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Abstract—In recent years, Graph Convolutional Networks 

(GCN) have witnessed increasing applications in 

hyperspectral image classification tasks. In comparison to 

Convolutional Neural Networks, graph representations 

providing a more effective means to exploit the complex 

interplay of spatial and spectral features in hyperspectral 

images, emphasizing their potential to address the 

challenges associated with limited labeled data in 

hyperspectral image classification tasks. Although Graph 

Convolutional Networks are able to capture Hyperspectral 

Image (HSI) spatial context structure well, they lack the 

ability to capture pixel-level spectral spatial features 

compared to Convolutional Neural Networks (CNNs). In 

order to fully utilize the advantages of Convolutional Neural 

Networks and Graph Convolutional Networks, in this 

paper, we propose a model that combines superpixel-based 

Hypergraph Convolutional Networks features with patch-

based Convolutional Neural Network features, engaging in 

feature learning on both small-scale regular regions and 

large-scale irregular regions. To test the model, we select 

2% of the total number of dataset labels for training, 2% of 

the total number of dataset labels for validation and the 

96% labels for testing. An overall accuracy of 92.37% and 

95.86% was obtained in the Indian Pines and Pavia 

University dataset which is higher than other state-of-the-

art methods and achieved a more accurate classification 

results on the landcover boundary areas.  

 

Keywords—computer vision, hyperspectral image 
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I. INTRODUCTION 

In recent years, the application of deep learning 

techniques has significantly reshaped the landscape of 

remote sensing image analysis, particularly in the 

Hyperspectral Image (HSI) classification task, which 

aims to discriminate the class of each pixel. Compared 

with the RGB image, hyperspectral image contains 

hundreds of contiguous spectral bands. Rich spectral 

information enables the discrimination of subtle material 

differences through, making HSIs play an important role 

in Earth Observation tasks, such as precision 

agriculture  [1], mineral exploration [2], urban planning, 

and others [3]. Achieving high accuracy in HSI 

classification not only enhances the quality of the 

practical applications but also represents an extensively 

investigated subject in the field of remote sensing 

research. 

However, HSI data has the characteristics of a large 

number of spectral channels and spatial variability of 

spectral features, these characteristics of HSI data bring 

difficulties and challenges to the classification task. 

Specially, in practical scenarios, due to the expert 

annotation of HSI is labor-intensive and time-consuming, 

the availability of labeled samples is significantly 

restricted. Early on, the strategy of combining Feature 

Extraction (FE) with classifiers was an important research 

topic in HSI classification. In comparison to traditional 

approaches, deep learning methods have the capability to 

automatically learn adaptive and robust features from 

training data. Among these, Convolutional Neural 

Network (CNN) has is the most widely used method for 

extracting spectral-spatial features from HSI. Various 

CNN architectures have been proposed, ranging from 1D-

CNN [4] to 3D-CNN [5] to enhance the learning capacity 

of spectral-spatial features. 

While CNN-based methods have achieved 

commendable accuracy in classification, they face 

limitations due to the size of the fixed convolutional 

kernels. These methods overlook the dependency 

between pixels at longer distances and struggle to 

aggregate similar pixels distributed across different 

regions in HSI. Consequently, their performance is not so 

good when dealing with small-scale training samples. 

Due to the extremely limited availability of HSI labeling 

data, recently, Semi-Supervised Learning (SSL) has 

gained significant attention. SSL can leverage both 

labeled and unlabeled data, combining the advantages of 

supervised and unsupervised algorithms to yield more 

accurate classification results. Due to its ability to 

perform convolution on graphs, Graph Convolutional 

Networks (GCN) have been wildly used in the HSI semi-

supervised classification task. Qin et al. [6] proposed a 

semi-supervised GCN method, where Hyperspectral 

Images (HSI) are initially encoded into a graph. 
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However, dealing with a large number of pixels in HSI 

poses computational challenges when considering each 

pixel as a node in the graph. To address this issue,  

Wan et al. [7] suggested using superpixels instead of 

pixels as nodes, significantly reducing the computational 

complexity and making GCN more practical.  However, 

existing methods still have some problems in the HSI 

semi-supervised classification task:  

⚫ The HSI classification task encounters difficulties 

attributed to the intricate multidimensional 

properties of HSI, encompassing both spectral 

and spatial domains. Relationships between pixels 

involve not only spectral features but also various 

aspects such as spatial structure and spatial-

spectral associations. 

⚫ Regarding the multi-range relations in spatial 

positions, it refers to the fact that in hyperspectral 

images, the spatial relationships between pixels 

cover various scales or ranges due to the potential 

existence of different spatial structures in the 

landscape. 

Therefore, in this work, we propose a semi-supervised 

HSI classification model called MSHFC which has the 

following contributions: 

⚫ We propose to construct hypergraphs on the 

superpixel region to enhance the capability of 

capturing HSI contextual information. Superpixels 

can minimize the influence of noise at the 

individual pixel level. Additionally, hypergraphs 

encode relationships between superpixels as a 

graph structure offering a richer representation of 

spectral-spatial associations.  

⚫ We designed a multiscale superpixel-level 

Hypergraph Convolutional Network (HGCN) 

model to offer distinct feature representations due 

to HSI contains various land cover details at 

different scales. Utilizing a multiscale superpixel 

hypergraph allows the model to consider both 

detailed features and global patterns, offering a 

more comprehensive depiction of spectral and 

spatial characteristics. 

We propose to utilize a CNN module with spatial and 

spectral attention which can supplement the detailed 

features of ground objects that are lost by HGCN. By 

fusion the features obtained from HGCN and CNN, the 

adaptability of the classification model to complex scenes 

can be enhanced, thereby achieving better classification 

performance. 

The rest of the study is divided into the following 

sections: Section II introduce the basic concepts of the 

proposed method and summarizes some previous 

research, Section III shows the proposed methodology, 

Section IV provides the experiment results and 

discussion. Section V concludes with a summary and our 

future works. 

II. MATERIALS AND METHODS 

In Section II, we review the concepts and principles 

CNN, HGCN and superpixel segmentation. They are the 

basic algorithms of our proposed method. 

A. Convolutional Neural Networks (CNNs) 

In the region of HSI classification, Convolutional 

Neural Networks (CNNs) have become a fundamental 

tool for feature extraction. Adapted and extended from 

their original 2D image design, CNNs prove effective in 

processing HSI by capturing both spatial and spectral 

information. The CNN method generally first styles the 

original HSI images into square patches, and then extracts 

features through convolution operations within each 

patch as shwon in Fig. 1. 

CNNs are a good fit for the complex and high-

dimensional nature of HSI data because of their 

remarkable ability to autonomously learn hierarchical 

representations from data. Countless studies have applied 

different forms of CNNs to HSI classification tasks. For 

example, Ying et al. [8] proposed a 3-D convolutional 

network for learning HSI spectral-spatial features.  

Hang et al. [9] designed a two branch 2D-CNN based 

model which incorporated the spectral and spatial 

attention mechanism for capturing more discriminative 

channels or positions. However, traditional CNNs mainly 

focus on the spatial local relationship between pixels, 

while ignoring the rich spectral information in 

hyperspectral images. In addition, CNNs have limited 

processing capabilities for imbalanced data, which can 

easily lead to poor classification performance for 

categories with a small number of samples. Therefore, we 

also try to combine CNN with other mechanisms in this 

article to obtain better classification results. 

 

 

Fig. 1. The convolutional network architecture (The red box indicates patch). 
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B. Hypergraph Convolutional Networks (HGCN) 

In the HSI classification task, a noteworthy 

advancement is the Hypergraph Convolutional Network 

(HGCN) [10] algorithm. It is an extension of the widely 

used Graph Convolutional Network (GCN). Fig. 2 shows 

the general structure of graph and hypergraph. An edge in 

a typical graph structure may only establish a one-to-one 

pair of first-order interactions. However, an edge of a 

hypergraph can contain several nodes, which expresses 

higher-order relationships in the data. This is the main 

distinction between a graph and a hypergraph. Due to the 

advantages of hypergraph’s structure, it is often used in 

applications that deal with complex data correlation of 

multimodal or multiple types of data, such as such as 

social networks and recommendation systems. While 

traditional GCN excels in capturing relationships in 

graph-structured data, HGCN takes a step further 

structures, offering a more expressive way to model 

complex dependencies among the HSI data. 

 

 

Fig. 2. General structure of graph and hypergraph. (a) A simple graph; 
(b) A hypergraph; (c) Incident matrix for the hypergraph. 

C. Superpixel Segmentation 

Ren and Malik [11] introduced an image segmentation 

technique called superpixel segmentation (SP). 

Superpixels are groups of adjacent pixels with similar 

characteristics that are gradually combined into visually 

meaningful irregular pixel clusters. These characteristics 

include texture, color and other visual characteristics. 

Establishing local regions in hyperspectral image (HSI) 

classification is crucial to capture spatial features in 

spectral spatial models and many researches have 

explored and implement superpixel segmentation in HSI 

classification tasks [12]. 

A commonly used superpixel segmentation method for 

HSI classification is Entropy Rate superpixel 

Segmentation (ERS) [13]. The ERS algorithm can be 

simply summarized into the following two steps:  

Firstly, determine the desired total number of 

superpixels, define as parameter S. Then, construct the 

graph, where represents the set of vertices corresponding 

to pixels, and is the set of edges computed using a 

Gaussian decreasing function based on pixel distances. 

Secondly, the primary objective of Entropy Rate 

Superpixel Segmentation (ERS) is to identify an optimal 

subset that can partition the graph into connected 

subgraphs. Formally, the segmentation task can be 

formulated as an optimization problem as below: 

 argQ max 𝐻(𝑄) + 𝛾𝐵(𝑄) (1) 

where 𝐻(𝑄)  is the constraint of entropy rate to make 

clusters. 𝐵(𝑄) is the balance term to facilitate the clusters 

to have a similar spatial size. 𝛾 ≥ 0  is a coefficient to 

adjust the influence of the balance term. 

III. METHODS 

The overall architecture of the proposed method is 

shown in Fig. 3. The main processes of this work can be 

described as the following parts: multiscale superpixel 

segmentation, hypergraph construction and HGCN, CNN 

feature extraction with spectral-spatial attention and the 

fusion operation. The details of each module will be 

introduced in Section III.  

 

 

Fig. 3. The overall architecture of the proposed method. 
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A. Multiscale Superpixel Segmentation 

Objects in Hyperspectral Images (HSI) typically 

exhibit complex spatial structures, varying in size, shape, 

and distribution. Numerous studies have highlighted the 

efficacy of multiscale superpixel segmentation as a 

valuable strategy to utilize spatial information in HSI. 

Multiscale superpixel segmentation allows modeling of 

images’ objects at different scales, facilitating a more 

comprehensive capture of their spatial characteristics. 

In this study, we drew inspiration from the multiscale 

superpixel segmentation method proposed by  

Xi et al. [14]. It is a heuristic approach to determine the 

superpixel number, taking into account the inherent 

characteristics of hyperspectral images (HSIs), such as 

spatial size and resolution. The calculation for the number 

of superpixels at scale m is expressed as: 

 𝑆𝑚 = 𝑓𝑙𝑜𝑜𝑟 (
𝐻×𝑊

𝑓𝑙𝑜𝑜𝑟(100×0.7√𝑟𝑒𝑠)×2𝑚−1
) , 𝑚 = {1, 2, . . . , 𝑀} (2) 

where floor is the value down to the nearest integer. 

H×W is the spatial size and res is the spatial resolution. 

Meanwhile, M is the number of considered scales. 

Taking the Indian Pines (IP) dataset, the most widely 

used data set in HSI classification tasks, as an example, 

we set three different scales: small, middle and large (m 

in Formula 3.3 is set to 0, 1, 2), and the resulting scale set 

is: {1051, 525, 262}.  

B. Superpixel Hypergraph Construction (SP-HGC 

Module) and HGCN 

1) SP-HGC module 

Fig. 4 is the schematic illustration of hypergraph 

construction based on the superpixel regions. After 

ERS  [13] superpixel segmentation, the HSI is segmented 

into several superpixels, which are denoted as 𝑆 =
{𝑠1, 𝑠2, . . . , 𝑠𝑁}. Each superpixels region can be taken as a 

hypergraph node, and the hypergraph can be constructed 

by the similarity or the relationships between the nodes. 

 

 

Fig. 4. Hypergraph construction process. (a) input HSI; (b) superpixel 

segmentation results; (c) hyperedge generation: blue dots are the 

hypergraph nodes; (d) constructed hypergraph: each color area 
represents a hyperedge. 

For predicting the label of each pixel, it is necessary to 

assign the features of the superpixels to individual pixels. 

For this purpose, we inspired by Xu et al. work [15], they 

establish a mapping matrix 𝑴 ∈ ℝ𝑤ℎ×𝑁  to decode 

superpixels into pixels. The 2D HSI flatten data 𝑷′ ∈
ℝ𝑤ℎ×𝑐  are represent by the 3D HSI along the spatial 

dimension as the following calculation: 

 𝑷′(h(i − 1) + j, : ) = 𝑷(i, j, ∶) (3) 

where 𝑃(𝑖, 𝑗, ∶) is the pixel vector of the 3D HSI at the 

spatial position (𝑖, 𝑗) , (𝑖 = 1, 2, . . . , 𝑤;  𝑗 = 1, 2, . . . , ℎ) , 

The mapping matrix 𝑴 is defined as: 

 𝑴(i, j) = { 
   1,       if 𝑃′(i, ∶) ∈ sj 

0,            otherwise
 (4) 

where 𝑷′(𝑖, ∶) is the 𝑖th pixel of the HSI flatten data. 

A hypergraph can be defined as 𝑮 = (𝑽, 𝑬, 𝑨), where 

𝑽, 𝑬, and 𝑨 are the set of nodes, edges and an attribution 

of nodes. By using the encoder in Eq. (5), HSI can be 

easily encoded into graph nodes. Each node of 𝐺 

corresponds to a superpixel of HSI. 

 𝐕 = Encode(𝑷; 𝑴) = 𝑴′T𝑷′ (5) 

where 𝑴′ is the normalized 𝑴 by column. Suppose the 

node set 𝑉  contains m nodes, each node  𝐯𝑖  is assigned 

with a weight vector 𝐱𝑖 which is computed as follows:  

 𝐱i =
1

𝑛𝑖
∑ 𝐝𝑗

𝑛𝑖
𝑗=1  (6) 

where 𝑛𝑖  is the number of pixels in the 𝑖th  superpixel, 

and 𝐝𝑗 ∈ ℝ1×𝑐(𝑖 = 1, 2, . . . , 𝑛𝑖)  is the spectral vector of 

the 𝑗th  pixel. We can obtain weight set of nodes 𝐗 =
{𝐱1, 𝐱2, . . . , 𝐱N}𝐓 ∈ ℝ𝑁×𝑐. 

For node 𝐯𝑖, 𝑛 nodes with the most similar attribute to 

 𝐯𝑖 are selected form the neighborhood of center node 𝐯𝑖 

as 𝒩(𝐯𝑖). The hyperedge 𝐞𝑖  contains the center node 𝐯𝑖 

and the nodes 𝐯𝑗  in the neighborhood 𝒩(𝐯𝑖) . The 

definition of hyperedge 𝐞𝑖 is as follows: 

 𝐞𝑖 = 𝒩(𝐯𝑖) ⋃ { 𝐯𝑖} (7) 

The adjacency matrix of hypergraph 𝐇 ∈ ℝ𝑁×𝑁  is 

defined as: 

 𝐇(i, j) = {
1,          if 𝐯𝑖 ∈ 𝐞𝑗

0,        otherwise
 (8) 

Each hyperedge’s importance is considered equal, and 

the weight of every hyperedge is set to 1.Consequently, 

the attribution matrix 𝐀 ∈ ℝ𝑁×𝑁  is set as an identity 

matrix. The elements of the node degree matrix 𝐃𝐯 ∈
ℝ𝑁×𝑁 are: 

 𝐃𝐯(𝑖, 𝑖) = ∑ 𝐀(𝑖, 𝑖)𝐇(𝑖, 𝑗)𝑁
𝑗=1  (9) 

The degree matrix 𝐃𝐞 ∈ ℝ𝑁×𝑁 of hyperedges is: 

 𝐃𝑒(𝑖, 𝑖) = ∑ 𝐇(𝑖, 𝑗)𝑁
𝑗=1  (10) 

2) Hypergraph Convolutional Network (HGCN) 

After constructing the hypergraph, we operate HGCN 

to update the features of the nodes. Given a hypergraph 
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representation for a HSI, the normalized hypergraph 

Laplacian L is defined as: 

 LH = I − Dv
−1/2HADe

−1HTDv
−1/2 (11) 

where 𝐈 is the identity matrix. 

In a hypergraph, the convolution on a signal 𝐱 can be 

defined as the convolution operation between the signal 𝐱 

and a filter 𝐠, similar to graph convolution in the spectral 

domain. 

 g  x = Φg(Λ)ΦTX (12) 

where 𝚽 = (φ1, φ2, . . . , φ𝑁) ∈ ℝ𝑁×𝑁 is composed of the 

orthogonal eigenvectors of by column, and 𝚲 =
diag(λ1, λ2, . . . , λ𝑁)  are the corresponding non-negative 

eigenvalues. After the row-normalization [10], Eq. (12) 

can be expressed as follows: 

 g  x ≈ σ(Dv
−1HADe

−1HTx) (13) 

To facilitate efficient information propagation on the 

constructed hypergraph for HSI classification, we employ 

classification through the use of Eq. (14). The layer-wise 

propagation within the hypergraph is outlined as follows: 

 𝐗(𝑙+1) = σ(𝐃𝐯
−𝟏𝐇𝐀𝐃𝐞

−𝟏𝐇𝐓𝐗(𝑙)𝚯(𝑙)) (14) 

where 𝚯(𝑙) is the trainable weight at the l-th layer, σ is the 

activation function, are the features of hypergraph st the 

𝑙 + 1th and l-th layer.  

After the HGCN layers, the features of pixels 𝑃′ are 

computed as decoding the features of superpixels by 

using the matrix 𝑀 . The features of nodes need be 

assigned to pixels because the task is to classify pixels 

instead of superpixels. To propagate the node features to 

pixels, with the association matrix M, which can be 

written as: 

 𝑷∗ = Decode(𝑽; 𝑴) = Reshape(𝑴𝑽) (15) 

where 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(∙) means restoring the spatial dimension 

of the flattened data. After the decoding procedure, the 

hypergraph features can be projected back to the image 

space. 

HGCN can efficiently propagate information in graph 

structures, capturing relationships between nodes 

effectively, so they can exhibit outstanding performance 

even in shallower networks. In this work, we use two 

HGCN layer to capture the HSI features. 

C. CNN Feature Extraction with Spectral-Spatial 

Attention 

Considering that in the HGCN branch, I perform 

dimensionality reduction preprocessing on the original 

HSI images, reducing the original hundreds of bands to 

single digits. This may lose the ample spectral 

information in the HSI data during the model training 

process. So, I designed CNN branches with spectral 

attention and spatial attention as the supplement. 

Initially, the input HSI data is divided into 77 

patches. Hu et al. proposed a method called SENet [16], 

which improves accuracy by modeling the correlation 

between feature channels and intensifying important 

features. Inspired by their work, we design a spectral 

attention module. 

By recording spectrum dependencies among various 

bands, the spectral attention module seeks to highlight 

spectral features in HSI data, as shown in Fig. 5. It can 

obtain a weight for each band, which it can then use to 

adjust the 3D convolutional layer’s input. This allows us 

to express the spectral attention as follows: 

 havg
k =

1

𝐻×𝐻
∑ ∑ 𝑓(𝑘, 𝑖, 𝑗)𝐻

𝑗=1
𝐻
𝑖=1  (16)  

where 𝑓 ∈ ℝ𝐻×𝐻×𝐶  is the feature obtained from the 

processing of the neighborhood pixel block through the 

convolution layers, 𝑓(𝑘, 𝑖, 𝑗) represents the value of the 

position (𝑖, 𝑗) of the 𝑘 th channel of the feature map 𝑓 , 

ℎ𝑎𝑣𝑔  is the result of global average pooling, ℎ𝑎𝑣𝑔
𝑘  is the 

value of the 𝑘th channel of ℎ𝑎𝑣𝑔. 

 𝐴𝑠𝑒 =  𝜎2(𝐹𝐶2( 𝜎1(𝐹𝐶1(ℎ𝑎𝑣𝑔)))) (17) 

where 𝜎1  and 𝜎2  represent LeakyReLU and sigmoid 

activation functions, respectively. FC1 and FC2 are two 

fully connected layers.  

By calculating the average and maximum values of 

various channels at various spatial locations, spatial 

attention is able to determine the correlation between 

various geographical locations. 

 

 

Fig. 5. Spatial attention module (SA Atten). 

Concatenation is done once pooling procedures are 

complete. A convolutional layer is used in further 

processing to draw attention to important spatial regions. 

Fig. 6 illustrate the spatial attention module’ process. The 

spatial attention can be formulated as: 

𝐴𝑠𝑎 = σ([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑓);  𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑓)  𝑊])  (18) 

where 𝑓 is the feature map obtained from the 3D-CNN 

layer, σ is the sigmoid function and 𝑊 is the weight of 

the convolution. 

 

 

Fig. 6. Spatial attention module (SA Atten). 

Considering the multi-scale hypergraph learning 

already has a certain computational complexity, the CNN 

branch needs to be lightweight. Fig. 7 displays the 

architecture of the 2D and 3D CNNs that were utilized in 

this study. 

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

995



 

Fig. 7. Structure of 3D-CNN and 2D-CNN used in this work. 

D. Feature Fusion 

After obtaining features of different superpixel scales, 

we fusion the three feature maps by the manually set 

weights. The sum of the three scale superpixel HGCN 

weights is 1, which constitutes the final feature of the 

HGCN branch. We set a larger weight as 0.4 for the 

features extracted by middle-scale superpixel HGCN. 

Considering that the features obtained by small-scale and 

large-scale HGCN complement the overall features, the 

weights of the two are evenly set to 0.2 and 0.2. 

Therefore, the features obtained from the whole HGCN 

branch can be calculated as: 

 𝐹𝐻𝐺 = 0.2 × 𝐹𝐻1 + 0.4 × 𝐹𝐻2 + 0.2 × 𝐹𝐻3 (19) 

where 𝐹𝐻1 , 𝐹𝐻2  and 𝐹𝐻3  are the feature maps of small 

scale HGCN, middle scale HGCN and large scale HGCN, 

respectively. The fusion illustration is shown in Fig. 8. 

 

 

Fig. 8. Fusion of features obtained by HGCN on superpixels of different 
scales. 

The CNN and HGCN branches have different feature 

distributions because they use different neural network 

models. The model’s integration can be improved by 

assigning distinct weights 𝜂 to the two types of feature 

extraction algorithms. The whole feature extraction 

process can be expressed by: 

 𝐹 = 𝜂 × 𝐹𝐶 ⊕ (1 − 𝜂) × 𝐹𝐻𝐺 (20) 

where 𝐹𝐶 and 𝐹𝐻𝐺 are the feature maps CNN branch and 

HGCN branch, respectively.  

IV. RESULT AND DISCUSSION 

A. Datasets 

The Indian Pines (IP) dataset contains 224 spectral 

channels with the spatial size is 145×145 pixels with a 

spatial resolution as 20 m. To enhance the relevance of 

the dataset, water absorption bands (nos. 104–108, 150–

163, and 220) were removed, resulting in the utilization 

of 200 spectral bands. There are 10,269 labeled pixels 

distributed across 16 categories. The ground truth map is 

shown in Fig. 9.  

 

 

Fig. 9. Indian Pines dataset. 

The Pavia University (PU) dataset comprises an image 

with 115 bands spanning from 430 to 860 nm and a 

spatial resolution of 1.3 m. In the initial dataset, 12 bands 

were excluded due to significant noise, leaving 103 bands 

for experimental purposes. The image dimensions are 

610×340. There are 42,776 labeled pixels distributed 

across 9 categories. The ground truth map are shown in 

Fig. 10. 

 

 

Fig. 10. Pavia University dataset. 

Table I shows the number of samples of each category 

in IP and PU datasets. 

TABLE I. THE NUMBER OF SAMPLES OF EACH CATEGORY IN THE IP 

DATASET AND PU DATASET 

Indian Pines dataset Pavia University dataset 

Class No. Samples Class No. Samples 

1 46 1 6631 

2 1428 2 18649 

3 830 3 2099 

4 237 4 3064 

5 483 5 1345 

6 730 6 5029 

7 28 7 1330 

8 478 8 3682 

9 20 9 947 

10 972     - - 

11 2455     - - 

12 593     - - 

13 205     - - 

14 1265     - - 

15 386     - - 

16 93     - - 

Total 10249 Total 42776 
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B. Implement Details 

For each dataset, we select 2% of the total number of 

labels in each category for training, 2% for validation, 

96% for testing. The samples are randomly selected. 

Therefore, for IP and PU dataset, the number of samples 

in the training, validation and testing sets are: {205, 205, 

9859} and {856, 856, 41064}, respectively. Each dataset 

dimension of the spectral bands is reduced to 3 by 

Principal Component Analysis (PCA). 

The ERS superpixel segmentation method is 

implemented to get the multiscale superpixels. The 

superpixel numbers in three scales are, {1051, 525, 262} 

for IP dataset, {3190, 1583, 791} for PU dataset. The 

node neighborhood in the hypergraph modeling is set to 

8. The training epoch is set to 200. Details of the 

experimental environment setting are shown in Table Ⅱ. 

TABLE Ⅱ. DETAILS OF THE EXPERIMENTAL ENVIRONMENT SETTING 

 Configurtion Category  Item Configurtion 

Hardware GPU RTX 3090 × 1 

Framework PyTorch 1.10.2 

Hyperparameters Learning rate 0.0001 

 Weight decay 0.01 

 Optimizer Adam 

 Loss function Cross-entropy loss 

 

C. Evaluation Matrix  

This study uses the per-Class Average (CA), Overall 

Accuracy (OA), Average Accuracy (AA), and the kappa 

coefficient for a quantitative assessment of the proposed 

method. 

The percentage of accurately categorized pixels 

relative to the total number of test samples is represented 

by OA. Because it does not account for specific class 

circumstances, this statistic assesses the overall 

categorization performance of HSI and is hence less 

affected by unequal class distributions. Meanwhile, AA 

denotes the average accuracy of all land cover 

classifications, providing insights into the precision of 

different categories.  

A statistical parameter called the kappa coefficient is 

used to evaluate the degree of agreement between the 

classification results and the ground truth. This allows for 

an overall evaluation of the classifier’s efficacy. A greater 

Kappa value, which ranges from −1 to 1, denotes 

improved classification performance with the selected 

approach.  

D. Results 

1) Fusion ratio evaluation 

In Section Ⅲ-D, we propose to set a parameter ƞ to 

fuse the features of the HGCN branch and the CNN 

branch. Here, I conducted the experiments by setting the 

ƞ to 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 to find the optimized 

fusion ration.  

To test different ratios, we conducted experiments on 

the IP and PU datasets respectively. The classification 

results are shown in Fig. 11. 

 

 

Fig. 11. Classification accuracy on different fusion ratio. 

From the results we can see, for IP dataset and PU 

dataset, when ƞ = 0.1 can get the best results. So, in 

subsequent experiments, we will keep this setting for 

further research. 

2) Quantitative results 

Using the two datasets, the proposed method is 

compared with five other HSI classification methods. 

Tables Ⅲ and Ⅳ shows the classification results on the 

IP dataset and PU dataset, respectively. 

TABLE Ⅲ. CA, OA, AA, AND KAPPA COEFFICIENT ON THE INDIAN PINES DATASET 

Class No. Class Name 3D-CNN [17] GCN [6] miniGCN [18] CEGCN [19] F2HNN [20] Ours 

1 Alfalfa 49.25 0.68 35.41 43.84 79.35 82.44 
2 Corn-notill 84.02 69.42 85.97 82.70 85.79 89.88 

3 Corn-mintill 93.26 75.27 78.14 91.52 92.38 91.67 

4 Corn 86.60 67.74 55.22 88.40 86.56 85.90 

5 Grass-pasture 87.94 71.42 72.69 82.97 89.01 89.44 

6 Grass-trees 96.80 83.75 93.50 91.27 97.14 97.71 

7 Grass-pasture-mowed 78.88 5.50 6.15 58.90 98.85 97.38 
8 Hay-windrowed 99.76 92.95 98.62 97.17 99.87 97.87 

9 Oats 78.68 4.38 10.53 68.60 88.22 93.95 

10 Soybean-notill 90.78 64.36 88.78 86.77 90.70 88.14 
11 Soybean-mintill 95.84 90.16 94.92 94.47 96.86 96.35 

12 Soybean-clean 76.25 58.30 72.21 76.60 79.58 83.04 

13 Wheat 98.73 76.67 94.76 94.16 95.41 85.30 
14 Woods 97.38 94.81 93.51 96.78 97.29 99.35 

15 Building-Grass-Tress-Drivers 89.46 62.01 90.03 92.84 90.13 93.64 

16 Stone-Steel-Towers 82.33 2.81 74.68 86.30 84.36 86.27 

 Overall Accuracy 91.64 78.19 87.31 89.83 92.49 93.21 

 Average Accuracy 86.62 57.51 71.57 83.33 90.72 91.77 

 kappa 90.47 75.04 85.46 88.42 91.45 92.26 
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TABLE Ⅳ. CA, OA, AA, AND KAPPA COEFFICIENT ON THE PAVIA UNIVERSITY DATASET 

Class No. Class Name 3D-CNN [17] GCN [6] miniGCN [18] CEGCN [19] F2HNN [20] Ours 

1 Asphalt 91.63 78.14 85.05 93.17 91.51 92.06 
2 Meadows 98.39 90.65 97.84 97.71 98.81 99.57 

3 Gravel 79.37 50.19 74.87 83.05 87.35 88.99 

4 Trees 68.41 15.62 69.70 77.76 79.44 87.48 
5 Metal sheets 99.11 99.04 99.63 99.37 98.49 99.74 

6 Bare soil 99.36 63.44 95.81 97.88 98.43 99.42 

7 Bitumen 84.59 15.07 83.59 91.35 86.78 95.14 
8 Bricks 87.84 64.71 84.02 91.27 93.03 95.49 

9 Shadows 31.89 4.01 28.79 47.98 54.85 69.64 

 Overall Accuracy 91.59 71.92 89.23 93.08 93.82 95.86 
 Average Accuracy 82.29 53.43 79.70 86.61 87.63 91.95 

 kappa 88.79 61.57 85.66 90.82 91.80 94.50 

 

According to the IP dataset classification results as 

shown in Table Ⅲ, the proposed method’s CA in some 

categories is somewhat lower than previous SOTA 

approaches. However, CA for most categories are better 

than the SOTA method, and achieve the final OA, AA, 

and kappa value on 93.21%, 91.77% and 0.9226, which 

are all outperformed than other methods. Table Ⅳ shows 

the classification results on the PU dataset. The proposed 

method exceeds the classification accuracy of the SOTA 

model on almost every category and achieves the OA of 

95.86%, AA of 91.95% and kappa coefficient of 0.945. 

Especially for the landcovers in the dataset that have 

fewer samples than other categories, such as the ninth 

category in the IP dataset, oats. Our method improves the 

classification accuracy from 88.22% in the SOTA model 

to 93.95%. Similarly, for the ninth category in the PU 

dataset, shadows. Our method improves the classification 

accuracy from 54.85% in the SOTA model to 69.64%. 

3) Qualitative results 

Figs. 12 and 13 shows the classification maps of the IP 

dataset and the PU dataset. From Figs. 12 and 13, we can 

find, the proposed method can achieve more accurate 

classification results at the landcover boundary than 

previous SOTA models, as demonstrated by the 

classification maps. It can also achieve good 

classification results on categories that seriously lack 

labels in the datasets. 

 

 

Fig. 12. Classification maps of different methods for the Indian Pines dataset. (a) False-color image. (b) Ground truth. (c) 3D-CNN [17]. (d)  GCN [6]. 
(e) miniGCN [18]. (f) CEGCN [19]. (g) F2HNN [20]. (h) Proposed. 

V. CONCLUSION 

This study proposes a new semi-supervised HSI 

classification technique. The proposed framework mainly 

includes two branches: the CNN feature extraction branch 

with spectral and spatial attention operation, and the 

HGCN feature extraction branch which conduct HGCN 

on superpixel regions at different scales. 

Hypergraph learning can effectively utilize extremely 

limited training samples. Multi-scale superpixel 

segmentation can help the model capture detailed features 

and global features simultaneously. The CNN branch 

embedded with the attention mechanism captures the 

spectral-spatial information lost due to HGCN 

dimensionality reduction in a higher dimension. The 

efficiency of the proposed method has been demonstrated 

by extensive experimental findings on the two HSI 

datasets. We achieve an overall accuracy of 93.21% and 

95.86% on the Indian Pines and Pavia University dataset, 

respectively. 

The visual findings make it clear that, when compared 

to other SOTA models, the suggested model performs 

better in terms of categorizing pixels at land cover type 

boundaries or intersections. 

In future work, we look forward to applying the 

proposed model to practical tasks, such as agricultural 

detection or disaster situations. This requires further 

improving the generalization ability of the model and 

reducing the computational complexity. 
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Although the proposed method have achieved fine 

classification result, how to better utilize the rich spectral-

spatial information in HSI to construct hypergraphs is an 

important work afterwards. For multiscale superpixel 

segmentation part, we are also considering whether the 

segmentation scale can be learned automatically by the 

features of HSI data to make the model be robust on other 

HSI data to improve the model’s generalization 

capability. 

 

 

Fig. 13. Classification maps of different methods for the Pavia University dataset. (a) False-color image. (b) Ground truth. (c) 3D-CNN [17]. 

(d)  GCN [6]. (e) miniGCN [18]. (f) CEGCN [19]. (g) F2HNN [20]. (h) Proposed. 
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