
Federated Learning Using GPT-4 Boosted

Particle Swarm Optimization for Compact Neural

Architecture Search

Di Wang

Industrial AI Group, Foxconn, Wisconsin, USA

Email: di.wang@fewidev.com

Abstract—In response to the growing need for privacy-

preserving mobile intelligence, this study introduces a new

approach that combines Generative Pre-trained

Transformer 4 (GPT-4), a state-of-the-art large language

model, with Particle Swarm Optimization (PSO) in a two-

step process. This method is designed to find efficient neural

network structures in federated learning and address issues

like high communication costs and unstable network

conditions. Leveraging the prowess of GPT-4 for initial

population guidance in the Neural Architecture Search

(NAS) process, our approach focuses on optimizing neural

network architectures that demand minimal data exchange

between clients and servers. This is achieved through a

variable-length PSO encoding and decoding mechanism at

the upper level, ensuring not only a thorough search for

efficient architectures but also their optimization for

compactness and effectiveness. Additionally, a standard PSO

technique is applied at the lower level to optimize neural

network weights, thus boosting model performance with

reduced communication load. Our methodology’s superiority

is demonstrated via benchmark comparisons with FedAvg

and FedPSO on the CIFAR-10 dataset, under both normal

and compromised network scenarios.

Keywords—Generative Pre-trained Transformer 4 (GPT-4),

federated learning, Particle Swarm Optimization (PSO),

Neural Architecture Search (NAS), communication cost

I. INTRODUCTION

In recent times, the field of deep learning has garnered

significant interest across various domains,

including robot control [1, 2], task planning [3, 4],

manufacturing [5, 6], and smart transportation [7, 8].

Convolutional Neural Networks (CNNs), in particular,

have shown exceptional capability in extracting

sophisticated feature representations, albeit requiring

extensive labor and specialized knowledge. For instance,

the Visual Geometry Group-16 (VGG-16) model is

characterized by its extensive architecture, encompassing

over 130 million parameters and necessitating

approximately 500 MB of memory. To process an image

measuring 224224 pixels, it performs 15.3 billion

floating-point operations. On the other hand, ResNet-50,

distinguished by its meticulously crafted residual and

bottleneck blocks, contains more than 25 million

parameters. This model requires 98 MB of memory and

executes 3.8 billion floating-point operations to analyze an

image of the same dimensions.

Addressing the challenges of manual design in neural

network architectures, Neural Architecture Search (NAS)

emerges as a resource-intensive way aimed at identifying

the optimal architecture from a broad spectrum of

possibilities. The primary hurdle in NAS lies in the

extensive training required for numerous potential models,

often necessitating thousands of hours on advanced

Graphics Processing Unit (GPU) setups [9]. For example,

Zoph et al. [10] trained a well-designed recurrent neural

network with 28 days of training on 800 GPUs. To mitigate

the heavy computational demands, some strategies

propose compromises, such as limiting training duration,

utilizing smaller data sets, or simplifying the

architecture [11–13]. Yet these approaches do not fully

leverage NAS’s potential for parallel processing.

Moreover, these strategies often centralize training data,

overlooking the benefits of a decentralized approach

across various computational frameworks, thus raising

concerns over data privacy and security, especially with

sensitive information on personal and medical data that

cannot be freely transferred or accessed online due to

stringent data protection regulations in regions like the

European Union [14].

Federated learning emerges as a potent solution to the

challenges previously outlined, offering a way to harness

the power of decentralized deep-learning model

development. This approach leverages parallel computing

resources effectively, enabling the exploration of

sophisticated models without the need to frequently

exchange large volumes of sensitive data between clients

and servers. The distinctions between federated learning

and traditional distributed learning are numerous and

significant, encompassing aspects such as [15]: the

purpose of privacy protection, mass data collection cost,

the unknown training data distribution, heterogeneous

computation platforms, low computation capability,

security threat, and the potential for inconsistent

connectivity or device failures. These complexities present

Manuscript received May 31, 2024; revised June 20, 2024; accepted July

5, 2024; published September 5, 2024.

Journal of Advances in Information Technology, Vol. 15, No. 9, 2024

1011doi: 10.12720/jait.15.9.1011-1018

considerable obstacles to the practical implementation of

federated learning.

Integrating federated learning with NAS is crucial

because it allows for the development of optimized models

that respect user privacy while enhancing performance

across distributed networks [15]. Federated learning

maintains data privacy by processing data locally on user

devices, but this can lead to challenges with non-

Independent and Identically Distributed (non-IID) data,

affecting model performance. NAS addresses this by

automatically discovering optimal neural network

architectures that are better suited to the unique data

distributions and resource constraints of each device in the

network. This combination not only boosts model

efficiency and accuracy but also tailors models to diverse

application requirements, making it a powerful approach

for deploying intelligent systems in privacy-sensitive

environments. Liu et al. [16] demonstrate that effectively

integrating federated learning with NAS optimizes the

capabilities of edge computing, achieving a significant

reduction in completion time by 30.6%. Similar findings

are found at [17].

Unlike the standard NAS processes, as shown in Fig. 1,

federated learning operates under a unique paradigm

where each participant relies solely on their proprietary

data for model training and refinement. Meanwhile, a

central server orchestrates the collective effort, merging

updates from client models, steering the exploration

strategy without direct access to raw data, and

disseminating refined parameters and model structures

back to the participants.

Among the strategies for model integration in federated

settings, FedAvg [18] stands out for its simplicity,

aggregating the parameter updates from client-side neural

networks. Nevertheless, this method encounters

challenges as model complexity increases, particularly

with deeper layers, where the volume of parameters to be

shared escalates communication costs significantly. In

federated learning scenarios, the bandwidth consumed by

data transmission often surpasses that used in

computations, underscoring the need to minimize network

communication times to enhance overall efficiency. This

necessity is further compounded by the challenges of

fluctuating network conditions, necessitating stable Wi-Fi

connections and accommodating limited bandwidth to

facilitate federated learning processes.

Fig. 1. Comparison of client-server training and inference architectures: traditional NAS (left) vs. Federated NAS (right).

This manuscript introduces an innovative bi-level

Particle Swarm Optimization (PSO) strategy aimed at

enhancing the speed of NAS and the efficiency of model

training, particularly in scenarios characterized by

unstable internet connectivity. PSO is selected for its

simplicity, cost-effectiveness, and minimal parameter

tuning requirement. In detail, at the upper level, a flexible

variable-length PSO [19] is taken to automatically evolve

the server’s initial deep-learning model. The IP-based

encoding and decoding strategy [20] is taken to represent

the deep-learning model in the parameter searching space.

Furthermore, the advent of generative AI breakthroughs,

notably Generative Pre-trained Transformer-4

(GPT-4) [21], signifies a pivotal advancement towards

achieving comprehensive “general AI”, endowed with

expert capabilities in both neural architecture design and

programming. Zheng et al. [22] study the feasibility of

using GPT-4 purely without fine-tuning operation to

provide the directions of NAS. As is known, with the

assistance of Retrieval-Augmented Generation (RAG) and

fine-tuning operation [23], the GPT-4 model can provide

better-quality and specific answers. In this study, we

utilize specific prompts to guide GPT-4 model to generate

a population of neural architectures based on the current

global-optimal particle individual in PSO at the

initialization stage. At the lower level, another typical PSO

optimizer is taken to update the weights of neural network

parameters to decrease the communication further. Instead

of transmitting the blocks of neural network weights, only

the best individual scores are shared without the limitation

of the neural network size. To prove the effectiveness of

the proposed approach under an unstable communication

context, we focus on the image classification task with

CNN models and compare our approach with two

benchmarks on the CIFAR-10 dataset [24].

The contribution of this paper can be summarized as

follows:

(1) To our best knowledge, this work is the first to

harness the inference capabilities of a large

language model, specifically GPT-4, within the

population optimization process of PSO. We

leverage GPT-4 to intelligently fine-tune neural

network architectures, significantly enhancing the

Journal of Advances in Information Technology, Vol. 15, No. 9, 2024

1012

quality and effectiveness of the search process in

neural architecture search.

(2) We establish a comprehensive prompt engineering

benchmark tailored for GPT-4 in the population

search of PSO, facilitating further research and

refinement in this area.

(3) We propose a new bi-level PSO approach that

efficiently handles neural architecture search and

parameter optimization in a federated learning

context, reducing the communication overhead

and enhancing computational efficiency.

(4) Utilizing a practical dataset and comparing our

method against two state-of-the-art federated

learning approaches, we demonstrate the

robustness and reliability of our proposed

framework under conditions of network instability.

The remainder of this paper is organized as follows:

Section II illustrates related literature. Section III presents

details of the proposed approach. In Section IV,

simulations are conducted to prove the effectiveness of the

proposed approach. Finally, conclusions and future studies

are discussed in Section V.

II. LITERATURE REVIEW

Neural Architecture Search (NAS) is an evolving field

focused on enhancing the automation of neural network

design. This area has seen the proposal of various

exploration strategies to optimize the design process

including reinforcement learning [9, 10], evolutionary

strategies [25], Bayesian optimization [26], gradient-based

approaches like Differentiable Architecture Search

(DARTS) [27], EfficientNAS [28], and Particle Swarm

Optimization (PSO) [29, 30]. Specifically, Sun et al. [29]

represent the deep-learning model with a fixed-length

encoding-decoding schema. Junior et al. [30] propose an

innovative particle-updating strategy by estimating the

differences among variable-length particle neighbors.

Google originally introduced the concept of Federated

Learning as a solution to enhance collaboration across

Android devices. Existing works can be categorized as

vertical federated learning, horizontal federated learning,

federated transfer learning, cross-silo federated learning,

and cross-device federated learning [31]. Because of the

data heterogeneity, there are large gaps among client-

trained models. Corrections and regularizations are taken

to reduce the differences between local models [32, 33].

To fully utilize computation resources, Nishio et al. [34]

select the proper clients based on their resource

information. However, this will cause a bias since a large

amount of work will be assigned to clients with large

computation resources. Luo et al. [35] propose an energy-

aware federated selection approach considering battery

limitations. Parl et al. [36] propose a PSO-based federated

learning approach to decrease the communication cost,

where neural network parameters are optimized by a PSO.

Different from our proposed approach, our bi-level PSO

approach optimizes the neural network design during the

federated learning process.

III. BI-LEVEL PSO ARCHITECTURE WITH GPT-4 FINE-

TUNED NEURAL NETWORK DESIGNS

Our methodology leverages GPT-4, a state-of-the-art

language model, to fine-tune the initial population

generation in the upper-level PSO. This integration aims

to optimize the neural architecture search by providing

highly informed starting points, thus enhancing the

efficiency and effectiveness of the search process. A

lower-level PSO is taken to optimize the neural network

parameters. In this section, we first explore the

fundamentals of PSO, followed by the particle encoding

and decoding methods in upper-level PSO for NAS. We

then discuss leveraging GPT to fine-tune populations in

upper-level PSO. Finally, we touch the lower-level PSO.

A. Particle Swarm Optimization

PSO enhances federated learning by minimizing

computational and communication burdens. Unlike

traditional methods such as FedAvg that require extensive

data exchanges, PSO optimizes model updates using a

population-based approach where only key updates like

scores or partial weights are transmitted. This strategy

significantly reduces the volume of data communicated,

thereby improving network efficiency and processing

speed on client devices. Additionally, PSO’s ability to

adapt to the distributed and heterogeneous nature of

federated environments ensures robust model updates even

under unstable network conditions, accelerating

convergence and enhancing model performance.

PSO is recognized as a population-centric search

algorithm, known for its minimal computational

complexity, straightforward implementation, and rapid

convergence rates. Within this framework, each entity

functions as a particle, dynamically adjusting its position

in the search space by updating its velocity. As shown in

Eqs. (1) and (2), this process allows for efficient

exploration and optimization of complex problem spaces,

leveraging the collective intelligence of the swarm to

navigate toward optimal solutions [37, 38].

𝑣𝑖,𝑗
𝑡+1 = 𝜔𝑣𝑖,𝑗

𝑡 + 𝑐1𝑟1(𝑝𝐵𝑒𝑠𝑡𝑖,𝑗 − 𝑥𝑖,𝑗
𝑡)

+ 𝑐2𝑟2(𝑔𝐵𝑒𝑠𝑡𝑗 − 𝑥𝑖,𝑗
𝑡)

(1)

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝑣𝑖,𝑗
𝑡+1 (2)

where 𝑥𝑖,𝑗 denotes the position of the ith particle in the jth

dimension, while 𝑣𝑖,𝑗 represents the velocity of the ith

particle in the jth dimension. The term 𝑔𝐵𝑒𝑠𝑡𝑗 is the global

optimal fitness value among all particles at the jth

dimension. 𝜔 , 𝑐1 , and 𝑐2 are trainable parameters that

influence the algorithm’s behavior, including inertia,

cognitive component, and social component, respectively.

Random factors 𝑟1 and 𝑟2 are introduced to enhance the

exploratory capability of the swarm, ensuring a diverse

search across the potential solution landscape. The core

principle of PSO lies in tracking and updating the swarm’s

movement towards these optimal points, leveraging

individual discoveries (local bests) and collective wisdom

(global best) to navigate the search space efficiently [39].

Journal of Advances in Information Technology, Vol. 15, No. 9, 2024

1013

B. Particle Encoding and Decoding Schema

In the upper-level PSO, a robust particle encoding and

decoding scheme is essential for representing diverse

neural network architectures within PSO particles.

Wang et al. [20] have introduced a compact encoding and

decoding schema inspired by internet protocols. As shown

in Table I, the details of the encoding schema are

presented, including the convolutional, pooling, fully

connected, and disabled layers. The largest number of bits

is 12. Classless Inter-Domain Routing (CIDR) [20] is

taken to represent all types of CNN architectures. As

shown in Table II, the IP range starts from 0.0 representing

the convolutional layer with a mask length of 4, followed

by the fully connected layer with a mask length of 5,

pooling layer with a mask length of 5 and the disabled

layer with a mask length of 5. Moreover, the disabled layer

represents the combinations of different layers during the

evolving process. For example, an integer string [2, 61, 18,

143, 2, 61, 18, 143, 27, 255] represents the architecture

[Convolutional Layer (IP 2.61), Pooling Layer (IP

18.143), Convolutional Layer (IP 2.61), Pooling Layer (IP

18.143), Fully connected Layer (IP 27.255)]. After several

rounds of exploration, the new integer string can be [2, 61,

18, 143, 2, 61, 35, 255, 27, 255] representing the

architecture [Convolutional Layer (IP 2.61), Pooling Layer

(IP 18.143), Convolutional Layer (IP 2.61), Disabled

Layer (IP 35.255), Fully connected Layer (IP 27.255)].

More details can be found at Wang et al.’s work [20].

TABLE I. PARTICLE ENCODING AND DECODING SCHEMA OF CONVOLUTIONAL, POOLING, FULLY CONNECTED AND DISABLED LAYERS

Layer Type Parameter Range Number of Bits Example Value

Conv

Filter size [1, 8] 3 2(001)

Number of feature maps [1, 128] 7 32(000 1111)

Stride size [1, 4] 2 2(01)

Summary 12 001 000 1111 01

Pooling

Kernel size [1, 4] 2 2(01)

Stride size [1, 4] 2 2(01)

1(Maximal);2(Average) [1, 2] 1 2(1)

Place holder [1, 128] 6 32(00 1111)

Summary 11 01 01 0 00 1111

Fully connected
Number of Neurons [1, 2048] 11 1024(011 11111111)

Summary 11 011 11111111

Disabled
Place holder [1, 2048] 11 1024(011 11111111)

Summary 11 011 11111111

TABLE II. CIDR AND IP ADDRESS ASSIGNING OF CONVOLUTIONAL,

POOLING, FULLY CONNECTED AND DISABLED LAYERS

Layer Type CIDR IP Range

Convolutional Layer 0.0/4 0.0–15.255

Fully Connected Layer 16.0/5 16.0–23.255
Pooling Layer 24.0/5 24.0–31.255

Disabled Layer 32.0/5 32.0–39.255

C. GPT-4 Boosted Population Initialization

In the field of population-based optimization, PSO

begins by generating a varied set of individual particles,

each representing a unique neural network architecture.

However, designing effective neural networks requires not

only domain-specific knowledge but also sophisticated

techniques validated by existing works. Relying solely on

random search can be inefficient, as it consumes

considerable time and computational resources.

Furthermore, directly translating human expertise into

design rules can be complex and fraught with challenges.

To overcome these limitations, our strategy leverages

the advanced capabilities of GPT-4, a cutting-edge large

language model with domain knowledge in deep learning

tricks and neural network designs. By using GPT-4, we

move beyond simple random initialization to a more

informed starting point for the optimization process.

GPT-4’s ability to analyze vast amounts of data and learn

from diverse examples enables it to propose initial neural

network architectures that are both innovative and

practical. This not only speeds up the search process but

also enhances the quality of the solutions, making our

approach significantly more efficient and effective in

exploring complex design spaces without falling into local

optimal values. This strategic choice is predicated on the

understanding that the initial quality of these architectures

significantly impacts the efficiency and direction of the

subsequent search process. Bubeck et al. [40] prove

GPT-4’s reasoning ability across multiple areas.

Zhang et al. [22] prove that GPT-4 can generate

meaningful suggestions for potentially better neural

network architectures. Nevertheless, a discernible gap

remains between these GPT-4 suggested architectures and

the ideal, optimal structures. This discrepancy is partly due

to the reliance on basic prompt engineering that lacks the

incorporation of specific exploration constraints and the

continuous optimization process.

To bridge this gap, our methodology includes the

development of a meticulously designed prompt

engineering template, which is illustrated in Fig. 2. This

template is structured to guide GPT-4 in generating

proposals that not only aim to surpass the performance of

an initially designed CNN model for the CIFAR-10 dataset

but also adhere to predefined constraints within the

exploration space. The template is written as follows:

“This is my currently designed CNN model for CIFAR-10

dataset, [initial model]. Please recommend [population

size] new models that outperform my designed one. You

should satisfy these constraints [search constraints]. Please

generate your answers in this format [`plan1 ``` your first

recommendation``` `plan2 ``` your second

recommendation```].” An example is presented in Fig. 3,

GPT-4 API call is taken in this paper to complete the query

Journal of Advances in Information Technology, Vol. 15, No. 9, 2024

1014

process. In the future, we will develop a locally deployed

and fine-tuned LLM model for this part, such as Llama 3

and retrieval augmented generation techniques.

D. Fitness Evaluation

In our fitness evaluation strategy, we partition the

client’s dataset into two subsets: a training set for model

development and an evaluation set for performance

assessment. To enhance the efficiency of the training

phase, we employ an early-stopping mechanism that

terminates the process once improvement plateaus,

thereby conserving computational resources. Within the

framework of the upper-level PSO, each particle is

interpreted as a unique CNN architecture. These

architectures undergo training for a predetermined number

of epochs using the lower-level PSO in conjunction with

the training dataset. Subsequently, the performance of each

CNN model is thoroughly assessed on the evaluation

dataset, where a series of accuracy metrics are computed.

The average accuracy achieved by a model is then

designated as the fitness score of the corresponding

particle, reflecting the model’s efficacy [41].

Fig. 2. Client-server architecture overview of the proposed Bi-level PSO with GPT-4 boosted population initialization for NAS.

Fig. 3. GPT-4 prompt engineering benchmark for NAS.

On the other hand, the objective of the lower-level PSO

is to search for the most effective neural network weights.

This phase leverages the mean loss incurred by the CNN

model on the training dataset as the guiding metric for the

optimization process. By evaluating the model’s average

loss, the lower-level PSO effectively identifies the weight

configurations that minimize error, thereby serving as a

precise fitness function. This bifurcated approach ensures

a comprehensive and efficient exploration of both

architectural and weight parameters, aiming to elevate the

overall performance of the CNN models within the

federated learning environment.

E. Lower-Level PSO

The objective of the lower-level PSO is to optimize the

neural network parameters through a PSO-based training

approach. Detailed in Algorithm 1, this procedure

iteratively optimizes the weights of each neural network

layer. During this optimization cycle, a variable 𝑣 is

strategically combined with the inertia weight 𝜔 from the

preceding iteration to compute the updated 𝜔 value for the

current cycle. This mechanism ensures a dynamic

adjustment of the inertia component, facilitating a

balanced exploration and exploitation of the search space

tailored to each layer’s specific optimization needs. 𝝎𝐭
𝑔𝐵𝑒𝑠𝑡

is the updated global best weights at time step t. 𝛾 denotes

the learning rate while L represents the cross entropy loss

function.

Journal of Advances in Information Technology, Vol. 15, No. 9, 2024

1015

Algorithm 1. Pseudocode of the lower-level PSO

1: Initialize 𝒗, 𝝎, 𝝎𝒑𝑩𝒆𝒔𝒕
, 𝜶, 𝒄𝟏, 𝒄𝟐

2: For each weight layer 𝒍 = 𝟏, 𝟐, … 𝒅𝒐

3: 𝒗𝒍 ← 𝜶𝒗𝒍 + 𝒄𝟏𝒓𝟏(𝝎𝒑𝑩𝒆𝒔𝒕
− 𝒗𝒍) + 𝒄𝟐𝒓𝟐(𝝎𝒕

𝒈𝑩𝒆𝒔𝒕

−

𝒗𝒍)

4: End for

5: Update weights with 𝝎 ← 𝝎 + 𝒗

6: For each epoch I from 1 to E do

7: For each batch b do

8: 𝝎 ← 𝝎 − 𝜸𝜵𝑳(𝝎; 𝒃)

9: End for

10: End for

IV. EXPERIMENTS

To evaluate the effectiveness of our innovative bi-level

Federated PSO methodology, enhanced by GPT-4’s fine-

tuning of neural network populations, we conducted a

series of experiments. These experiments were designed to

measure the accuracy, convergence efficiency, and

reliability of our approach, particularly in scenarios

characterized by unstable network conditions. The initial

experiment sought to verify if our approach could achieve

high accuracy and rapid convergence with reduced

network communication overhead, especially when

compared to the FedAvg method, yet with the advantage

of a more sophisticated neural network architecture. These

assessments were conducted using the CIFAR-10 dataset,

with our results benchmarked against two established

approaches: FedAvg and FedPSO [36].

Our experimental setup was executed on a system

powered by an Intel Core i7-6850K processor and an

NVIDIA GeForce GTX 1080Ti graphics card. The base

CNN model, adapted from Park et al.’s work [36], was

modified to include a dropout layer with a 0.2 probability

and a standard batch normalization layer after each

architectural block, as detailed in Table III. The CIFAR-

10 dataset, consisting of 50,000 training images and

10,000 test images across 10 classes with each image sized

at 3232 pixels, served as the benchmark dataset for our

experiments. For the FedAvg approach, we configured the

system with 10 clients, with “C” values set either to 0.5 or

1, running for 30 epochs at the server level, 5 epochs at the

client level, and a batch size of 10. Similarly, the FedPSO

setup involved 10 clients, with the same epoch

configuration and batch size as FedAvg. The PSO

parameters were set to 𝛼 = 0.3, 𝑐1 = 0.7, and 𝑐2 = 1.4.

These settings are the same with [36]. For our proposed bi-

level PSO approach, the lower-level PSO configuration

mirrors that of FedPSO, whereas the upper-level PSO’s

parameters, 𝑐1 is 1.496, and 𝑐2 is 1.496. The initial weight

for velocity update is 0.7298.

TABLE III. INITIAL PARAMETERS SETTINGS FOR THE CNN

Layer Type Shape

Conv2D 3332

Pooling 32

Conv2D 3364

Pooling 64

FC 1024512

FC 51210

The performance outcomes of our proposed bi-level

federated PSO approach and GPT-4 boosted population

searching strategies, in comparison to benchmark

methods, are delineated in Table IV. The data reveals that

our approach substantially surpasses the benchmarks,

registering test accuracies that are 13.82%, 18.89%, and

22.78% superior to FedPSO, FedAvg with C = 1, and

FedAvg with C = 0.5, respectively.

Further insights into the efficacy of our approach are

provided in Table V, which depicts the most effective

CNN architecture identified through our optimization

process. Distinct from the architectures generated by

traditional NAS techniques, such as those reported by

Huang et al. [19], our architecture benefits from the early

involvement of GPT-4 in the initialization phase. This

strategic incorporation leads to the discovery of

architectures that are not only compact but also logically

coherent, showcasing the advantage of leveraging

advanced AI in the design process.

TABLE IV. COMPARATIVE ACCURACY OF VARIOUS ALGORITHMS

DURING THE TESTING PHASE

Approach Test Accuracy

FedPSO 70.12%
FedAvg (C = 1) 67.14%

FedAvg (C = 0.5) 65.00%

Our Approach 79.81%

TABLE V. BEST SEARCHED CNN ARCHITECTURE

Layer Type Shape

Conv2D filter size: 3×3, stride: 1, feature maps: 32

Conv1D filter size: 1×1, stride: 1, feature maps: 78

Pooling size: 2×2, stride: 2, type: Max
Conv2D filter size: 3×3, stride: 1, feature maps: 126

Conv2D filter size: 2×2, stride: 1, feature maps: 106

Conv2D filter size: 3×3, stride: 1, feature maps: 111
Pooling size: 2×2, stride: 2, type: Max

Conv2D filter size: 3×3, stride: 1, feature maps: 120

Conv1D filter size: 1×1, stride: 1, feature maps: 89
Pooling kernel size: 2×2, stride: 2, type: Average

FC neurons: 1309

Fig. 4. Comparative accuracy of various algorithms during the training
phase.

Moreover, Fig. 4 offers a visual representation of the

test accuracy progression throughout the training sessions.

This figure clearly illustrates the superior convergence

performance of our algorithm, evidencing a steady and

rapid improvement in accuracy. This trend demonstrates

Journal of Advances in Information Technology, Vol. 15, No. 9, 2024

1016

that our proposed algorithm does not merely improve

incrementally but does so at a pace that outstrips

conventional models, thanks to the strategic use of GPT-4

for initial population enhancement and the effective

optimization capabilities of our federated PSO approach.

When discussing convergence speed, it’s important to note

that distributed training methods like federated learning

are influenced by unique factors, unlike centralized

training. Initially, multiple devices with limited

computational resources perform local computations and

share updates with a central server. The data in these

scenarios is often non-IID, which can decelerate

convergence, particularly under constrained

computational capacities. Additionally, transmitting

updates across networks incurs further delays, potentially

exceeding the time spent on computations. Therefore,

comparing the convergence speeds of federated and

centralized learning methods directly is both challenging

and generally not meaningful. Compared to FedAvg, our

proposed algorithm incurs less communication delay due

to transmitting smaller data volumes. However, in

comparison with FedPSO, our algorithm experiences

increased communication delays due to the integration of

the GPT-4 API call. The GPT-4 API call delays can be

further decreased if a local LLM model is utilized.

Subsequently, we evaluated the resilience of our

proposed method under conditions of unstable network

communication, where data packets might be lost during

transmission between clients and the server. For this

purpose, we designed experiments under two distinct

scenarios characterized by data dropping rates of 10% and

20%, respectively. As presented in Table VI, the

performance of our approach in an environment with a

10% data loss rate exceeded that of the FedPSO and

FedAvg (C = 1) benchmarks by 11.74% and 25.73%,

respectively. Furthermore, in a more challenging scenario

with a 20% dropping rate, our method maintained its

superior performance, achieving results that were 11.84%

and 25.24% better than those of FedPSO and FedAvg (C =

1), respectively.

TABLE VI. COMPARATIVE ACCURACY OF VARIOUS ALGORITHMS

DURING TESTING IN UNSTABLE COMMUNICATION ENVIRONMENTS

Approach Failure Rate 10% Failure Rate 20%

FedPSO 69.18% 68.41%

FedAvg (C = 1) 61.48% 61.09%

Our Approach 77.30% 76.51%

These findings underscore the robustness of our bi-level

federated PSO approach and GPT-4 boosted population

searching strategies, demonstrating its ability to sustain

high levels of accuracy even in the face of significant

communication challenges. The resilience of our approach

in such unstable network conditions highlights its potential

for practical deployment in real-world applications where

network reliability cannot always be guaranteed.

V. CONCLUSION

In this study, we introduce a cutting-edge and

streamlined approach to NAS, termed the bi-level

federated PSO approach with GPT-4 boosted population

searching strategies, tailored for federated learning

environments. Our primary objective is to minimize

communication overhead, particularly in settings plagued

by unstable network conditions. This algorithm optimizes

server-side model aggregation by prioritizing the exchange

of score values rather than the models themselves, with

only the highest-scoring client model being transmitted to

the server for further refinement.

At the upper level of our framework, GPT-4 is

leveraged as a sophisticated expert system to guide the

initial population setup, informed by predefined design

concepts. This process is supported by elaborate prompt

engineering templates that incorporate NAS-specific

constraints, ensuring a focused and efficient search.

Additionally, we adopt a variable-length PSO strategy that

employs a novel architecture encoding and decoding

scheme, designed to generate compact yet effective neural

network architectures. At the lower level, a conventional

PSO methodology is utilized to fine-tune the weights of

the identified neural network architectures, optimizing

their performance.

To validate the efficacy of our proposed model, we

conducted comparative analyses against two established

benchmarks, FedAvg and FedPSO, using the CIFAR-10

dataset. Furthermore, to ascertain the resilience of our

approach under challenging network conditions, we

examined its performance across two scenarios

characterized by data loss rates of 10% and 20%.

Looking ahead, our research will explore the application

of our method to multi-objective optimization challenges,

aiming to strike an optimal balance between performance

efficacy and energy consumption. Additionally, we plan to

take into account the diversity in client capabilities, such

as variations in battery life and computational power.

Expanding our investigation, we will also delve into the

potential of integrating a GPT-4 driven multi-agent deep

reinforcement learning strategy within the federated

learning framework, promising to further enhance the

adaptability and efficiency of distributed machine learning

models.

CONFLICT OF INTEREST

The author declares that they have no relevant conflicts

of interest.

REFERENCES

[1] D. Wang and M. Hu, “Deep deterministic policy gradient with
compatible critic network,” IEEE Trans. Neural Networks Learn.

Syst., 2021.

[2] D. Wang, “Meta reinforcement learning with hebbian learning,” in
Proc. 2022 IEEE 13th Annual Ubiquitous Computing, Electronics

& Mobile Communication Conference (UEMCON), 2022, pp. 52–

58.
[3] D. Wang, M. Hu, and Y. Gao, “Multi-criteria mission planning for

a solar-powered multi-robot system,” in Proc. the ASME Design
Engineering Technical Conference, 2018, vol. 2A-2018.

doi: 10.1115/DETC2018-85683

[4] D. Wang, “Reinforcement learning for combinatorial optimization,”
in Encyclopedia of Data Science and Machine Learning, IGI Global,

2023, pp. 2857–2871.

Journal of Advances in Information Technology, Vol. 15, No. 9, 2024

1017

[5] L. Yun, D. Wang, and L. Li, “Explainable multi-agent deep

reinforcement learning for real-time demand response towards

sustainable manufacturing,” Appl. Energy, vol. 347, 121324, 2023.
[6] D. Wang, J. Zhao, M. Han, and L. Li. (2023). 4D printing-enabled

circular economy: Disassembly sequence planning using

reinforcement learning. SSRN. [Online]. Available:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4429186

[7] D. Wang, “Explainable deep reinforcement learning for knowledge

graph reasoning,” in Recent Developments in Machine and Human
Intelligence, IGI Global, 2023, pp. 168–183.

[8] D. Wang, “An adversarial-robust graph representation learning for

energy-aware vehicle routing considering privacy,” in Proc. 2024
8th International Conference on Green Energy and Applications

(ICGEA), 2024, pp. 80–86.

[9] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning
transferable architectures for scalable image recognition,” in Proc.

the IEEE Conference on Computer Vision and Pattern Recognition,

2018, pp. 8697–8710.
[10] B. Zoph and Q. V. Le, “Neural architecture search with

reinforcement learning,” arXiv preprint, arXiv1611.01578, 2016.

[11] M. Tan et al., “Mnasnet: Platform-aware neural architecture search
for mobile,” in Proc. the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2019, pp. 2820–2828.

[12] A. Gordon et al., “Morphnet: Fast & simple resource-constrained
structure learning of deep networks,” in Proc. the IEEE Conference

on Computer Vision and Pattern Recognition, 2018, pp. 1586–1595.

[13] D. Wang, “Robust adversarial deep reinforcement learning,” in
Deep Learning, Reinforcement Learning, and the Rise of Intelligent

Systems, IGI Global, 2024, pp. 106–125.

[14] J. Yuan et al., “Federated neural architecture search,” arXiv preprint,
arXiv2002.06352, 2020.

[15] H. Zhu, H. Zhang, and Y. Jin, “From federated learning to federated

neural architecture search: A survey,” Complex Intell. Syst., vol. 7,
no. 2, pp. 639–657, 2021.

[16] J. Liu, J. Yan, H. Xu, Z. Wang, J. Huang, and Y. Xu, “Finch:

Enhancing federated learning with hierarchical neural architecture
search,” IEEE Trans. Mob. Comput., 2023.

[17] Y. Venkatesha, Y. Kim, H. Park, and P. Panda, “Divide-and-
conquer the NAS puzzle in resource-constrained federated learning

systems,” Neural Networks, vol. 168, pp. 569–579, 2023.

[18] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas,
“Communication-efficient learning of deep networks from

decentralized data,” in Artificial Intelligence and Statistics, 2017,

pp. 1273–1282.
[19] J. Huang, B. Xue, Y. Sun, and M. Zhang, “A flexible variable-

length particle swarm optimization approach to convolutional

neural network architecture design,” in Proc. 2021 IEEE Congress
on Evolutionary Computation (CEC), 2021, pp. 934–941.

[20] B. Wang, Y. Sun, B. Xue, and M. Zhang, “Evolving deep

convolutional neural networks by variable-length particle swarm
optimization for image classification,” in Proc. 2018 IEEE

Congress on Evolutionary Computation (CEC), 2018, pp. 1–8.

[21] J. Achiam et al., “GPT-4 technical report,” arXiv preprint,
arXiv2303.08774, 2023.

[22] M. Zheng et al., “Can GPT-4 perform neural architecture search?”

arXiv preprint, arXiv2304.10970, 2023.
[23] A. Gupta et al., “RAG vs Fine-tuning: Pipelines, tradeoffs, and a

case study on agriculture,” arXiv preprint, arXiv2401.08406, 2024.

[24] D. Wang, “Obstacle-aware simultaneous task and energy planning
with ordering constraints,” in Proc. 2023 11th International

Conference on Information and Communication Technology

(ICoICT), 2023, pp. 289–294.

[25] K. N. Pujari, S. S. Miriyala, P. Mittal, and K. Mitra, “Better wind
forecasting using evolutionary neural architecture search driven

green deep learning,” Expert Syst. Appl., vol. 214, 119063, 2023.

[26] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. P.
Xing, “Neural architecture search with bayesian optimisation and

optimal transport,” Adv. Neural Inf. Process. Syst., vol. 31, 2018.

[27] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable
architecture search,” arXiv preprint, arXiv1806.09055, 2018.

[28] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural

architecture search via parameters sharing,” in Proc. International
Conference on Machine Learning, 2018, pp. 4095–4104.

[29] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “A particle swarm

optimization-based flexible convolutional autoencoder for image
classification,” IEEE Trans. Neural Networks Learn. Syst., vol. 30,

no. 8, pp. 2295–2309, 2018.

[30] F. E. F. Junior and G. G. Yen, “Particle swarm optimization of deep
neural networks architectures for image classification,” Swarm Evol.

Comput., vol. 49, pp. 62–74, 2019.

[31] P. M. Mammen, “Federated learning: Opportunities and challenges,”
arXiv preprint, arXiv2101.05428, 2021.

[32] H. Zhang, T. Wu, S. Cheng, and J. Liu, “Fedcos: A scene-adaptive

enhancement for federated learning,” IEEE Internet Things J., vol.
10, no. 5, pp. 4545–4556, 2022.

[33] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,”

in Proc. the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 10713–10722.

[34] T. Nishio and R. Yonetani, “Client selection for federated learning

with heterogeneous resources in mobile edge,” in Proc. ICC 2019,
2019 IEEE International Conference on Communications (ICC),

2019, pp. 1–7.

[35] B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective
federated learning design,” in Proc. IEEE INFOCOM 2021, IEEE

Conference on Computer Communications, 2021, pp. 1–10.

[36] S. Park, Y. Suh, and J. Lee, “FedPSO: Federated learning using
particle swarm optimization to reduce communication costs,”

Sensors, vol. 21, no. 2, 600, 2021.
[37] D. Wang, M. Hu, and J. D. Weir, “Simultaneous task and energy

planning using deep reinforcement learning,” Inf. Sci. (Ny)., 2022.

[38] D. Wang and M. Hu, “Contrastive learning methods for deep
reinforcement learning,” IEEE Access, 2023.

[39] D. Wang, “Out-of-distribution detection with confidence deep

reinforcement learning,” in Proc. 2023 International Conference on
Communications, Computing, Cybersecurity, and Informatics

(CCCI), 2023, pp. 1–7.

[40] S. Bubeck et al., “Sparks of artificial general intelligence: Early
experiments with GPT-4. arXiv,” arXiv preprint, arXiv2303.12712,

2023.

[41] D. Wang, “Multi-agent reinforcement learning for safe driving in
on-ramp merging of autonomous vehicles,” in Proc. 2024 14th

International Conference on Cloud Computing, Data Science &

Engineering (Confluence), 2024, pp. 644–651.

Copyright © 2024 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-
NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 15, No. 9, 2024

1018

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V15N9-1011

