with challenges. 

To overcome these limitations, our strategy leverages 

the advanced capabilities of GPT-4, a cutting-edge large 

language model with domain knowledge in deep learning 

tricks and neural network designs. By using GPT-4, we 

move beyond simple random initialization to a more 

informed starting point for the optimization process.  

GPT-4’s ability to analyze vast amounts of data and learn 

from diverse examples enables it to propose initial neural 

network architectures that are both innovative and 

practical. This not only speeds up the search process but 

also enhances the quality of the solutions, making our 

approach significantly more efficient and effective in 

exploring complex design spaces without falling into local 

optimal values. This strategic choice is predicated on the 

understanding that the initial quality of these architectures 

significantly impacts the efficiency and direction of the 

subsequent search process. Bubeck et al. [40] prove  

GPT-4’s reasoning ability across multiple areas.  

Zhang et al. [22] prove that GPT-4 can generate 

meaningful suggestions for potentially better neural 

network architectures. Nevertheless, a discernible gap 

remains between these GPT-4 suggested architectures and 

the ideal, optimal structures. This discrepancy is partly due 

to the reliance on basic prompt engineering that lacks the 

incorporation of specific exploration constraints and the 

continuous optimization process. 

To bridge this gap, our methodology includes the 

development of a meticulously designed prompt 

engineering template, which is illustrated in Fig. 2. This 

template is structured to guide GPT-4 in generating 

proposals that not only aim to surpass the performance of 

an initially designed CNN model for the CIFAR-10 dataset 

but also adhere to predefined constraints within the 

exploration space. The template is written as follows: 

“This is my currently designed CNN model for CIFAR-10 

dataset, [initial model]. Please recommend [population 

size] new models that outperform my designed one. You 

should satisfy these constraints [search constraints]. Please 

generate your answers in this format [`plan1 ``` your first 

recommendation``` `plan2 ``` your second 

recommendation```].” An example is presented in Fig. 3, 

GPT-4 API call is taken in this paper to complete the query 
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process. In the future, we will develop a locally deployed 

and fine-tuned LLM model for this part, such as Llama 3 

and retrieval augmented generation techniques. 

D. Fitness Evaluation 

In our fitness evaluation strategy, we partition the 

client’s dataset into two subsets: a training set for model 

development and an evaluation set for performance 

assessment. To enhance the efficiency of the training 

phase, we employ an early-stopping mechanism that 

terminates the process once improvement plateaus, 

thereby conserving computational resources. Within the 

framework of the upper-level PSO, each particle is 

interpreted as a unique CNN architecture. These 

architectures undergo training for a predetermined number 

of epochs using the lower-level PSO in conjunction with 

the training dataset. Subsequently, the performance of each 

CNN model is thoroughly assessed on the evaluation 

dataset, where a series of accuracy metrics are computed. 

The average accuracy achieved by a model is then 

designated as the fitness score of the corresponding 

particle, reflecting the model’s efficacy [41]. 

 

 

Fig. 2. Client-server architecture overview of the proposed Bi-level PSO with GPT-4 boosted population initialization for NAS. 

 

Fig. 3. GPT-4 prompt engineering benchmark for NAS. 

On the other hand, the objective of the lower-level PSO 

is to search for the most effective neural network weights. 

This phase leverages the mean loss incurred by the CNN 

model on the training dataset as the guiding metric for the 

optimization process. By evaluating the model’s average 

loss, the lower-level PSO effectively identifies the weight 

configurations that minimize error, thereby serving as a 

precise fitness function. This bifurcated approach ensures 

a comprehensive and efficient exploration of both 

architectural and weight parameters, aiming to elevate the 

overall performance of the CNN models within the 

federated learning environment. 

E. Lower-Level PSO 

The objective of the lower-level PSO is to optimize the 

neural network parameters through a PSO-based training 

approach. Detailed in Algorithm 1, this procedure 

iteratively optimizes the weights of each neural network 

layer. During this optimization cycle, a variable 𝑣  is 

strategically combined with the inertia weight 𝜔 from the 

preceding iteration to compute the updated 𝜔 value for the 

current cycle. This mechanism ensures a dynamic 

adjustment of the inertia component, facilitating a 

balanced exploration and exploitation of the search space 

tailored to each layer’s specific optimization needs. 𝝎𝐭
𝑔𝐵𝑒𝑠𝑡

 

is the updated global best weights at time step t. 𝛾 denotes 

the learning rate while L represents the cross entropy loss 

function. 

 

Journal of Advances in Information Technology, Vol. 15, No. 9, 2024

1015



Algorithm 1. Pseudocode of the lower-level PSO 

1: Initialize 𝒗, 𝝎, 𝝎𝒑𝑩𝒆𝒔𝒕
, 𝜶, 𝒄𝟏, 𝒄𝟐 

2: For each weight layer 𝒍 = 𝟏, 𝟐, … 𝒅𝒐 

3:     𝒗𝒍 ← 𝜶𝒗𝒍 + 𝒄𝟏𝒓𝟏(𝝎𝒑𝑩𝒆𝒔𝒕
− 𝒗𝒍) + 𝒄𝟐𝒓𝟐(𝝎𝒕

𝒈𝑩𝒆𝒔𝒕

−

𝒗𝒍) 

4: End for 

5: Update weights with 𝝎 ← 𝝎 + 𝒗 

6: For each epoch I from 1 to E do 

7:     For each batch b do 

8:         𝝎 ← 𝝎 − 𝜸𝜵𝑳(𝝎; 𝒃) 

9:     End for 

10: End for 

IV. EXPERIMENTS 

To evaluate the effectiveness of our innovative bi-level 

Federated PSO methodology, enhanced by GPT-4’s fine-

tuning of neural network populations, we conducted a 

series of experiments. These experiments were designed to 

measure the accuracy, convergence efficiency, and 

reliability of our approach, particularly in scenarios 

characterized by unstable network conditions. The initial 

experiment sought to verify if our approach could achieve 

high accuracy and rapid convergence with reduced 

network communication overhead, especially when 

compared to the FedAvg method, yet with the advantage 

of a more sophisticated neural network architecture. These 

assessments were conducted using the CIFAR-10 dataset, 

with our results benchmarked against two established 

approaches: FedAvg and FedPSO [36]. 

Our experimental setup was executed on a system 

powered by an Intel Core i7-6850K processor and an 

NVIDIA GeForce GTX 1080Ti graphics card. The base 

CNN model, adapted from Park et al.’s work [36], was 

modified to include a dropout layer with a 0.2 probability 

and a standard batch normalization layer after each 

architectural block, as detailed in Table III. The CIFAR-

10 dataset, consisting of 50,000 training images and 

10,000 test images across 10 classes with each image sized 

at 3232 pixels, served as the benchmark dataset for our 

experiments. For the FedAvg approach, we configured the 

system with 10 clients, with “C” values set either to 0.5 or 

1, running for 30 epochs at the server level, 5 epochs at the 

client level, and a batch size of 10. Similarly, the FedPSO 

setup involved 10 clients, with the same epoch 

configuration and batch size as FedAvg. The PSO 

parameters were set to 𝛼 = 0.3, 𝑐1 = 0.7, and 𝑐2 = 1.4. 

These settings are the same with [36]. For our proposed bi-

level PSO approach, the lower-level PSO configuration 

mirrors that of FedPSO, whereas the upper-level PSO’s 

parameters, 𝑐1 is 1.496, and 𝑐2 is 1.496. The initial weight 

for velocity update is 0.7298. 

TABLE III. INITIAL PARAMETERS SETTINGS FOR THE CNN 

Layer Type Shape 

Conv2D 3332 

Pooling 32 

Conv2D 3364 

Pooling 64 

FC 1024512 

FC 51210 

The performance outcomes of our proposed bi-level 

federated PSO approach and GPT-4 boosted population 

searching strategies, in comparison to benchmark 

methods, are delineated in Table IV. The data reveals that 

our approach substantially surpasses the benchmarks, 

registering test accuracies that are 13.82%, 18.89%, and 

22.78% superior to FedPSO, FedAvg with C = 1, and 

FedAvg with C = 0.5, respectively. 

Further insights into the efficacy of our approach are 

provided in Table V, which depicts the most effective 

CNN architecture identified through our optimization 

process. Distinct from the architectures generated by 

traditional NAS techniques, such as those reported by 

Huang et al. [19], our architecture benefits from the early 

involvement of GPT-4 in the initialization phase. This 

strategic incorporation leads to the discovery of 

architectures that are not only compact but also logically 

coherent, showcasing the advantage of leveraging 

advanced AI in the design process. 

TABLE IV. COMPARATIVE ACCURACY OF VARIOUS ALGORITHMS 

DURING THE TESTING PHASE 

Approach Test Accuracy 

FedPSO 70.12% 
FedAvg (C = 1) 67.14% 

FedAvg (C = 0.5) 65.00% 

Our Approach 79.81% 

TABLE V. BEST SEARCHED CNN ARCHITECTURE 

Layer Type Shape 

Conv2D filter size: 3×3, stride: 1, feature maps: 32 

Conv1D filter size: 1×1, stride: 1, feature maps: 78 

Pooling size: 2×2, stride: 2, type: Max 
Conv2D filter size: 3×3, stride: 1, feature maps: 126 

Conv2D filter size: 2×2, stride: 1, feature maps: 106 

Conv2D filter size: 3×3, stride: 1, feature maps: 111 
Pooling size: 2×2, stride: 2, type: Max 

Conv2D filter size: 3×3, stride: 1, feature maps: 120 

Conv1D filter size: 1×1, stride: 1, feature maps: 89 
Pooling kernel size: 2×2, stride: 2, type: Average 

FC neurons: 1309 

 

Fig. 4. Comparative accuracy of various algorithms during the training 
phase. 

Moreover, Fig. 4 offers a visual representation of the 

test accuracy progression throughout the training sessions. 

This figure clearly illustrates the superior convergence 

performance of our algorithm, evidencing a steady and 

rapid improvement in accuracy. This trend demonstrates 
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that our proposed algorithm does not merely improve 

incrementally but does so at a pace that outstrips 

conventional models, thanks to the strategic use of GPT-4 

for initial population enhancement and the effective 

optimization capabilities of our federated PSO approach. 

When discussing convergence speed, it’s important to note 

that distributed training methods like federated learning 

are influenced by unique factors, unlike centralized 

training. Initially, multiple devices with limited 

computational resources perform local computations and 

share updates with a central server. The data in these 

scenarios is often non-IID, which can decelerate 

convergence, particularly under constrained 

computational capacities. Additionally, transmitting 

updates across networks incurs further delays, potentially 

exceeding the time spent on computations. Therefore, 

comparing the convergence speeds of federated and 

centralized learning methods directly is both challenging 

and generally not meaningful. Compared to FedAvg, our 

proposed algorithm incurs less communication delay due 

to transmitting smaller data volumes. However, in 

comparison with FedPSO, our algorithm experiences 

increased communication delays due to the integration of 

the GPT-4 API call. The GPT-4 API call delays can be 

further decreased if a local LLM model is utilized. 

Subsequently, we evaluated the resilience of our 

proposed method under conditions of unstable network 

communication, where data packets might be lost during 

transmission between clients and the server. For this 

purpose, we designed experiments under two distinct 

scenarios characterized by data dropping rates of 10% and 

20%, respectively. As presented in Table VI, the 

performance of our approach in an environment with a 

10% data loss rate exceeded that of the FedPSO and 

FedAvg (C = 1) benchmarks by 11.74% and 25.73%, 

respectively. Furthermore, in a more challenging scenario 

with a 20% dropping rate, our method maintained its 

superior performance, achieving results that were 11.84% 

and 25.24% better than those of FedPSO and FedAvg (C = 

1), respectively.  

TABLE VI. COMPARATIVE ACCURACY OF VARIOUS ALGORITHMS 

DURING TESTING IN UNSTABLE COMMUNICATION ENVIRONMENTS 

Approach Failure Rate 10% Failure Rate 20% 

FedPSO 69.18% 68.41% 

FedAvg (C = 1) 61.48% 61.09% 

Our Approach 77.30% 76.51% 

 

These findings underscore the robustness of our bi-level 

federated PSO approach and GPT-4 boosted population 

searching strategies, demonstrating its ability to sustain 

high levels of accuracy even in the face of significant 

communication challenges. The resilience of our approach 

in such unstable network conditions highlights its potential 

for practical deployment in real-world applications where 

network reliability cannot always be guaranteed. 

V. CONCLUSION 

In this study, we introduce a cutting-edge and 

streamlined approach to NAS, termed the bi-level 

federated PSO approach with GPT-4 boosted population 

searching strategies, tailored for federated learning 

environments. Our primary objective is to minimize 

communication overhead, particularly in settings plagued 

by unstable network conditions. This algorithm optimizes 

server-side model aggregation by prioritizing the exchange 

of score values rather than the models themselves, with 

only the highest-scoring client model being transmitted to 

the server for further refinement. 

At the upper level of our framework, GPT-4 is 

leveraged as a sophisticated expert system to guide the 

initial population setup, informed by predefined design 

concepts. This process is supported by elaborate prompt 

engineering templates that incorporate NAS-specific 

constraints, ensuring a focused and efficient search. 

Additionally, we adopt a variable-length PSO strategy that 

employs a novel architecture encoding and decoding 

scheme, designed to generate compact yet effective neural 

network architectures. At the lower level, a conventional 

PSO methodology is utilized to fine-tune the weights of 

the identified neural network architectures, optimizing 

their performance. 

To validate the efficacy of our proposed model, we 

conducted comparative analyses against two established 

benchmarks, FedAvg and FedPSO, using the CIFAR-10 

dataset. Furthermore, to ascertain the resilience of our 

approach under challenging network conditions, we 

examined its performance across two scenarios 

characterized by data loss rates of 10% and 20%. 

Looking ahead, our research will explore the application 

of our method to multi-objective optimization challenges, 

aiming to strike an optimal balance between performance 

efficacy and energy consumption. Additionally, we plan to 

take into account the diversity in client capabilities, such 

as variations in battery life and computational power. 

Expanding our investigation, we will also delve into the 

potential of integrating a GPT-4 driven multi-agent deep 

reinforcement learning strategy within the federated 

learning framework, promising to further enhance the 

adaptability and efficiency of distributed machine learning 

models. 
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