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Abstract—This study focuses on advancing the classification 

of software requirements, particularly within the subclasses 

of Non-Functional requirements. Four machine learning 

algorithms—Support Vector Machine (SVM), Logistic 

Regression (LR), K-Nearest Neighbors (KNN), and Naive 

Bayes (NB)—were initially implemented, with SVM 

exhibiting superior performance. To enhance overall 

accuracy, a voting classifier ensemble method was 

employed, resulting in significant improvement. In the 

realm of deep learning, a standalone Bidirectional Long 

Short-Term Memory (Bi-LSTM) network faced challenges 

in fine-tuning. To harness the strengths of both machine 

learning and deep learning, we proposed a hybrid model by 

integrating SVM with Bi-LSTM. This hybrid model 

surpassed all prior experiments, highlighting the synergistic 

potential between traditional machine learning and deep 

learning. Our findings showcase the effectiveness of 

combining SVM’s discriminative power with Bi-LSTM’s 

sequential understanding, yielding a robust classification 

model for software requirements. This research contributes 

to the advancement of requirement analysis, providing a 

practical solution for accurately identifying diverse 

requirement types within the nuanced domain of Non-

Functional requirements.  

 

Keywords—Software requirements, Bidirectional Long 

Short-Term Memory (Bi-LSTM), Support Vector Machine 

(SVM) 

 

I. INTRODUCTION 

Classifying software requirements is akin to sorting 

puzzle pieces—it brings order to the initial jumble, 

making it easier to understand, manage, and ultimately, 

build a successful software system. Non-Functional 

Requirements (NFRs) are crucial in software 

development, defining how a system should work rather 
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than what it should do. Classifying these NFRs helps 

organize, prioritize, and ensure their effective 

implementation. Classifying NFRs is a pivotal practice in 

software development, extending beyond organizational 

tidiness to wield substantial influence on project 

outcomes. By categorizing NFRs based on their impact, 

such as performance, security, and usability, teams can 

effectively prioritize and concentrate efforts on critical 

aspects, ensuring the development of a system that aligns 

with essential needs. This classification also fosters a 

shared language among diverse stakeholders, including 

developers, users, and managers, promoting clearer 

communication and reducing the likelihood of 

misunderstandings. Moreover, grouping NFRs with 

similar characteristics allows for targeted development 

efforts, optimizing resource allocation. This approach 

facilitates the creation of specific and relevant test cases 

for each NFR category, enabling thorough testing across 

all facets of the system. The categorization of NFRs 

enhances the system’s maintainability, simplifying the 

identification and implementation of future modifications 

with minimized impact. Importantly, this strategic 

classification minimizes ambiguity, mitigating the risks 

of costly rework or missed deadlines, and ensures that 

critical features are prioritized and delivered even within 

budget or time constraints. In essence, NFR classification 

emerges not as a mere formality but as a strategic 

imperative, contributing to the clarity, focus, and 

efficiency pivotal for building successful and user-

friendly software systems. 

In the domain of NFR classification, research reveals 

pivotal gaps necessitating further exploration. Current 

methods often lack context sensitivity, requiring context-

aware models that consider project-specific factors like 

domain intricacies and development methodologies. The 

dynamic nature of NFRs throughout the project lifecycle 

calls for research into techniques for dynamic 
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classification and recalibration to ensure alignment with 

evolving requirements. Incorporating diverse stakeholder 

perspectives into NFR classification schemes is crucial, 

ensuring a holistic understanding beyond technical 

viewpoints. Exploring the potential of particularly 

Machine Learning (ML) and natural language processing, 

offers a promising avenue for automated NFR 

categorization but requires addressing challenges such as 

ambiguity in requirements. Research should extend 

beyond classification to encompass impactful 

methodologies for analyzing and prioritizing NFRs, 

informing effective resource allocation and project 

planning. The seamless integration and collaboration of 

NFR tools across development environments demand 

research attention to enhance collaborative classification 

and management. Notably, the underutilized potential of 

combining Machine Learning (ML) and Deep Learning 

(DL) for NFR classification presents a promising frontier, 

offering a more robust and accurate approach to address 

existing challenges in software development 

methodologies. 

The aim of this work is to discover a path to get some 

good results by merging deep learning with machine 

learning in a hybrid model for multi-class classification. 

The plan is to utilize Bidirectional Long Short-Term 

Memory (Bi-LSTM)’s capacity to comprehend groupings 

and Support Vector Machine (SVM)’s capacity to advise 

contrasts between things to further develop classification 

accuracy and readability. This is done with the intention 

of developing a smarter and more adaptable model that 

makes use of Bi-LSTM’s capacity to comprehend 

intricate sequences and SVM’s capacity to clearly define 

decision limits. The hybrid model consolidates these 

elements to improve it at classifying different datasets, 

finding the right mix among accuracy and readability that 

is significant in some true circumstances. 

The paper is organized as follows. In Section II, related 

works on non-functional requirements classification is 

presented. The detail of the proposed model is provided 

in Section III. The results are elaborated upon in 

Section  IV, followed by a discussion. Finally, Section V 

presents the conclusion mentioning the future scope.  

II. LITERATURE REVIEW 

Zhou et al. [1] proposed an attention-based Long 

Short-Term Memory (LSTM) network for cross-language 

sentiment analysis, employing multilingual bidirectional 

LSTMs and a hierarchical attention mechanism. 

Demonstrated with Chinese and English, their model 

outperformed existing methods. Future plans include 

testing with new languages, datasets, and incorporating 

additional emotion phrases to enhance software 

intelligence. The research significantly contributes to 

understanding emotions across languages, emphasizing 

its essential role.  

Rahman et al. [2] automated Non-Functional 

Requirements (NFR) detection in Software Requirement 

Specifications (SRS), a critical aspect in software 

development. Leveraging advanced Recurrent Neural 

Network (RNN), specifically Long Short-Term Memory 

(LSTM), and their approach achieved superior precision, 

recall, and F1-Score values of 0.973, 0.967, and 0.966.  

Rahman et al. [3] investigated algorithmic 

hybridization for Non-Functional Requirement (NFR) 

classification in software engineering, employing LSTM, 

Bi-LSTM, and ANN approaches. Their study, based on 

1000 NFR examples, revealed that the Bi-LSTM-ANN 

model outperforms standalone LSTM and Bi-LSTM in 

precision, recall, and F1-Scores.  

Khayashi et al. [4] explored the application of deep 

learning techniques for categorizing software 

requirements using the PURE dataset. While emphasizing 

the importance of enhancing the precision and simplicity 

of the sorting process in computer systems, the study 

lacks a comprehensive comparison of various techniques 

and does not delve into real-life challenges 

In Yucklar’s study [5], software requirements analysis, 

particularly the differentiation between functional and 

non-functional types, is deemed crucial for successful 

development. The research employs AI techniques on a 

novel Turkish dataset, achieving a remarkable 95% 

accuracy with BERTurk. Despite the study’s significance 

in the absence of similar Turkish research, it 

acknowledges limitations. Further exploration is needed 

to assess the applicability of models, address potential 

dataset biases, and delve into real-world implementation 

challenges, emphasizing the necessity for a more 

comprehensive solution in the realm of software 

development.  

Kaur and Kaur [6] explored the application of the 

SABDM technique in the classification of software 

requirements, employing deep learning to distinguish 

between different types. However, the approach may 

encounter challenges with informal texts and might be 

perplexed by contradictory labels in the data, potentially 

impeding its ability to comprehend specific information.  

Rahimi et al. [7] proposed a novel methodology, 

Ensemble Deep Learning, integrating LSTM, Bi-LSTM, 

GRU, and CNN models to categorize Software 

Requirements (SRs) into functional and non-functional 

groups. The approach allows single or two-phase 

classification. Despite its effectiveness, limitations 

include language restriction and challenges handling 

complex phrase structures.  

In their investigation, Ali and Saleem [8] explored how 

computers learn to detect diverse software requirements, 

examining approaches like Latent Dirichlet Allocation 

and Naive Bayes for distinguishing Functional and Non-

Functional Requirements (FRs and NFRs). Some 

methods, notably Latent Dirichlet Allocation and Naive 

Bayes, achieved a high accuracy of 95%. However, 

complexities arise when attempting to discern different 

types of NFRs, where Word2Vec techniques struggle and 

exhibit reduced accuracy. This review provides insights 

into effective and less effective methods, assisting 

software professionals in choosing superior approaches 

for understanding and organizing software needs.  

Sabir’s research [9] concentrates on the crucial task of 

determining software requirements in the software 

development process. Unlike earlier methods relying on 
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supervised machine learning, which faced challenges like 

insufficient labeled data and substantial setup time, Sabir 

aims to overcome these issues. The research explores new 

deep learning methods to streamline the setup of software 

requirements. While heading in the right direction, 

challenges remain, particularly in accumulating a 

sufficient number of labeled instances and achieving 

balance across various categories.  

Saratha and Mukherjee [10] addressed challenges in 

manual requirement classification arising from diverse 

terminology used by stakeholders, leading to error-prone 

categorization. They underscored the time-consuming 

nature of manual classification in large projects and 

advocated for more precise automatic systems. The 

researchers discussed existing automated strategies, 

highlighting issues like tool complexity, limited 

extraction, and subpar performance  

Baskoro et al. [11] explored software requirement 

classification using PROMISE and SecReq (ePurse) 

datasets, comparing SVM and CNN approaches with 

FastText feature extraction. The RNN-LSTM technique 

demonstrated notable performance, achieving recall, 

precision, and F1-Score values of 71.5%, 71.7%, and 

70%, respectively, along with an accuracy of 71.5%. The 

study emphasized dataset-specific classification results 

and recommended hyperparameter adjustments to 

enhance CNN performance when coupled with Fasttext.  

Li et al. [12] introduced DBGAT, a novel method for 

categorizing software requirements using graph attention 

networks and BERT. This approach exhibits remarkable 

accuracy and adaptability to various scenarios, surpassing 

constraints of conventional techniques and the uncertain 

applicability of LSTMs. DBGAT thoroughly examines 

phrase structure and word associations, achieving 

precision rates of up to 91% and F1-Scores of 91%, even 

with previously unseen projects. While this advancement 

sets the stage for a more effective and precise era in 

software development, further investigation into dynamic 

graph topologies and larger datasets is essential to fully 

harness its capabilities.  

Jang et al. [13] scrutinized the limitations of Long 

Short-Term Memory (LSTM) networks, revealing 

challenges in achieving optimal precision, F1-Score, 

accuracy, and recall. Their examination underscored the 

drawbacks of these metrics in commonly used Natural 

Language Processing (NLP) techniques, emphasizing the 

need for innovative models capable of efficiently 

handling the complexities of diverse linguistic structures 

and data with rich context. The primary objective was to 

enhance the fundamental assessment criteria in natural 

language processing activities, recognizing the demand 

for advancements in addressing the intricacies of 

language processing tasks.  

Kaur et al. [14] focused on software needs 

classification, underscoring the significance of accurate 

identification in software development. The investigation 

shed light on the deficiencies of existing manual 

interpretation approaches, leading to time-consuming and 

imprecise classifications. To address these challenges, the 

researchers explored the application of the BERT model 

with the aim of achieving more precise and automated 

categorization processes. The study reflects a 

commitment to improving the efficiency and accuracy of 

software needs identification through advanced and 

automated techniques.  

NFRNet, introduced by Li and Nong [15], represents 

an advancement in the classification of Non-Functional 

Requirements (NFR) in software development. While the 

paper demonstrates superior performance in Precision, 

Recall, and F1-Score compared to current methods, it 

lacks a comprehensive examination of challenges related 

to practical implementation and computational efficiency. 

Despite the potential of NFRNet’s automated approach in 

optimizing NFR identification, additional research into its 

practical applicability and computational efficiency 

would be advantageous for a more thorough 

understanding of its effectiveness in real-world scenarios.  

Tiun et al. [16] investigated word embeddings and 

conventional features across various classifiers to identify 

Functional Requirements (FR) and Non-Functional 

Requirements (NFR) using text classification techniques. 

The paper highlights FastText as the superior model, 

showcasing its effectiveness in brief document 

classification compared to deep learning classifiers and 

conventional methods. However, the research falls short 

in thoroughly examining intricate models such as BERT 

and could benefit from additional scrutiny regarding 

improvements to TFIDF to enhance the accuracy of FR 

and NFR classification. Further exploration of advanced 

models and feature enhancements may contribute to a 

more comprehensive understanding of text classification 

efficacy.  

Huan [17] presented a CBM model for text 

categorization that includes Multiscale Convolutional 

Neural Network (MCNN) and Bi-LSTM, overcoming the 

limitations of CNN and RNN. The MCNN module 

collected shallow local semantic information flexibly, and 

a MIX attention method improved important feature 

extraction. Experimental findings showed higher 

classification accuracy than benchmark datasets. 

Limitations included a greater network size and a longer 

training time. The authors’ CBM model helps to advance 

text categorization. 

In a study by Rahman et al.’s [18], they delved into the 

challenges associated with Non-Functional Requirements 

(NFR) using machine learning techniques. They put 

forward two models, DReqANN and DReqBiLSTM 

highlighting the drawbacks of existing methods that rely 

on feature extraction. The research findings showcase the 

performance of DReqANN in classifying NFR achieving 

precision ranging from 81% to an impressive 99.8% 

along with recall rates, between 74% and 89%. The 

authors emphasised the efficiency of their deep learning 

approach. Propose addressing complexities through 

transformer-based models leveraging unsupervised 

software requirement corpora and incorporating transfer 

learning methodologies. 

Yahya et al. [19] explored an explored aspect of app 

development. Identifying Non-Functional Requirements 

(NFR) using user reviews. They introduce a learning 
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model that combines RNN and LSTM architectures 

emphasizing the lack of research on Arabic language 

datasets. Their model achieved a F1-Score of 96% 

surpassing both ML classifiers and LSTM models. The 

research also acknowledged limitations, such as the need 

for data applications and suggested potential strategies to 

enhance future studies through feature augmentation. 

Overall, this study contributes to the field by introducing 

an approach and highlighting the importance of 

considering NFR concerns, in mobile app development. 

Zheng’s work [20] investigated English translation text 

classification issues in multimedia and introduces the 

BATCL transfer learning technique. The study included 

the BERT, Att-BiLSTM, and TLCM models, 

demonstrating BATCL’s advantages over previous 

techniques. It stressed transfer learning’s potential to 

improve accuracy and efficiency in multimedia-based 

English translation text categorization. While precise 

limits, performance measures, and methods are not 

explicitly specified, the study makes an important 

contribution by presenting a unique categorization 

approach and proving transfer learning’s efficacy in 

dealing with various translated texts. Tian et al. [21] 

introduced SCC-BiLSTM, a smart contract categorization 

model that addresses issues such as source code, 

comments, and account data. The model outperforms 

other classification models by utilizing Bi-LSTM, 

Gaussian LDA, and attention processes. While precise 

performance measures and constraints are not clearly 

stated, this effort helps to further smart contract research.  

Huan [22] presented a CBM model for text 

categorization that includes Multiscale Convolutional 

Neural Network (MCNN) and Bi-LSTM, overcoming the 

limitations of CNN and RNN. The MCNN module 

collected shallow local semantic information flexibly, and 

a MIX attention method improved important feature 

extraction. Experimental findings showed higher 

classification accuracy than benchmark datasets. 

Limitations included a greater network size and a longer 

training time. The authors’ CBM model helps to advance 

text categorization. 

In recent research by Wang and Hu [23], a comparison 

between Support Vector Machine (SVM) and Least 

Squares SVM (LS-SVM) for regression tasks revealed 

insights into their performance and computational 

characteristics. This analysis parallels the pioneering 

work of Kici et al. [24], who explored a BERT-based 

transfer learning approach for text classification on 

software requirements specifications, showcasing the 

evolving landscape of machine learning techniques across 

diverse domains. 

Xu et al. [25] propose a novel approach to product 

requirement development leveraging multi-layer 

heterogeneous networks. This method addresses the 

complexity of product requirements by integrating 

diverse data sources and modeling relationships across 

different layers. By applying advanced network analysis 

techniques, the authors offer insights into enhancing the 

efficiency and effectiveness of the product development 

process. 

III. MATERIALS AND METHODS 

Various Machine Learning (ML) libraries utilized in 

the model are: 

• Beautiful Soap (BS) 

• NumPy (Numerical Python) 

• Scikit learn (Sklearn) 

• Imbalanced learn (imblearn) 

• Keras 

• Early Stopping Callback 

• Model Checkpoint 

• Dropout layer 

• Activation functions 

A. Overview of Dataset 

To conduct this study, we made use of the 

PROMISE_exp dataset. An augmentation of the original 

PROMISE dataset, this repository aims to promote 

software engineering prediction models that are 

repeatable, verifiable, refutable, and susceptible to 

refinement. The goal of this repository is to promote 

these models. The UCI Machine Learning Repository 

served as a source of inspiration for this. In the initial 

repository, there is an inventory of 255 Functional 

Requirements (FRs) and 370 non-functional requirements 

(NFRs), with the latter being further categorized into 11 

different NFR classes. The collection has been pre-

categorized. The PROMISE repository can be found in 

the link—PROMISE Software Engineering Repository 

(uottawa.ca). Fig. 1 shows the distribution of classes of 

the dataset. There are a total of 969 requirements that are 

included in the expanded version of PROMISE, which 

are stated in Table I. 

 

 

Fig. 1. PROMISE_exp dataset. 

B. Methodology  

1) Oversampling 

Usually, in any real data set, there are always some 

degrees of imbalance between classes. If the level of 

imbalance is relatively low, there should not be any big 

impact on ML model performance. In our dataset, there is 

high degree of imbalance between requirements 

categories (classes). This issue is common in the 

requirements classification field, where the number of 
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NFR sentences is always very small compared to FR and 

other contexts that don’t include requirements. 

Furthermore, the number of NFR categories in the same 

document is various. This issue led us to use 

oversampling. Fig. 2 shows the class distribution of the 

dataset after oversampling. 

TABLE I. NUMBER OF REQUIREMENTS PER LABEL (PROMISE_EXP 

DATASET) 

Requirement Sentence Type Symbolic Name Number 

Functional Requirement FR 444 

Availability A 31 
Legal & Licensing L 15 

Look & Feel LF 49 

Maintainability MN 24 

Operability O 77 

Performance PE 67 
Scalability SC 22 

Security SE 125 

Usability US 85 
Fault Tolerance FT 18 

Portability PO 12 

Total  969 

 

 

Fig. 2. Oversampled dataset. 

2) Dataset preprocessing 

To make the process of processing and extracting 

features easier, the current document requires that it be 

segmented into smaller portions. In addition, the 

requirement statements must be revised to exclude lines 

or paragraphs from these documents because they are not 

connected to the criteria that have been given. The task 

was carried out in a sequential fashion, consisting of three 

distinct stages: tokenization, data cleaning, and 

normalization. This was done to accomplish the goal 

mentioned above. In tokenization, the requirements 

document is broken up into smaller segments. 

This process is also called data preparation. The 

requirements document in this process is broken into 

paragraphs, and the paragraph into sentences. In order to 

establish the limits of the phrase, we made use of a 

selection of criteria that had been established beforehand. 

It is not possible to obtain any information. These criteria 

included the utilization of a capital letter in the initial part 

of the sentence, and the addition of punctuation 

characters that include a full stop, questioning mark, or 

exclamation point at the conclusion of the phrase. 

The objective of the data cleaning process is to clean 

all irrelevant tokens from requirement sentences that may 

undermine the performance of our model. We 

accomplished this task in three steps. The first step is 

punctuation removal, in this step, all punctuation marks 

such as stops, question marks, commas, colons, etc. are 

removed from the requirement sentences. Where the 

semantic meaning in the text is based on the basic words. 

The second step is stop-word removal, in this step, all 

high-frequency words, such as (“they”, “them”, “their”, 

“you”, “should”, “from”, etc.) don’t add any essential 

information to the requirement sentence. The last step of 

the data cleaning task is non-alphabetic tokens removal 

that didn’t contain useful information. In this step, all 

irrelevant data are removed including punctuation, stop-

words, and non-alphabetic tokens. 

In normalization process, we aimed to convert all the 

words to a more uniform sequence by transforming it to a 

common base form. In this task, we improve text 

modelling and matching. This task is applied on the 

words level by three steps: case folding, Parts of Speech 

(POS) tagging and Lemmatization. Fig. 3 visualizes every 

step of the preprocessing the dataset.  

 

 

Fig. 3. Data preparation. 

a) Word embedding 

The process begins with the creation of an empty 

embedding matrix. This matrix serves as the foundation 

for incorporating both randomly initialized values and 

pre-trained word embeddings. 

Its dimensions are determined by the vocabulary size 

and the specified embedding dimension. Subsequently, 

each word in the vocabulary undergoes evaluation. For 

words with corresponding pre-trained embedding vectors, 

these vectors replace the initially random values in the 

embedding matrix. This step ensures that words with 

available pre-trained embeddings contribute knowledge 

to the model. 

The embedding matrix is then integrated into a Keras 

Embedding layer. This layer is configured with essential 

parameters, including the vocabulary size, embedding 

dimension, and the maximum sequence length of input 

data. Importantly, the layer is set to be trainable, allowing 

its weights to be updated during the subsequent training 

phase. 

b) Bi-LSTM integration with a dense layer 

Bi-LSTM layer is followed by a Dense layer within a 

neural network. This combination enhances the model’s 
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ability to capture bidirectional context and process 

sequential information. 

In this segment, a Bidirectional LSTM layer is applied 

to the embedded sequences. The Bidirectional wrapper 

enables the LSTM unit to process input sequences in both 

forward and backward directions, enriching the model’s 

understanding of temporal dependencies. The parameter 

100 denotes the number of units (or neurons) in the 

LSTM layer. 

c) Dropout layer after dense layer 

Building upon the output of the Bidirectional LSTM 

layer, a Dense layer is added with 50 neurons and a 

Rectified Linear Unit (ReLU) activation function. This 

layer enhances feature extraction and prepares the data 

for subsequent processing. 

Following the Dense layer, a Dropout layer is 

introduced. The dropout rate, set at 0.5 in this instance, 

determines the fraction of randomly selected neurons to 

be deactivated during each training iteration. This 

randomness aids in preventing overfitting and promotes 

the learning of more robust representations. 

d) Integrating SVM output layer 

After the Dropout layer, a Dense layer is added to 

produce the SVM output. The number of neurons is 

determined by the length of Macronum, and the 

activation function is set to “linear” to maintain the 

linearity of the SVM output. The Keras Model is then 

constructed, taking the input sequence, and connecting it 

to the SVM output layer. This defines the end-to-end 

architecture of the neural network, with the capability to 

handle SVM-specific tasks. 

e) Model training and evaluation 

We use a technique called stratified K-fold cross-

validation to train the hybrid model. This technique 

ensures that each category has an appearance in both the 

training set and the validation set in a manner that is 

proportional to the number of times it appears in the 

dataset. This rigorous training regimen is augmented with 

early stopping to prevent overfitting and 

ModelCheckpoint to save the best performing model. To 

provide a full understanding of the model’s performance, 

it is evaluated using a number of different measures, 

including accuracy, precision, recall, and F1-Score. In 

addition to this, confusion matrices offer vital 

information regarding the quality of the model in 

accurately classifying examples from each category. 

Fig.  4 represents the overall flowchart of conducting 

experiment of the proposed model. 

 

 

Fig. 4. Flowchart of the working of hybrid model. 

IV. RESULT AND DISCUSSION 

This experiment is performed using HP 15-DY1XXX 

which has a RAM of 8 GB, 256 GB SSD, and Windows 

10 64-bit OS. For utilizing and training of the proposed 

model, Google Colab is used with T4 GPU. Google colab 

gives a systematic and proficient environment for running 

the model. The suggested model performed the 

preparation, validation, and testing procedures using the 

PROMISE_exp dataset. Once the training and validation 

phases were complete, the model was able to recognize 

the testing data, which consisted of 969 requirements 

distributed over 12 classes, with an accuracy of 98.79%. 

TABLE II. COMPARISON WITH EXISTING WORK 

Referencing Work 
Dataset 

(Classes) 
Accuracy 

Zhang et al. [6] 
PROMISE 

FR/NFR, 17 sub-classes 

95.7% (binary), 
93.4% (multi-

class) 

Sun et al. [17] 

DOORS Next Gen, 

PROMISE-NFR 
FR/NFR 

90.5% (DOORS), 

87.8% 
(PROMISE) 

Khan et al. [20] 
PROMISE 

FR/NFR 

97.3% (LSTM), 

96.1% (GRU) 

Muhammad et al. [2] 
PROMISE 

FR/NFR, 16 sub-classes 
90.7% (Bi-LSTM) 

Li et al. [15] 
PROMISE 

FR/NFR 
88.9% (Bi-LSTM) 

Rahman et al. [2] 
PROMISE 
FR/NFR 

87.2% (LSTM) 

Sun et al. [16] 
IEEE Standard 820 

FR/NFR Performance 
85.4% (Bi-LSTM) 

Moreno et al. [18] 

JIRA, GitHub, Stack 
Overflow 

Bug reports, Feature 

requests 

83.1% (LSTM) 

Guzman et al. [7] 

NASA requirements 

documents 

Functional, Non-
functional, Interface 

81.8% (LSTM) 

Wang et al. [19] 

IEEE Transactions on 

Software Engineering 
FR/NFR, 10 sub-classes 

96.2% (Bi-LSTM 

+ CNN) 

Xu et al. [20] 

IEEE Transactions on 

Neural Networks and 

Learning Systems 
FR/NFR, 12 sub-classes 

96.8% (Bi-LSTM 
+ Transformer 

Encoder) 

Proposed Model 
Promise_exp 

FR/NFR, 12 sub-classes 

98.79% (Bi-

LSTM+SVM) 

 

Table II demonstrates the similar works of previous 

authors with their used dataset and achievements. In 

terms of categorization, the model did well consider the 

large number of requirement classes.  

To obtain high accuracy and effectively classify 

required sentences, we used an SVM-equipped 

Bidirectional LSTM in the output layer. The final 

classification is aided by SVM’s capacity to handle high-

dimensional data and non-linear relationships, while 

Bidirectional LSTM helps the model efficiently collect 

contextual information. The integration of these models 

was evaluated using a 10-fold cross-validation, offering a 

thorough examination of their predictive power and 

guaranteeing a reliable performance evaluation. 
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SVM was strategically chosen for the output layer 

because of its reputation for resilience, especially in 

situations requiring the delineation of intricate decision 

boundaries. To improve the classification task’s overall 

performance, we combined the benefits of SVM’s 

efficiency with deep learning’s strengths. Here, Fig. 5 

shows the training and validation loss and accuracy 

curves. It can be seen that the training and validation loss 

decreases and stabilizes, and the training and validation 

accuracy increases and stabilizes, which is the proof of 

ideal scenarios of model training, and proves that the 

model is not under or overfitted. Fig. 6 is a visual 

representation of what early stopping callback does in a 

machine learning model. Early Stopping callback 

function prevents overfitting by stopping the learning 

early if performance degrades, saves resources by 

avoiding unnecessary epochs, and ensures the model 

performs well to unseen new data. 

 

 

Fig. 5. Training validation loss accuracy curve. 

 

Fig. 6. Early stopping callback. 

Table III summarizes the machine learning model’s 

performance characteristic throughout ten folds. The 

measures are Accuracy, Precision, Recall, and F1-Score. 

The model is highly consistent across several folds, with 

all accuracy values greater than 0.98. This implies a 

consistent performance. The only noticeable difference is 

in Fold 2, in which the recall and hence the F1-Score are 

lower than in the other folds. This shows that, though the 

model is usually robust, there may be unique instances or 

traits in Fold 2 that pose a slight challenge to the model. 

Despite this, the model’s performance is consistently 

reliable and effective. 

TABLE III. EFFECT OF SVM LAYER IN EACH FOLD 

Fold Accuracy Precision Recall F1-Score 

1 0.9848 0.9919 0.9924 0.9920 

2 0.9840 0.9832 0.9361 0.9366 

3 0.9880 0.9884 0.9880 0.9878 
4 0.9936 0.9936 0.9936 0.9936 

5 0.9848 0.9849 0.9848 0.9845 

6 0.9896 0.9898 0.9896 0.9895 
7 0.9912 0.9914 0.9912 0.9911 

8 0.9872 0.9847 0.9840 0.9836 

9 0.9880 0.9883 0.9880 0.9878 
10 0.9912 0.9903 0.9904 0.9904 

 

Bi-LSTM forward backward calculation equations: 

 hf = (Wf  I + bf + hf)σ (1) 

 hb = (hb + Wb  I + bb)σ  (2) 

 o = (hfWf + b + hbWb) (3) 

V. CONCLUSION 

To sum up, the objective of our study was to classify 

requirement sentences. The hybrid classification model 

showed promising results in successfully classifying 

requirement sentences by combining the strengths of 

SVM and Bi-LSTM. By using Bi-LSTM, the model was 

able to find out the language structures in requirement 

sentences on a deeper level by capturing dependencies 

and contextual information within the input sequences. 

SVM’s complimentary nature and capacity to determine 

boundaries in high-dimensional space added to the 

classification system’s overall resilience and 

generalization. By verifying the model’s performance by 

comparing it with other models and existing works, the 

Bi-LSTM-SVM helped to ensure the model’s 

dependability and reduce the chance of overfitting. The 

suggested hybrid approach’s stability and effectiveness 

are highlighted by the consistent performance metrics that 

were acquired across several folds in the 10-fold cross 

validation. 

The performance of the hybrid model could be 

improved and optimized by conducting further 

investigations into other feature engineering techniques, 

neural network topologies, and the integration of domain-

specific data. However, our current work provides a solid 

foundation for the development of necessary sentence 

categorization algorithms and shows the promise of 

hybrid models in addressing the complexities involved in 

this challenging endeavor. 

Beyond software engineering, the implications of this 

work extend to other fields with complex text 

classification challenges, such as natural language 

processing and information retrieval. By addressing the 

limitations of individual models, hybrid approaches like 

ours offer greater flexibility and adaptability, paving the 

way for more accurate and nuanced text analysis across 

diverse domains. While recognizing the potential 

challenges and limitations built-in in any model, we 

remain confident that our research represents a 

considerable improvement in addressing the complexities 
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of requirement classification. By continuously refining 

and expanding this approach, we can unlock new 

possibilities for efficient and effective software 

development, while also contributing to the advancement 

of broader text analysis methodologies. 

The study was conducted on an existing dataset which 

has a limited number of classes. In future, we want to 

work on our own big dataset which will be extracted from 

an SRS document and be further analyzed. 

ABBREVIATIONS AND ACRONUMS  

ML                  Machine Learning 

DL                  Deep Learning 

RNN               Recurrent Neural Network 

LSTM             Long Short-Term Memory 

Bi-LSTM        Bidirectional Long Short-Term Memory 

SVM               Support Vector Machine 

NB                  Naive Bayes 

LR                   Logistic Regression 

KNN               K-Nearest Neighbors 

BS                   Beautiful Soup 

Numpy            Numerical Python 

ReLU              Rectified Linear Unit 

FR                   Functional Requirement 

NFR                Non-Functional Requirement 

A                     Availability 

L                     Legal & Licensing 

LF                   Look & Feel 

MN                 Maintainability 

O                     Operability 

PE                   Performance 

SC                   Scalability 

SE                   Security 

US                   Usability 

FT                   Fault Tolerance 

PO                   Portability 
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