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Abstract—Feature selection is the process of extracting an 

optimal subset feature from a primary feature set to 

minimize data dimensionality. The hybrid metaheuristic is 

the most common method for dealing with optimization 

problems. This manuscript proposes a hybrid of Opposition-

based Harmony Search (OBHS) and Manta Ray Foraging 

Optimization (MRFO) for feature selection, which is one of 

the human-based metaheuristic optimization algorithms. The 

proposed OBHS-MRFO methodology’s experiments are 

tested on 21 benchmark datasets taken from the University 

of California, Irvine (UCI) repository. This dataset is split 

into three classes: low, medium, and high-scale based, on the 

dataset dimensions. The proposed model is utilized to 

overcome the issues of minimum accuracy produced by 

redundant and irreverent features. The obtained result is 

compared to four algorithms namely, FS-BGSK, FS-pBGSK, 

OBHS, and MRFO algorithms. It concludes that the 

proposed OBHS-MRFO algorithm obtains better results 

when compared with other methods with regard to average 

fitness function value, average accuracy, average feature 

selection size, standard deviation, and computational time. 

 

Keywords—feature selection, machine learning, manta ray 

foraging optimization, metaheuristic algorithm, opposition-

based harmony search 

 

I. INTRODUCTION 

Feature selection is an important technique in Machine 

Learning (ML) and data mining, utilized to select relevant 

and important features from high-dimensional data. It has 

various real-world applications in several domains like 

medicine, document modeling, biology, representational 

and multi-view learning [1]. The purpose of selecting 

features is to determine an optimal feature subset from the 

initial dataset that enhances the performance of ML by 

minimizing dimensionality, eliminating irrelevant features, 

and saving resources [2]. The feature selection method 

contains three classes namely, filter, embedded, and 

wrapper method [3]. The filter method has a low 

computational rate and avoids overfitting issues that arise 

from ignoring upcoming dependencies, restricted 

insensitivity, and adaptability to classification boundaries 

[4]. The embedded method robotically selects features for 

the optimal subset of the model, saving time and effort. 

Incorporating a model for the feature selection process 

efficiently decreases the overfitting issues, but also 

maximizes the computational power [5]. The wrapper 

method captures non-linear features and interaction 

relationships between various features by adapting feature 

selection for a particular ML algorithm which has high-

dimensional data and is computationally expensive [6]. 

The robustness of the feature selection technique is 

evident in two of its procedures, i.e., search and evaluation. 

Selecting the respective features from the original set with 

every subset results in a combinatory explosion [7]. 

Furthermore, search methods are known to select valuable 

features effectively where they utilize backward and 

forward traditional greedy search strategies [8]. The issues 

with this category of searching are local optima which 

result in non-optimal features. The estimation function 

handles these problems by evaluating every feature subset, 

thereby helping to determine the global optimal 

solutions  [9]. There is a feature selection issue established 

as NP-complete combinatory optimization issue, wherein 

the optimal features are chosen from the initial data [10]. 

The two objectives by name of minimizing dimensionality 

and maximizing performance are considered multi-

objective problems to minimize the dimension from the 

initial data and gain the highest performance with a low 

quantity of features [11]. To resolve these types of issues, 

a metaheuristic algorithm is preferable for better 

performance [12]. The main challenge in feature selection 

is balancing the tradeoff between accuracy and cost. 

Utilizing a metaheuristic algorithm efficiently balances 

this conflict by leveraging metaheuristic data to narrow 

down the search space [13]. The hybridization of 

Opposition-Based Harmony Search (OBHS) and Manta 

Ray Foraging Optimization (MRFO) for feature selection 

aims to provide a significant contribution by combining 

the unique strengths of each algorithm. The integration of 
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OBHS with its opposition-based mechanism promotes 

enhanced exploration, while the MRFO leverages manta 

ray foraging behavior for efficient exploitation, and creates 

a balanced approach that improves the overall feature 

selection process. The hybrid algorithm yields a much 

better exploration-exploitation balance, resulting in 

solutions of higher quality and adaptability to diverse 

problem characteristics. By overcoming individual 

limitations and harnessing the synergy between OBHS and 

MRFO, the hybridization offers the potential to generate 

diverse and high-quality feature subsets, making it a 

promising solution for addressing various challenges in 

feature selection tasks. The main contributions of the 

manuscript are as follows: 

• Hybridization combines OBHS’s opposition-

based exploration with MRFO’s efficient 

exploitation for a balanced feature space search. 

• Improved feature subset quality and adaptability, 

as well as diverse dataset characteristics are 

attained through the integration of OBHS and 

MRFO. 

• Aims to overcome the individual algorithms’ 

limitations, by utilizing OBHS’s diversity and 

MRFO’s exploitation for solution generation in 

feature selection tasks. 

The remaining parts of the paper are organized as 

follows: Section II provides the literature review. 

Section  III provides details of the proposed methodology. 

Section IV details the results and discussion, while Section 

V gives the conclusion. 

II. LITERATURE REVIEW 

Pashaei and Pashaei [14] introduced an efficient binary 

approach for feature selection, using two Chimp 

Optimization Algorithms (ChOA), in medical data 

classification. In the first algorithm, dual transfer functions 

(S and V-shaped) were utilized to alter continuous data 

into binary form. In the next algorithm, a crossover 

operator was utilized to improve the exploratory behavior 

of ChOA. To validate the proposed method’s efficiency, 

five publicly available datasets were employed from 

various domains like text, image, and life. The developed 

model was utilized to decide the possible solution for 

difficult optimization problems due to its high 

convergence rate, and simplicity. The developed model 

was not an iterative method and its search strategy 

contained one iteration only, which easily got stuck in the 

local optima. 

Sun et al. [15] developed a hybrid feature selection 

approach using improved Sine Cosine Algorithm with 

metaheuristic techniques to minimize the data 

dimensionality due to a huge amount of features in the 

dataset. When analyzing the performance of optimization, 

it was seen that the standard SCA algorithm had 

complexity during feature selection in selecting the better 

feature subset. The performance of the developed 

algorithm was evaluated on the UCI dataset and compared 

with three algorithms, SCA, PSO, and WOA. The 

developed method had advantages of low computational 

complexity, alongside the resolving of feature selection in 

huge-dimension datasets. However, the limitations such as 

propensity to fall into the local optimum and slow 

convergence rate were noted. 

Wu et al. [16] implemented a threshold Binary Grey 

Wolf Optimizer-based Multi-elite interaction for feature 

selection (MTBGWO). The numerous subset topology for 

global search was employed, where the elite wolf learned 

to acquire another elite position by interchanging further 

information among subsets and taking multiplicity into 

their subsets. At last, the threshold technique was utilized 

to alter the continual position of individual grey wolves 

into binary for application in feature selection problems. 

The MTBGWO technique utilized multi-elite information 

interaction method which enhanced the local exploitation 

ability and decreased the convergence speed. 

Xu et al. [17] presented a multiple Binary Arithmetic 

Optimization Algorithm (BAOA) which employed various 

strategies for performing feature selection. Initially, six 

algorithms were formed by altering continuous search 

space into random search space based on six transfer 

functions. Additionally, six more algorithms were 

established by incorporating Levy flight and transfer 

functions to enhance the searching speed and escaping 

ability from local optima. The developed model’s 

performance was evaluated by employing various 

strategies on the UCI dataset. The model had advantages 

like easy implementation for better feature selection. But, 

this model had weak search proficiency and a slow 

convergence rate. 

Wang et al. [18] suggested a Crisscross Harris Hawks 

Optimizer (CCHHO) by innovatively using the horizontal 

and vertical crisscross strategy of Criss-cross Optimization 

Algorithm (CSO) in HHO for controlling the global tasks 

and feature selection problems. In CCHHO, the CSO 

vertical and horizontal crossover strategy was utilized for 

altering the exploitative capability to improve local 

optimum. The CSO horizontal crossover approach was 

taken as an operator for enhancing explorative tendency. It 

enhanced the balance between exploration and 

exploitation abilities, and an aggressive operator was 

assumed to simulate the convergence rate. The advantage 

of using this model was the improvement of problem 

dimensions. Nonetheless, this model spent more time on 

execution. 

Sun et al. [19] introduced a rolling bearing fault feature 

selection technique-based clustering hybrid binary cuckoo 

search approach for extracting the time-frequency. A 

clustering hybrid initialization was utilized in a population 

to minimize the redundant features. This method utilized a 

Louvain algorithm to cluster features and initialize the 

population based on the number of features and clustering 

information. The Levy flight-based mutation strategy 

efficiently utilized high-quality population information by 

managing various high-quality individuals. The developed 

method efficiently minimized the redundant features by 

utilizing clustering data and a hybrid initialization 

approach. When resolving feature selection problems, this 

model exhibited a slow convergence rate and random 

initialization. 
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Zaimoglu et al. [20] developed a Binary Chaotic Horse 

Herd Optimization Algorithm for Feature Selection 

(BCHOAFS) before adding chaotic maps. The introduced 

model was utilized to select the combination of optimal 

features that reduced accuracy in classification by reducing 

the number of selected features. The SMF operator was 

established as a local search approach to enhance both 

exploration and exploitation abilities, whereas the ML 

classification algorithm was utilized to test the reduced 

subset accuracy. The introduced model had advantages 

like eliminating redundant, irrelevant, noisy data and 

enhancing the performance of the learning algorithm. 

Nonetheless, this introduced model had low accuracy and 

low convergence rate. 

Fang and Liang [21] implemented a hybrid technique 

based on a Nonlinear Binary Grasshopper Whale 

Optimization Algorithm (NL-BGWOA) to resolve feature 

selection problems. The introduced method incorporated 

the whale individuals updating technique in WOA with 

GOA, as well as optimized the position updating approach 

which optimized the searching diversity in the target 

domain. The NL-BGWOA integrated nonlinear 

adjustment coefficients and adaptive weights. It also 

minimized the computational cost and size of the data 

space. The core coefficient was directly reduced at a 

persistent value which in turn minimized the convergence 

rate and fell into the local optimum easily. 

Agrawal et al. [22] suggested a feature selection 

technique through S and V shaped Gaining-Sharing 

Knowledge (GSK) algorithm. The population reduction 

system was utilized through the transfer function to 

increase the model’s performance. Hence, the search space 

was discovered and the worst solution from the search 

space was removed because of the population size in each 

iteration. The suggested approach was utilized to remove 

the non-feasible solution at the primary stage without 

prompting the exploration ability. Yet, this model failed to 

designate a suitable population size. 

Agrawal et al. [23] presented Feature Selection 

technique through Binary GSK (FS-BGSK) algorithm. 

The FS-population reduction on BGSK (FS-pBGSK) 

utilized BGSK to increase the exploration and exploitation 

quality of FS-BGSK. The presented approach utilized the 

22-feature selection benchmark dataset from UCI 

repository. The FS-BGSK was deployed to select an 

appropriate population size, and protect against premature 

convergence and local optimum issues. Anyhow, this 

model attained lesser accuracy and higher computational 

time.  

III. PROPOSED METHOD 

This proposed method is utilized for feature selection on 

the University of California, Irvine (UCI) dataset which 

contains low, medium, and high dimensional datasets. The 

preprocessing using min-max normalization enhances the 

model’s performance and it is given as input to the feature 

selection process. The hybrid OBHS and MRFO are 

utilized for feature selection. Then, the selected features 

are given as input to the classification process which 

includes K-Nearest Neighbour (KNN), Extreme Learning 

Machine (ELM), Multi-layer Perceptron (MLP), and 

Support Vector Machine (SVM). The performance is 

evaluated based on the average fitness function value, 

average accuracy, average feature selection size, standard 

deviation, and computational time. The block diagram of 

the proposed methodology is represented in Fig. 1. 
 

 

Fig. 1. Block diagram of the proposed methodology. 

A. Data Acquisition 

In this manuscript, the proposed methodology’s 

experiments were tested on the 21-benchmark dataset 

taken from University of California, Irvine (UCI) 

repository [24]. This dataset is split into three classes 

named low, medium, and high-scale based on the dataset 

dimensions. The dataset includes several numbers of 

features ranging from 9–856, and numerous instances 

ranging from 32–5000 in the feature selection technique. 

The equivalent measure of every dataset is considered for 

training, testing, and validation sets in the rotation 

estimation aspect. The presentation and description of each 

dataset are presented in Table I. 

TABLE I. THE DESCRIPTION OF THE UCI BENCHMARK DATASET 

Type Dataset Features Instances 

Low Dimension 

L1–L8 

Tic-Tac-Toe 9 958 

Breast Cancer 10 699 

Wine 13 179 

Heart 13 270 

Zoo 16 101 

House-vote 16 435 

Lymphography 18 148 

Hepatitis 19 155 

Medium Dimension 

M1–M8 

Waveform 21 5000 

German 24 1000 

Wdbc 30 569 

Soybean 34 47 

Dermatology 34 366 

Ionosphere 34 351 

Lung cancer 56 32 

Sonar 60 208 

High Dimension 

H1–H5 

Hillvalley 100 606 

Clean 165 476 

Semeion 265 1593 

Arrhythmia 279 452 

CNAE 856 1080 
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B. Preprocessing 

The University of California, Irvine (UCI) repository 

dataset is standardized using the min-max normalization 

method [25]. Here, the maximum score of feature is 

changed into 1, the minimum score of feature is changed 

into 0 and the remaining feature is changed into an integer 

among 0 and 1, which is presented in Eq. (1): 

( )
( ),

,
min

max min

f x y Z
f x y

Z Z

−
=

−
                     (1) 

where, f  is the input image, x  and y  are pixel locations 

in the image, maxZ  and minZ  are correspondingly the 

maximum and minimum pixel values. After preprocessing, 

the features are selected through an optimization algorithm. 

C. Feature Selection 

OBHS introduces an opposition-based mechanism to 

enhance exploration by pairing solutions with their 

opposites. Meanwhile, MRFO is inspired by the foraging 

behavior of manta rays, aiming for a balanced exploration-

exploitation strategy. Hybridizing OBHS and MRFO for 

feature selection seeks to leverage the strengths of both 

algorithms. The opposition-based approach of OBHS 

enhances exploration while MRFO’s foraging behavior 

contributes to efficient exploitation. Nevertheless, as 

individual algorithms, both OBHS and MRFO have 

limitations. OBHS suffers from premature or slow 

convergence, and its effectiveness depends on problem 

characteristics and parameter settings. MRFO on the other 

hand, requires careful parameter tuning and does not 

perform optimally in certain situations. The MRFO is a 

bio-inspired optimizer that simulates the food searching 

behavior of manta rays. The manta ray is a familiar sea 

organism that feeds on plankton and small animals in water. 

The manta rays contain three food-finding procedures 

called chain, cyclone, and somersault foraging [26]. These 

three foraging processes form a primary search scheme of 

the MRFO. 

1) Chain foraging 

The chain foraging imitates the process of essential food 

search behavior where the manta rays analytically grasp up 

to catch undetected or disappeared prey in the chain by the 

previous manta rays. The cooperative collaboration 

between the challenging manta rays removes the probable 

prey loss in their eyesight and enhances the food rewards. 

The MRFO assumes that a better solution is attained 

through the plankton with maximum absorption of a target 

plankton for the manta ray chain. This process updates the 

present position of individual populations based on the 

target prey, giving a better result. The chain foraging 

update mechanism is shown in Eqs. (2) and (3): 

( )( ) ( )

( )( ) ( )

, 1 , , , ,1

,

, 2 1, , , ,

0,1 1
 

0,1 2, ,

t t t t t

i j best j i j best j i jt

i j t t t t t

i j i j i j best j i j

X r X X X X i
X

X r X X X X i N





+

−

 + − + − =
= 

+ − + − = 

(2) 

( ) ( )( )3 42 0,1 log 0,1r r =                    (3) 

where ,

t

i jX  is  thi  position of manta ray in dimension j , 

iteration t . ( )0,1 1,2,3,4ir i =  is a random number 

ranging between  0, 1  that is dissimilar from one another. 

  is the coefficient weight and t

bestX  is the highest 

attention of prey. In chain foraging, the position update 

mechanism is established through the last manta ray in the 

chain and spatial location of the prey. 

2) Cyclone foraging 

Cyclone foraging occurs when the  collection of amount 

of the plankton is important. The manta ray’s head is 

paired with its tail, making a spiral to generate an edge in 

the cyclone’s eye, thus the filtered water transfers to the 

surface. This difficult procedure allows the prey, plankton 

to simply grab the manta ray predator. A group of manta 

rays generate a foraging chain and produce spatial 

movements as the food source approaches when 

identifying the school plankton position in deep water. In 

cyclone foraging, the grouped manta rays not only track 

the manta ray before the last one so as to confirm the 

developed chain constancy, but chase a pathway of spiral 

change towards the target plankton. The manta ray 

movement in chain spiral shape is statistically displayed in 

D  dimensional search space as given in Eqs. (4) and (5): 

( )( ) ( )

( )( ) ( )

, 5 , , , ,

,

, 6 1, , , ,

0,1 1

0,1 2, ,

t t t t t

best j best j i j best j i jt

i j t t t t t

best j i j i j best j i j

X r X X X X i
X

X r X X X X i N



−

 + − + − =
= 

+ − + − = 

(4) 

( )

( )( )
7

1
0,1

82 sin 2 0,1

maxitr itr
r

maxitre r 

− + 
 
 =               (5) 

where   is the coefficient weight, maxitr  and itr  

represent the maximum iteration and present iteration, 

respectively. ( )0,1 5,6,7,8ir i =  are different random 

numbers in range of  0, 1 . The cyclone process is a 

significant part of executing two mechanisms, exploitation 

and exploration. Employing better prey in the foraging 

phase overlays the way of increasing generative areas from 

the present best solution, and provides the exploitation 

ability of the algorithm. 

Moreover, the cyclone foraging generates an important 

contribution to the exploration stage by applying 

individual populations to transfer a random position in the 

Harmony Memory (HM) which generates the best prey 

position. The primary HM has Harmony Memory Size 

(HMS) number of n-dimension that randomly provides 

probable solutions, where the representation of HMS is 

formulated in Eq. (6): 

'
1 2 3     HMS HMS nHM X X X X R  =                (6) 

where, 
1 2 3

p

pX x x x x =    and  1,p n . 

3) Somersault foraging 

Somersault foraging is the final foraging process and 

one of the most splendid, yet usual activities created by 

humanity. Manta rays perform a circular movement and 

backward rotation around the plankton prey, thereby 
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moving them into their open mouths. This process decides 

the best prey position in the axis and every manta ray in 

the population analyzes the point to a new location in the 

search field. The solution update approach is inclined 

through the present best solution that guides the designed 

individual chain through Eq. (7): 

( ) ( )1

, , 9 , 10 ,( 0,1 0,1t t t t

i j i j best j i jX X sf r X r X+ = +   −   (7) 

where, sf  is the somersault factor equivalent to 2  and 9r , 

10r  are random numbers within the range of [0,1]. The 

MRFO algorithm is initialized by producing an individual 

random population with quantified restrictions. The 

position update depends on the manta ray individual in 

front of the current one and the considered pivot point. 

Altering from exploration to exploitation phase relies on 

the differences in the arithmetic value of (itr/maxitr) ratio. 

The exploitation is defined when itr/maxitr ( )0,1r . In 

that, the present best location is measured on an axis that 

plays the main part in candidate solutions near the 

promising and fertile regions in a search domain. 

Moreover, it changes among the chain and cyclone 

foraging acquired on randomly formed numbers. Then, 

this foraging is considered to update the individual present 

position. These three foraging mechanisms are established 

to achieve the global optimum solution of optimization 

problems and satisfy the predetermined end condition. 

D. Classification 

After feature selection, the selected features are 

classified by using different classification techniques 

namely, KNN, ELM, MLP, and SVM.  

1) KNN 

The KNN classifier is an instance-based, non-

parametric model which is employed for classification [27]. 

The KNN is a supervised learning algorithm which 

categorizes the unidentified samples through evaluating 

the distance among certain unidentified samples and the 

nearest k-neighbor. The k-nearest samples are selected 

once all the distances are evaluated, wherein the majority 

class among KNN provides a prediction for the latest 

record. The KNN classifier is a frequently used method for 

classifying features as it is simple to implement. In general, 

the Euclidean distance is utilized to evaluate the distance 

which is formulated in Eq. (8): 

( )
1/2

2

1 2 1 2

1

  
d

i i

i

X X x x
=

 
− = − 

 
                  (8) 

where 1 2X X−  is the distance between 1X  and 2X

which are the dimension points in d , 1ix  and 2ix  are the 

horizontal and vertical axes values, respectively in the 

coordinate plane. 

2) ELM 

The ELM is an ML technique utilized for supervised 

learning tasks in terms of classification. The ELM is a type 

of feed-forward neural network that stands out for its fast 

training speed and simplicity [28]. Unlike traditional 

neural networks, both the input and hidden layer weights 

are iteratively adjusted during training. The ELM fixes the 

input layer weights and learns the output layer weights. It 

differs from the MLP, wherein the ELM initializes weights 

and biases randomly, and the last output is attained by 

linear combination. It is widely employed due to its 

effective and fast learning speed, fast convergence, better 

ability for generalization, and ease of execution. 

3) MLP 

MLP is a feedforward neural network [29] method that 

maps the input data to a set of suitable outputs. The MLP 

contains numerous layers where all layers are 

interconnected with each other by weights. Except for the 

input layer nodes, all other layer nodes are represented as 

neurons with nonlinear activation functions. There is more 

than one nonlinear hidden layer between the input and 

output layers. The interrelated neurons in MLP are in one-

directional fashion, and the weights of connection are 

within the range of [−1, 1]. 

4) SVM 

The SVM is one of the supervised ML techniques, 

having larger classification efficiency in comparison to 

various other classification models [30]. However, the 

implementation of SVM is limited because of the need for 

high training time for larger data. The SVM, when 

integrated with feature selection techniques, acquires 

reduced dimension data. Moreover, the SVM method has 

the advantage of effective analysis of the non-linear 

relationship between the processes and features of the data, 

so as to provide an efficient classification. The benefit of 

utilizing SVM is its memory effectiveness and efficiency 

in large dimensional space which is applied for regression. 

The SVM separates data by finding the better hyperplane 

and margin. The hyperplane is a plane differentiator 

among two classes, whereas the margin is the distance 

between the outermost instances of the class. 

IV. RESULT 

In this paper, the proposed OBHS-MRFO is simulated 

on Python environment with a system configuration of 

16  GB RAM, Windows 10 operating system, and intel 

core i5. The parameters of average fitness function, 

accuracy, feature selection size, standard deviation, and 

computational time are employed to estimate the model’s 

performance. The mathematical formulae of these 

parameters are presented in Eqs. (9)–(13), respectively. 

• Average fitness function value 

*

1

1
    

W

Z i

i

Avg z
W =

=                           (9) 

where, ZAvg  is the fitness function mean over W , and 

*

iz  is the optimum fitness score on  thi  run. 

• Average accuracy 

*

1

1
    

W

Acc i

i

Avg Acc
W =

=                      (10) 

where, AccAvg  is the average classification accuracy over 

W , and *

iAcc  is the optimal accuracy on the  thi  run. 
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• Average feature selection size 

( )
*

1

1
   

W
i

feature

i

length x
Avg

W D=

=                 (11) 

where 
featureAvg  is the average selection size of features 

over W , ( )
*

i
length x  is the determined feature length on 

the  thi  run, and D  is the feature counts. 

• Standard deviation of fitness value 

1

2
* 2

1

1
( )

1

W

Z i Z

i

Std z Avg
W =

 
= − 

− 
                (12) 

where ZStd  is the standard deviation, *

iz  is optimal 

fitness score on the  thi  run, and ZAvg  is the fitness 

function mean. 

• Average computational time 

( )
1

1 W oo

Time ii
Avg Time

W =
=                     (13) 

where
o

TimeAvg  is the average computational time, and 

( )
o

i
Time  is the time utilized by the  thi  run in 

tho  

algorithm. 

A. Quantitative Analysis 

The quantitative analysis of OBHS-MRFO on the 

feature selection dataset is evaluated by utilizing state-of-

art algorithms which are, FS-BGSK, FS-pBGSK, OBHS, 

and MRFO. The performances of these algorithms are 

measured and matched with that of the OBHS-MRFO 

algorithm. The population size diminishes linearly through 

the number of function evaluations. Both binary stages 

allow the OBHO-MRSO to discover search space and find 

optimal solutions.  

TABLE II. AVERAGE FITNESS FUNCTION VALUES FROM VARIOUS 

OPTIMIZERS 

Datasets 
FS-

BGSK 

FS-

pBGSK 
OBHS MRFO 

OBHS-

MRFO 

L1 0.2097 0.1974 0.19216 0.18489 0.17608 

L2 0.0299 0.0322 0.02760 0.02284 0.01770 

L3 0.1498 0.1455 0.14043 0.13767 0.13034 

L4 0.0409 0.0404 0.03472 0.03240 0.02883 

L5 0.0438 0.0440 0.03903 0.03791 0.03560 

L6 0.0521 0.0423 0.03865 0.02942 0.02807 

L7 0.5037 0.4894 0.48239 0.47827 0.47324 

L8 0.2690 0.2400 0.23030 0.22577 0.21773 

M1 0.1701 0.1684 0.16258 0.15620 0.15587 

M2 0.2462 0.2372 0.22951 0.21968 0.21938 

M3 0.0515 0.0480 0.04419 0.04018 0.03431 

M4 0.0945 0.0762 0.07484 0.07001 0.06498 

M5 0.0108 0.0074 0.00677 0.00676 0.00672 

M6 0.0009 0.0006 0.00050 0.00044 0.00039 

M7 0.1128 0.0813 0.08048 0.07381 0.06996 

M8 0.0754 0.0698 0.06757 0.06438 0.05848 

H1 0.4071 0.3861 0.38147 0.37885 0.39952 

H2 0.0565 0.0530 0.05250 0.04658 0.04264 

H3 0.0134 0.0134 0.00726 0.00722 0.00124 

H4 0.2871 0.2820 0.28053 0.27900 0.27558 

H5 0.0057 0.0046 0.00457 0.00454 0.00453 
 

Table II represents the average fitness function values 

from various optimizers evaluated on the datasets of L1–

L8, M1–M8, and H1–H5. In that, OBHS-MRFO attains 

better results on H1–H5 dataset with the values of 0.39952, 

0.04264, 0.00124, 0.27558, and 0.00453, correspondingly. 

Table III represents the average accuracy achieved by 

different algorithms evaluated on the datasets of L1–L8, 

M1–M8, and H1–H5. From Table III, it is evident that 

OBHS-MRFO attains superior results on the H1–H5 

dataset with values of about 0.62748, 0.96335, 1.00000, 

0.73343, and 1.00000, respectively. 

TABLE III. AVERAGE ACCURACY ACHIEVED BY DIFFERENT 

ALGORITHMS 

Datasets 
FS-

BGSK 

FS-

pBGSK 
OBHS MRFO 

OBHS-

MRFO 

L1 0.7989 0.8082 0.81065 0.82060 0.82563 

L2 0.9751 0.9726 0.97509 0.97950 0.98137 

L3 0.8524 0.8566 0.86355 0.86814 0.87180 

L4 0.9622 0.9627 0.96743 0.96874 0.97527 

L5 0.9567 0.9563 0.95801 0.96249 0.96809 

L6 0.9513 0.9616 0.97116 0.97982 0.98343 

L7 0.4952 0.5094 0.51330 0.51494 0.52030 

L8 0.7313 0.7610 0.76910 0.77360 0.78172 

M1 0.8358 0.8373 0.84448 0.84458 0.84604 

M2 0.7557 0.7646 0.77153 0.77414 0.78145 

M3 0.9495 0.9526 0.95653 0.95757 0.96296 

M4 0.9074 0.9250 0.92867 0.93695 0.94375 

M5 0.9934 0.9962 1.00540 1.00000 1.00000 

M6 1.0000 1.0000 1.00000 1.00000 1.00000 

M7 0.8875 0.9188 0.91986 0.92094 0.92361 

M8 0.9284 0.9338 0.93963 0.94642 0.95384 

H1 0.5927 0.6139 0.61759 0.62539 0.62748 

H2 0.9475 0.9508 0.95248 0.95981 0.96335 

H3 0.9905 0.9905 0.99662 1.00000 1.00000 

H4 0.7137 0.7190 0.72421 0.72501 0.73343 

H5 0.9961 0.9972 1.00000 1.00000 1.00000 

TABLE IV. AVERAGE SELECTED FEATURE RATIO TO NUMBER OF 

TOTAL FEATURES 

Datasets 
FS-

BGSK 

FS-

pBGSK 
OBHS MRFO 

OBHS-

MRFO 

L1 0.72 0.75 0.74944 0.74507 0.73930 

L2 0.52 0.50 0.49711 0.48939 0.48768 

L3 0.37 0.35 0.34493 0.34021 0.33611 

L4 0.35 0.34 0.33466 0.32671 0.31899 

L5 0.10 0.08 0.07418 0.07076 0.06809 

L6 0.39 0.42 0.41137 0.41026 0.40301 

L7 0.40 0.38 0.37581 0.37411 0.36494 

L8 0.30 0.34 0.33083 0.33015 0.32365 

M1 0.76 0.73 0.72405 0.71789 0.71182 

M2 0.43 0.42 0.41334 0.41269 0.40956 

M3 0.14 0.11 0.10810 0.09879 0.09017 

M4 0.28 0.19 0.18066 0.17342 0.16522 

M5 0.43 0.36 0.35311 0.34556 0.33844 

M6 0.09 0.06 0.05158 0.04700 0.04020 

M7 0.14 0.09 0.08464 0.07732 0.06835 

M8 0.45 0.43 0.42686 0.42389 0.41469 

H1 0.39 0.38 0.37407 0.36511 0.39830 

H2 0.45 0.43 0.42570 0.42268 0.41336 

H3 0.39 0.39 0.38429 0.37774 0.36912 

H4 0.36 0.38 0.37554 0.37484 0.36583 

H5 0.18 0.18 0.17516 0.16575 0.15783 
 

 

Table IV exhibits the average selected feature ratio to 

the number of total features evaluated on the datasets of 

L1–L8, M1–M8, and H1–H5. From Table IV, it is evident 

that OBHS-MRFO commendable results on H1–H5 
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dataset with values of about 0.39830, 0.41336, 0.36912, 

0.36583, and 0.15783, respectively.  

TABLE V. STANDARD DEVIATION OF FITNESS VALUES OF OPTIMIZERS 

Datasets 
FS-

BGSK 

FS-

pBGSK 
OBHS MRFO 

OBHS-

MRFO 

L1 0.0104 0.0137 0.01366 0.01365 0.01360 

L2 0.0075 0.0063 0.00621 0.00617 0.00615 

L3 0.0205 0.0169 0.01682 0.01681 0.01679 

L4 0.0178 0.0185 0.01842 0.01841 0.01835 

L5 0.0098 0.0093 0.00925 0.00919 0.00915 

L6 0.0338 0.0319 0.03181 0.03175 0.03171 

L7 0.0358 0.0261 0.02601 0.02593 0.02584 

L8 0.0328 0.0274 0.02731 0.02729 0.02722 

M1 0.0060 0.0036 0.00352 0.00344 0.00335 

M2 0.0099 0.0056 0.00553 0.00550 0.00546 

M3 0.0099 0.0082 0.00819 0.00812 0.00810 

M4 0.0173 0.0078 0.00776 0.00771 0.00765 

M5 0.0043 0.0053 0.00528 0.00520 0.00520 

M6 0.0003 0.0001 0.00007 –0.00001 0.00002 

M7 0.1740 0.1304 0.13031 0.13030 0.13029 

M8 0.0049 0.0012 0.00117 0.00110 0.00108 

H1 0.0293 0.0280 0.02799 0.02794 0.02992 

H2 0.0152 0.0060 0.00599 0.00593 0.00589 

H3 0.0050 0.0038 0.00380 0.00373 0.00366 

H4 0.0287 0.0254 0.02534 0.02532 0.02524 

H5 0.0016 0.0007 0.00066 0.00057 0.00051 

 

Table V represents the standard deviation of optimizers, 

and Fig. 2 displays the standard deviations of L1–L8, M1–

M8, and H1–H8 datasets, respectively. 

Table VI details the computation time consumed by 

various algorithms, while Fig. 3 represents the 

computation time on L1–L8, M1–M8, and H1–H8 datasets, 

respectively.  

 

 
(a) Standard deviation for low dimensional dataset. 

 
(b) Standard deviation for medium dimensional dataset. 

 
(c) Standard deviation for high dimensional dataset. 

Fig. 2. Standard deviation.  

 
(a) Computational time for low dimensional dataset. 

 
(b) Computational time for medium dimensional dataset. 

 
(c) Computational time for high dimensional dataset. 

Fig. 3. Computational time.  

It is also clearly proved from Tables II–VI, that if the 

dataset size is increased, the model’s performance also 

increases. 
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TABLE VI. AVERAGE COMPUTATIONAL TIME FOR VARIOUS ALGORITHMS 

Datasets FS-BGSK FS-pBGSK OBHS MRFO OBHS-MRFO 

L1 44.08 44.92 44.91991 44.91990 44.91989 

L2 32.41 47.14 47.13999 47.13997 47.13989 

L3 24.14 24.52 24.51998 24.51996 24.51988 

L4 25.67 26.51 26.50992 26.50987 26.50977 

L5 27.99 27.98 27.97991 27.97990 27.97989 

L6 28.11 27.16 27.15992 27.15985 27.15979 

L7 33.00 33.92 33.91997 33.91996 33.91991 

L8 26.67 27.04 27.03991 27.03985 27.03977 

M1 617.20 615.41 615.40995 615.40987 615.40980 

M2 40.27 41.44 41.43999 41.43998 41.43993 

M3 26.79 27.29 27.28995 27.28986 27.28984 

M4 24.30 24.43 24.42990 24.42985 24.42983 

M5 25.84 25.78 25.77992 25.77985 25.77977 

M6 20.44 20.71 20.70996 20.70987 20.70980 

M7 38.08 38.92 38.91993 38.91987 38.91978 

M8 3441.45 3496.28 3496.27993 3496.27992 3496.27990 

H1 172.18 178.32 178.31993 178.31986 177.31980 

H2 201.69 184.02 184.01996 184.01989 184.01986 

H3 1772.33 1767.84 1767.83995 1767.83990 1767.83987 

H4 267.05 274.54 274.53995 274.53987 274.53978 

H5 2073.50 1778.36 1778.35996 1778.35991 1778.35987 
 

 

B. Comparative Analysis 

This section presents a comparative analysis of the 

proposed model using performance metrics of average 

fitness function, accuracy, feature selection size, standard 

deviation, and computational time, as shown in Table VII. 

The existing models such as bGSK [22] and FS-

pBGSK  [23] are utilized to comparatively evaluate their 

ability of optimization. Table VII denotes comparison of 

OBHS-MRFO for H1 dataset. The OBHO-MRFO 

achieves average fitness function, accuracy, feature 

selection size, standard deviation, and computational time 

of 0.3995, 0.6274, 0.398, 0.0299, and 177.31, respectively. 

TABLE VII. COMPARATIVE ANALYSIS USING H1 DATASET 

Performance 

Metrics 

Methods 

bGSK [22] FS-pBGSK [23] 
Proposed 

OBHS-MRFO 

Average fitness 

function 
0.4151 0.3861 0.3995 

Average accuracy 0.5825 0.6139 0.6274 

Average selected 

feature ratio 
N/A 0.38 0.398 

Standard deviation N/A 0.0280 0.0299 

Computational time N/A 178.32 177.31 
 

C. Discussion 

The bGSK [22] struggles to designate a suitable 

population size, whereas the FS-pBGSK [23] attains less 

accuracy with high computational time. Therefore, in the 

suggested framework, the opposition-based approach of 

OBHS enhances exploration, while MRFO’s foraging 

behavior contributes to the efficient exploitation. However, 

as individual algorithms, both OBHS and MRFO have 

discrete limitations. OBHS suffers from premature 

convergence or slow convergence, and its effectiveness 

depends on the problem characteristics and parameter 

settings. MRFO, on the other hand, requires careful 

parameter tuning and does not perform optimally in certain 

situations. The attained result shows that the OBHS-

MRFO achieves commendable results when the acquired 

average fitness function, accuracy, feature selection size, 

standard deviation, and computational time values of about 

0.3995, 0.6274, 0.398, 0.0299, and 177.31, respectively, 

are contrasted against the values attained by bGSK and FS-

pBGSK. 

V. CONCLUSION 

The motivation of the proposed feature selection is to 

determine an optimum subset feature from an initial 

dataset that enhances performance of ML by minimizing 

dimensionality and eliminating irrelevant features. The 

hybrid metaheuristic is the most common method for 

trading optimization problems. This manuscript proposes 

a feature selection methodology based on a hybrid of 

Opposition Based Harmony Search (OBHS) and Manta 

Ray Foraging Optimization (MRFO) to overcome the 

issues of minimum accuracy, which are produced by 

redundant and irreverent features. The University of 

California, Irvine (UCI) dataset that contains low, medium, 

and high dimensional datasets, is employed. Preprocessing 

is carried out along with min-max normalization that 

enhances the model’s performance, besides the hybrid 

OBHS-MRFO being employed for feature selection. Then, 

the selected features are given as input to the classification 

process which includes KNN, ELM, MLP, and SVM. 

Finally, the performance of the presented model is 

evaluated and it achieves average fitness function value, 

average accuracy, average feature selection size, standard 

deviation, and computational time of 0.3995, 0.6274, 

0.398, 0.0299, and 177.31, respectively, which are better 

outcomes when compared to those of bGSK [22] and FS-

pBGSK [23]. In the future, this method will be extended to 

solve the data imbalance issues. 
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