
Hybrid SVM-Bidirectional Long Short-Term

Memory Model for Fine-Grained Software

Requirement Classification

Mahmuda Akter Metu 1, Nazneen Akhter 2,*, Sanjeda Nasrin 1, Tasnim Anzum 1, Afrina Khatun 1,

and Rashed Mazumder 3

1 Department of Information and Communication Technology, Faculty of Science and Technology,

Bangladesh University of Professionals, Mirpur, Dhaka-1216, Bangladesh
2 Department of Computer Science and Engineering, Faculty of Science and Technology,

Bangladesh University of Professionals, Mirpur, Dhaka-1216, Bangladesh
3 Institute of Information Technology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh

Email: mmahmuda092@gmail.com (M.A.M.); nazneen.akhter@bup.edu.bd (N.A.); sanjeda0390@gmail.com (S.N.);

tasnimanzum1234@gmail.com (T.A.); afrina.khatun@bup.edu.bd (A.K.), rmiit@juniv.edu (R.M.)

*Corresponding Author

Abstract—This study focuses on advancing the classification

of software requirements, particularly within the subclasses

of Non-Functional requirements. Four machine learning

algorithms—Support Vector Machine (SVM), Logistic

Regression (LR), K-Nearest Neighbors (KNN), and Naive

Bayes (NB)—were initially implemented, with SVM

exhibiting superior performance. To enhance overall

accuracy, a voting classifier ensemble method was

employed, resulting in significant improvement. In the

realm of deep learning, a standalone Bidirectional Long

Short-Term Memory (Bi-LSTM) network faced challenges

in fine-tuning. To harness the strengths of both machine

learning and deep learning, we proposed a hybrid model by

integrating SVM with Bi-LSTM. This hybrid model

surpassed all prior experiments, highlighting the synergistic

potential between traditional machine learning and deep

learning. Our findings showcase the effectiveness of

combining SVM’s discriminative power with Bi-LSTM’s

sequential understanding, yielding a robust classification

model for software requirements. This research contributes

to the advancement of requirement analysis, providing a

practical solution for accurately identifying diverse

requirement types within the nuanced domain of Non-

Functional requirements.

Keywords—Software requirements, Bidirectional Long

Short-Term Memory (Bi-LSTM), Support Vector Machine

(SVM)

I. INTRODUCTION

Classifying software requirements is akin to sorting

puzzle pieces—it brings order to the initial jumble,

making it easier to understand, manage, and ultimately,

build a successful software system. Non-Functional

Requirements (NFRs) are crucial in software

development, defining how a system should work rather

 Manuscript received December 21, 2023; revised February 27, 2024;

accepted May 20, 2024; published August 7, 2024.

than what it should do. Classifying these NFRs helps

organize, prioritize, and ensure their effective

implementation. Classifying NFRs is a pivotal practice in

software development, extending beyond organizational

tidiness to wield substantial influence on project

outcomes. By categorizing NFRs based on their impact,

such as performance, security, and usability, teams can

effectively prioritize and concentrate efforts on critical

aspects, ensuring the development of a system that aligns

with essential needs. This classification also fosters a

shared language among diverse stakeholders, including

developers, users, and managers, promoting clearer

communication and reducing the likelihood of

misunderstandings. Moreover, grouping NFRs with

similar characteristics allows for targeted development

efforts, optimizing resource allocation. This approach

facilitates the creation of specific and relevant test cases

for each NFR category, enabling thorough testing across

all facets of the system. The categorization of NFRs

enhances the system’s maintainability, simplifying the

identification and implementation of future modifications

with minimized impact. Importantly, this strategic

classification minimizes ambiguity, mitigating the risks

of costly rework or missed deadlines, and ensures that

critical features are prioritized and delivered even within

budget or time constraints. In essence, NFR classification

emerges not as a mere formality but as a strategic

imperative, contributing to the clarity, focus, and

efficiency pivotal for building successful and user-

friendly software systems.

In the domain of NFR classification, research reveals

pivotal gaps necessitating further exploration. Current

methods often lack context sensitivity, requiring context-

aware models that consider project-specific factors like

domain intricacies and development methodologies. The

dynamic nature of NFRs throughout the project lifecycle

calls for research into techniques for dynamic

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

914doi: 10.12720/jait.15.8.914-922

mailto:mmahmuda092@gmail.com
mailto:nazneen.akhter@bup.edu.bd
mailto:sanjeda0390@gmail.com
mailto:tasnimanzum1234@gmail.com
mailto:afrina.khatun@bup.edu.bd
mailto:rmiit@juniv.edu

classification and recalibration to ensure alignment with

evolving requirements. Incorporating diverse stakeholder

perspectives into NFR classification schemes is crucial,

ensuring a holistic understanding beyond technical

viewpoints. Exploring the potential of particularly

Machine Learning (ML) and natural language processing,

offers a promising avenue for automated NFR

categorization but requires addressing challenges such as

ambiguity in requirements. Research should extend

beyond classification to encompass impactful

methodologies for analyzing and prioritizing NFRs,

informing effective resource allocation and project

planning. The seamless integration and collaboration of

NFR tools across development environments demand

research attention to enhance collaborative classification

and management. Notably, the underutilized potential of

combining Machine Learning (ML) and Deep Learning

(DL) for NFR classification presents a promising frontier,

offering a more robust and accurate approach to address

existing challenges in software development

methodologies.

The aim of this work is to discover a path to get some

good results by merging deep learning with machine

learning in a hybrid model for multi-class classification.

The plan is to utilize Bidirectional Long Short-Term

Memory (Bi-LSTM)’s capacity to comprehend groupings

and Support Vector Machine (SVM)’s capacity to advise

contrasts between things to further develop classification

accuracy and readability. This is done with the intention

of developing a smarter and more adaptable model that

makes use of Bi-LSTM’s capacity to comprehend

intricate sequences and SVM’s capacity to clearly define

decision limits. The hybrid model consolidates these

elements to improve it at classifying different datasets,

finding the right mix among accuracy and readability that

is significant in some true circumstances.

The paper is organized as follows. In Section II, related

works on non-functional requirements classification is

presented. The detail of the proposed model is provided

in Section III. The results are elaborated upon in

Section IV, followed by a discussion. Finally, Section V

presents the conclusion mentioning the future scope.

II. LITERATURE REVIEW

Zhou et al. [1] proposed an attention-based Long

Short-Term Memory (LSTM) network for cross-language

sentiment analysis, employing multilingual bidirectional

LSTMs and a hierarchical attention mechanism.

Demonstrated with Chinese and English, their model

outperformed existing methods. Future plans include

testing with new languages, datasets, and incorporating

additional emotion phrases to enhance software

intelligence. The research significantly contributes to

understanding emotions across languages, emphasizing

its essential role.

Rahman et al. [2] automated Non-Functional

Requirements (NFR) detection in Software Requirement

Specifications (SRS), a critical aspect in software

development. Leveraging advanced Recurrent Neural

Network (RNN), specifically Long Short-Term Memory

(LSTM), and their approach achieved superior precision,

recall, and F1-Score values of 0.973, 0.967, and 0.966.

Rahman et al. [3] investigated algorithmic

hybridization for Non-Functional Requirement (NFR)

classification in software engineering, employing LSTM,

Bi-LSTM, and ANN approaches. Their study, based on

1000 NFR examples, revealed that the Bi-LSTM-ANN

model outperforms standalone LSTM and Bi-LSTM in

precision, recall, and F1-Scores.

Khayashi et al. [4] explored the application of deep

learning techniques for categorizing software

requirements using the PURE dataset. While emphasizing

the importance of enhancing the precision and simplicity

of the sorting process in computer systems, the study

lacks a comprehensive comparison of various techniques

and does not delve into real-life challenges

In Yucklar’s study [5], software requirements analysis,

particularly the differentiation between functional and

non-functional types, is deemed crucial for successful

development. The research employs AI techniques on a

novel Turkish dataset, achieving a remarkable 95%

accuracy with BERTurk. Despite the study’s significance

in the absence of similar Turkish research, it

acknowledges limitations. Further exploration is needed

to assess the applicability of models, address potential

dataset biases, and delve into real-world implementation

challenges, emphasizing the necessity for a more

comprehensive solution in the realm of software

development.

Kaur and Kaur [6] explored the application of the

SABDM technique in the classification of software

requirements, employing deep learning to distinguish

between different types. However, the approach may

encounter challenges with informal texts and might be

perplexed by contradictory labels in the data, potentially

impeding its ability to comprehend specific information.

Rahimi et al. [7] proposed a novel methodology,

Ensemble Deep Learning, integrating LSTM, Bi-LSTM,

GRU, and CNN models to categorize Software

Requirements (SRs) into functional and non-functional

groups. The approach allows single or two-phase

classification. Despite its effectiveness, limitations

include language restriction and challenges handling

complex phrase structures.

In their investigation, Ali and Saleem [8] explored how

computers learn to detect diverse software requirements,

examining approaches like Latent Dirichlet Allocation

and Naive Bayes for distinguishing Functional and Non-

Functional Requirements (FRs and NFRs). Some

methods, notably Latent Dirichlet Allocation and Naive

Bayes, achieved a high accuracy of 95%. However,

complexities arise when attempting to discern different

types of NFRs, where Word2Vec techniques struggle and

exhibit reduced accuracy. This review provides insights

into effective and less effective methods, assisting

software professionals in choosing superior approaches

for understanding and organizing software needs.

Sabir’s research [9] concentrates on the crucial task of

determining software requirements in the software

development process. Unlike earlier methods relying on

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

915

supervised machine learning, which faced challenges like

insufficient labeled data and substantial setup time, Sabir

aims to overcome these issues. The research explores new

deep learning methods to streamline the setup of software

requirements. While heading in the right direction,

challenges remain, particularly in accumulating a

sufficient number of labeled instances and achieving

balance across various categories.

Saratha and Mukherjee [10] addressed challenges in

manual requirement classification arising from diverse

terminology used by stakeholders, leading to error-prone

categorization. They underscored the time-consuming

nature of manual classification in large projects and

advocated for more precise automatic systems. The

researchers discussed existing automated strategies,

highlighting issues like tool complexity, limited

extraction, and subpar performance

Baskoro et al. [11] explored software requirement

classification using PROMISE and SecReq (ePurse)

datasets, comparing SVM and CNN approaches with

FastText feature extraction. The RNN-LSTM technique

demonstrated notable performance, achieving recall,

precision, and F1-Score values of 71.5%, 71.7%, and

70%, respectively, along with an accuracy of 71.5%. The

study emphasized dataset-specific classification results

and recommended hyperparameter adjustments to

enhance CNN performance when coupled with Fasttext.

Li et al. [12] introduced DBGAT, a novel method for

categorizing software requirements using graph attention

networks and BERT. This approach exhibits remarkable

accuracy and adaptability to various scenarios, surpassing

constraints of conventional techniques and the uncertain

applicability of LSTMs. DBGAT thoroughly examines

phrase structure and word associations, achieving

precision rates of up to 91% and F1-Scores of 91%, even

with previously unseen projects. While this advancement

sets the stage for a more effective and precise era in

software development, further investigation into dynamic

graph topologies and larger datasets is essential to fully

harness its capabilities.

Jang et al. [13] scrutinized the limitations of Long

Short-Term Memory (LSTM) networks, revealing

challenges in achieving optimal precision, F1-Score,

accuracy, and recall. Their examination underscored the

drawbacks of these metrics in commonly used Natural

Language Processing (NLP) techniques, emphasizing the

need for innovative models capable of efficiently

handling the complexities of diverse linguistic structures

and data with rich context. The primary objective was to

enhance the fundamental assessment criteria in natural

language processing activities, recognizing the demand

for advancements in addressing the intricacies of

language processing tasks.

Kaur et al. [14] focused on software needs

classification, underscoring the significance of accurate

identification in software development. The investigation

shed light on the deficiencies of existing manual

interpretation approaches, leading to time-consuming and

imprecise classifications. To address these challenges, the

researchers explored the application of the BERT model

with the aim of achieving more precise and automated

categorization processes. The study reflects a

commitment to improving the efficiency and accuracy of

software needs identification through advanced and

automated techniques.

NFRNet, introduced by Li and Nong [15], represents

an advancement in the classification of Non-Functional

Requirements (NFR) in software development. While the

paper demonstrates superior performance in Precision,

Recall, and F1-Score compared to current methods, it

lacks a comprehensive examination of challenges related

to practical implementation and computational efficiency.

Despite the potential of NFRNet’s automated approach in

optimizing NFR identification, additional research into its

practical applicability and computational efficiency

would be advantageous for a more thorough

understanding of its effectiveness in real-world scenarios.

Tiun et al. [16] investigated word embeddings and

conventional features across various classifiers to identify

Functional Requirements (FR) and Non-Functional

Requirements (NFR) using text classification techniques.

The paper highlights FastText as the superior model,

showcasing its effectiveness in brief document

classification compared to deep learning classifiers and

conventional methods. However, the research falls short

in thoroughly examining intricate models such as BERT

and could benefit from additional scrutiny regarding

improvements to TFIDF to enhance the accuracy of FR

and NFR classification. Further exploration of advanced

models and feature enhancements may contribute to a

more comprehensive understanding of text classification

efficacy.

Huan [17] presented a CBM model for text

categorization that includes Multiscale Convolutional

Neural Network (MCNN) and Bi-LSTM, overcoming the

limitations of CNN and RNN. The MCNN module

collected shallow local semantic information flexibly, and

a MIX attention method improved important feature

extraction. Experimental findings showed higher

classification accuracy than benchmark datasets.

Limitations included a greater network size and a longer

training time. The authors’ CBM model helps to advance

text categorization.

In a study by Rahman et al.’s [18], they delved into the

challenges associated with Non-Functional Requirements

(NFR) using machine learning techniques. They put

forward two models, DReqANN and DReqBiLSTM

highlighting the drawbacks of existing methods that rely

on feature extraction. The research findings showcase the

performance of DReqANN in classifying NFR achieving

precision ranging from 81% to an impressive 99.8%

along with recall rates, between 74% and 89%. The

authors emphasised the efficiency of their deep learning

approach. Propose addressing complexities through

transformer-based models leveraging unsupervised

software requirement corpora and incorporating transfer

learning methodologies.

Yahya et al. [19] explored an explored aspect of app

development. Identifying Non-Functional Requirements

(NFR) using user reviews. They introduce a learning

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

916

model that combines RNN and LSTM architectures

emphasizing the lack of research on Arabic language

datasets. Their model achieved a F1-Score of 96%

surpassing both ML classifiers and LSTM models. The

research also acknowledged limitations, such as the need

for data applications and suggested potential strategies to

enhance future studies through feature augmentation.

Overall, this study contributes to the field by introducing

an approach and highlighting the importance of

considering NFR concerns, in mobile app development.

Zheng’s work [20] investigated English translation text

classification issues in multimedia and introduces the

BATCL transfer learning technique. The study included

the BERT, Att-BiLSTM, and TLCM models,

demonstrating BATCL’s advantages over previous

techniques. It stressed transfer learning’s potential to

improve accuracy and efficiency in multimedia-based

English translation text categorization. While precise

limits, performance measures, and methods are not

explicitly specified, the study makes an important

contribution by presenting a unique categorization

approach and proving transfer learning’s efficacy in

dealing with various translated texts. Tian et al. [21]

introduced SCC-BiLSTM, a smart contract categorization

model that addresses issues such as source code,

comments, and account data. The model outperforms

other classification models by utilizing Bi-LSTM,

Gaussian LDA, and attention processes. While precise

performance measures and constraints are not clearly

stated, this effort helps to further smart contract research.

Huan [22] presented a CBM model for text

categorization that includes Multiscale Convolutional

Neural Network (MCNN) and Bi-LSTM, overcoming the

limitations of CNN and RNN. The MCNN module

collected shallow local semantic information flexibly, and

a MIX attention method improved important feature

extraction. Experimental findings showed higher

classification accuracy than benchmark datasets.

Limitations included a greater network size and a longer

training time. The authors’ CBM model helps to advance

text categorization.

In recent research by Wang and Hu [23], a comparison

between Support Vector Machine (SVM) and Least

Squares SVM (LS-SVM) for regression tasks revealed

insights into their performance and computational

characteristics. This analysis parallels the pioneering

work of Kici et al. [24], who explored a BERT-based

transfer learning approach for text classification on

software requirements specifications, showcasing the

evolving landscape of machine learning techniques across

diverse domains.

Xu et al. [25] propose a novel approach to product

requirement development leveraging multi-layer

heterogeneous networks. This method addresses the

complexity of product requirements by integrating

diverse data sources and modeling relationships across

different layers. By applying advanced network analysis

techniques, the authors offer insights into enhancing the

efficiency and effectiveness of the product development

process.

III. MATERIALS AND METHODS

Various Machine Learning (ML) libraries utilized in

the model are:

• Beautiful Soap (BS)

• NumPy (Numerical Python)

• Scikit learn (Sklearn)

• Imbalanced learn (imblearn)

• Keras

• Early Stopping Callback

• Model Checkpoint

• Dropout layer

• Activation functions

A. Overview of Dataset

To conduct this study, we made use of the

PROMISE_exp dataset. An augmentation of the original

PROMISE dataset, this repository aims to promote

software engineering prediction models that are

repeatable, verifiable, refutable, and susceptible to

refinement. The goal of this repository is to promote

these models. The UCI Machine Learning Repository

served as a source of inspiration for this. In the initial

repository, there is an inventory of 255 Functional

Requirements (FRs) and 370 non-functional requirements

(NFRs), with the latter being further categorized into 11

different NFR classes. The collection has been pre-

categorized. The PROMISE repository can be found in

the link—PROMISE Software Engineering Repository

(uottawa.ca). Fig. 1 shows the distribution of classes of

the dataset. There are a total of 969 requirements that are

included in the expanded version of PROMISE, which

are stated in Table I.

Fig. 1. PROMISE_exp dataset.

B. Methodology

1) Oversampling

Usually, in any real data set, there are always some

degrees of imbalance between classes. If the level of

imbalance is relatively low, there should not be any big

impact on ML model performance. In our dataset, there is

high degree of imbalance between requirements

categories (classes). This issue is common in the

requirements classification field, where the number of

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

917

http://promise.site.uottawa.ca/SERepository/
http://promise.site.uottawa.ca/SERepository/

NFR sentences is always very small compared to FR and

other contexts that don’t include requirements.

Furthermore, the number of NFR categories in the same

document is various. This issue led us to use

oversampling. Fig. 2 shows the class distribution of the

dataset after oversampling.

TABLE I. NUMBER OF REQUIREMENTS PER LABEL (PROMISE_EXP

DATASET)

Requirement Sentence Type Symbolic Name Number

Functional Requirement FR 444

Availability A 31
Legal & Licensing L 15

Look & Feel LF 49

Maintainability MN 24

Operability O 77

Performance PE 67
Scalability SC 22

Security SE 125

Usability US 85
Fault Tolerance FT 18

Portability PO 12

Total 969

Fig. 2. Oversampled dataset.

2) Dataset preprocessing

To make the process of processing and extracting

features easier, the current document requires that it be

segmented into smaller portions. In addition, the

requirement statements must be revised to exclude lines

or paragraphs from these documents because they are not

connected to the criteria that have been given. The task

was carried out in a sequential fashion, consisting of three

distinct stages: tokenization, data cleaning, and

normalization. This was done to accomplish the goal

mentioned above. In tokenization, the requirements

document is broken up into smaller segments.

This process is also called data preparation. The

requirements document in this process is broken into

paragraphs, and the paragraph into sentences. In order to

establish the limits of the phrase, we made use of a

selection of criteria that had been established beforehand.

It is not possible to obtain any information. These criteria

included the utilization of a capital letter in the initial part

of the sentence, and the addition of punctuation

characters that include a full stop, questioning mark, or

exclamation point at the conclusion of the phrase.

The objective of the data cleaning process is to clean

all irrelevant tokens from requirement sentences that may

undermine the performance of our model. We

accomplished this task in three steps. The first step is

punctuation removal, in this step, all punctuation marks

such as stops, question marks, commas, colons, etc. are

removed from the requirement sentences. Where the

semantic meaning in the text is based on the basic words.

The second step is stop-word removal, in this step, all

high-frequency words, such as (“they”, “them”, “their”,

“you”, “should”, “from”, etc.) don’t add any essential

information to the requirement sentence. The last step of

the data cleaning task is non-alphabetic tokens removal

that didn’t contain useful information. In this step, all

irrelevant data are removed including punctuation, stop-

words, and non-alphabetic tokens.

In normalization process, we aimed to convert all the

words to a more uniform sequence by transforming it to a

common base form. In this task, we improve text

modelling and matching. This task is applied on the

words level by three steps: case folding, Parts of Speech

(POS) tagging and Lemmatization. Fig. 3 visualizes every

step of the preprocessing the dataset.

Fig. 3. Data preparation.

a) Word embedding

The process begins with the creation of an empty

embedding matrix. This matrix serves as the foundation

for incorporating both randomly initialized values and

pre-trained word embeddings.

Its dimensions are determined by the vocabulary size

and the specified embedding dimension. Subsequently,

each word in the vocabulary undergoes evaluation. For

words with corresponding pre-trained embedding vectors,

these vectors replace the initially random values in the

embedding matrix. This step ensures that words with

available pre-trained embeddings contribute knowledge

to the model.

The embedding matrix is then integrated into a Keras

Embedding layer. This layer is configured with essential

parameters, including the vocabulary size, embedding

dimension, and the maximum sequence length of input

data. Importantly, the layer is set to be trainable, allowing

its weights to be updated during the subsequent training

phase.

b) Bi-LSTM integration with a dense layer

Bi-LSTM layer is followed by a Dense layer within a

neural network. This combination enhances the model’s

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

918

ability to capture bidirectional context and process

sequential information.

In this segment, a Bidirectional LSTM layer is applied

to the embedded sequences. The Bidirectional wrapper

enables the LSTM unit to process input sequences in both

forward and backward directions, enriching the model’s

understanding of temporal dependencies. The parameter

100 denotes the number of units (or neurons) in the

LSTM layer.

c) Dropout layer after dense layer

Building upon the output of the Bidirectional LSTM

layer, a Dense layer is added with 50 neurons and a

Rectified Linear Unit (ReLU) activation function. This

layer enhances feature extraction and prepares the data

for subsequent processing.

Following the Dense layer, a Dropout layer is

introduced. The dropout rate, set at 0.5 in this instance,

determines the fraction of randomly selected neurons to

be deactivated during each training iteration. This

randomness aids in preventing overfitting and promotes

the learning of more robust representations.

d) Integrating SVM output layer

After the Dropout layer, a Dense layer is added to

produce the SVM output. The number of neurons is

determined by the length of Macronum, and the

activation function is set to “linear” to maintain the

linearity of the SVM output. The Keras Model is then

constructed, taking the input sequence, and connecting it

to the SVM output layer. This defines the end-to-end

architecture of the neural network, with the capability to

handle SVM-specific tasks.

e) Model training and evaluation

We use a technique called stratified K-fold cross-

validation to train the hybrid model. This technique

ensures that each category has an appearance in both the

training set and the validation set in a manner that is

proportional to the number of times it appears in the

dataset. This rigorous training regimen is augmented with

early stopping to prevent overfitting and

ModelCheckpoint to save the best performing model. To

provide a full understanding of the model’s performance,

it is evaluated using a number of different measures,

including accuracy, precision, recall, and F1-Score. In

addition to this, confusion matrices offer vital

information regarding the quality of the model in

accurately classifying examples from each category.

Fig. 4 represents the overall flowchart of conducting

experiment of the proposed model.

Fig. 4. Flowchart of the working of hybrid model.

IV. RESULT AND DISCUSSION

This experiment is performed using HP 15-DY1XXX

which has a RAM of 8 GB, 256 GB SSD, and Windows

10 64-bit OS. For utilizing and training of the proposed

model, Google Colab is used with T4 GPU. Google colab

gives a systematic and proficient environment for running

the model. The suggested model performed the

preparation, validation, and testing procedures using the

PROMISE_exp dataset. Once the training and validation

phases were complete, the model was able to recognize

the testing data, which consisted of 969 requirements

distributed over 12 classes, with an accuracy of 98.79%.

TABLE II. COMPARISON WITH EXISTING WORK

Referencing Work
Dataset

(Classes)
Accuracy

Zhang et al. [6]
PROMISE

FR/NFR, 17 sub-classes

95.7% (binary),
93.4% (multi-

class)

Sun et al. [17]

DOORS Next Gen,

PROMISE-NFR
FR/NFR

90.5% (DOORS),

87.8%
(PROMISE)

Khan et al. [20]
PROMISE

FR/NFR

97.3% (LSTM),

96.1% (GRU)

Muhammad et al. [2]
PROMISE

FR/NFR, 16 sub-classes
90.7% (Bi-LSTM)

Li et al. [15]
PROMISE

FR/NFR
88.9% (Bi-LSTM)

Rahman et al. [2]
PROMISE
FR/NFR

87.2% (LSTM)

Sun et al. [16]
IEEE Standard 820

FR/NFR Performance
85.4% (Bi-LSTM)

Moreno et al. [18]

JIRA, GitHub, Stack
Overflow

Bug reports, Feature

requests

83.1% (LSTM)

Guzman et al. [7]

NASA requirements

documents

Functional, Non-
functional, Interface

81.8% (LSTM)

Wang et al. [19]

IEEE Transactions on

Software Engineering
FR/NFR, 10 sub-classes

96.2% (Bi-LSTM

+ CNN)

Xu et al. [20]

IEEE Transactions on

Neural Networks and

Learning Systems
FR/NFR, 12 sub-classes

96.8% (Bi-LSTM
+ Transformer

Encoder)

Proposed Model
Promise_exp

FR/NFR, 12 sub-classes

98.79% (Bi-

LSTM+SVM)

Table II demonstrates the similar works of previous

authors with their used dataset and achievements. In

terms of categorization, the model did well consider the

large number of requirement classes.

To obtain high accuracy and effectively classify

required sentences, we used an SVM-equipped

Bidirectional LSTM in the output layer. The final

classification is aided by SVM’s capacity to handle high-

dimensional data and non-linear relationships, while

Bidirectional LSTM helps the model efficiently collect

contextual information. The integration of these models

was evaluated using a 10-fold cross-validation, offering a

thorough examination of their predictive power and

guaranteeing a reliable performance evaluation.

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

919

SVM was strategically chosen for the output layer

because of its reputation for resilience, especially in

situations requiring the delineation of intricate decision

boundaries. To improve the classification task’s overall

performance, we combined the benefits of SVM’s

efficiency with deep learning’s strengths. Here, Fig. 5

shows the training and validation loss and accuracy

curves. It can be seen that the training and validation loss

decreases and stabilizes, and the training and validation

accuracy increases and stabilizes, which is the proof of

ideal scenarios of model training, and proves that the

model is not under or overfitted. Fig. 6 is a visual

representation of what early stopping callback does in a

machine learning model. Early Stopping callback

function prevents overfitting by stopping the learning

early if performance degrades, saves resources by

avoiding unnecessary epochs, and ensures the model

performs well to unseen new data.

Fig. 5. Training validation loss accuracy curve.

Fig. 6. Early stopping callback.

Table III summarizes the machine learning model’s

performance characteristic throughout ten folds. The

measures are Accuracy, Precision, Recall, and F1-Score.

The model is highly consistent across several folds, with

all accuracy values greater than 0.98. This implies a

consistent performance. The only noticeable difference is

in Fold 2, in which the recall and hence the F1-Score are

lower than in the other folds. This shows that, though the

model is usually robust, there may be unique instances or

traits in Fold 2 that pose a slight challenge to the model.

Despite this, the model’s performance is consistently

reliable and effective.

TABLE III. EFFECT OF SVM LAYER IN EACH FOLD

Fold Accuracy Precision Recall F1-Score

1 0.9848 0.9919 0.9924 0.9920

2 0.9840 0.9832 0.9361 0.9366

3 0.9880 0.9884 0.9880 0.9878
4 0.9936 0.9936 0.9936 0.9936

5 0.9848 0.9849 0.9848 0.9845

6 0.9896 0.9898 0.9896 0.9895
7 0.9912 0.9914 0.9912 0.9911

8 0.9872 0.9847 0.9840 0.9836

9 0.9880 0.9883 0.9880 0.9878
10 0.9912 0.9903 0.9904 0.9904

Bi-LSTM forward backward calculation equations:

 hf = (Wf  I + bf + hf)σ (1)

 hb = (hb + Wb  I + bb)σ (2)

 o = (hfWf + b + hbWb) (3)

V. CONCLUSION

To sum up, the objective of our study was to classify

requirement sentences. The hybrid classification model

showed promising results in successfully classifying

requirement sentences by combining the strengths of

SVM and Bi-LSTM. By using Bi-LSTM, the model was

able to find out the language structures in requirement

sentences on a deeper level by capturing dependencies

and contextual information within the input sequences.

SVM’s complimentary nature and capacity to determine

boundaries in high-dimensional space added to the

classification system’s overall resilience and

generalization. By verifying the model’s performance by

comparing it with other models and existing works, the

Bi-LSTM-SVM helped to ensure the model’s

dependability and reduce the chance of overfitting. The

suggested hybrid approach’s stability and effectiveness

are highlighted by the consistent performance metrics that

were acquired across several folds in the 10-fold cross

validation.

The performance of the hybrid model could be

improved and optimized by conducting further

investigations into other feature engineering techniques,

neural network topologies, and the integration of domain-

specific data. However, our current work provides a solid

foundation for the development of necessary sentence

categorization algorithms and shows the promise of

hybrid models in addressing the complexities involved in

this challenging endeavor.

Beyond software engineering, the implications of this

work extend to other fields with complex text

classification challenges, such as natural language

processing and information retrieval. By addressing the

limitations of individual models, hybrid approaches like

ours offer greater flexibility and adaptability, paving the

way for more accurate and nuanced text analysis across

diverse domains. While recognizing the potential

challenges and limitations built-in in any model, we

remain confident that our research represents a

considerable improvement in addressing the complexities

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

920

of requirement classification. By continuously refining

and expanding this approach, we can unlock new

possibilities for efficient and effective software

development, while also contributing to the advancement

of broader text analysis methodologies.

The study was conducted on an existing dataset which

has a limited number of classes. In future, we want to

work on our own big dataset which will be extracted from

an SRS document and be further analyzed.

ABBREVIATIONS AND ACRONUMS

ML Machine Learning

DL Deep Learning

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

Bi-LSTM Bidirectional Long Short-Term Memory

SVM Support Vector Machine

NB Naive Bayes

LR Logistic Regression

KNN K-Nearest Neighbors

BS Beautiful Soup

Numpy Numerical Python

ReLU Rectified Linear Unit

FR Functional Requirement

NFR Non-Functional Requirement

A Availability

L Legal & Licensing

LF Look & Feel

MN Maintainability

O Operability

PE Performance

SC Scalability

SE Security

US Usability

FT Fault Tolerance

PO Portability

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Mahmuda and Nazneen conceived the presented idea.

Manhmuda, Nazneen and Nasrin designed the model and

the computational framework and analyzed the data.

Mahmuda, Nazneen, and Nasrin carried out the

implementation and performed the calculations.

Mahmuda, Nazneen, and Nasrin wrote the manuscript

with input from all authors. Anzum gave feedback about

the existing work. Afrina and Mazumder conceived the

study and were in charge of overall direction and

planning. All authors had approved the final version.

ACKNOWLEDGMENT

Our sincere and honest gratitude goes to our supervisor,

Rashed Mazumder, Associate Professor, at the Institute of

Information Technology, Jahangirnagar University, for

granting us the opportunity to study in this discipline and

for his invaluable guidance throughout the research

process. We were greatly inspired and motivated by his

vitality, foresight, integrity, and enthusiasm. His

instruction has encompassed the techniques required to

carry out the research and ensure the utmost transparency

in the work. Conducting research under his direction was

an honor and a tremendous privilege.

REFERENCES

[1] X. Zhou, X. Wan, and J. Xiao, “Attention-based LSTM network

for cross-lingual sentiment classification,” in Proc. the 2016

Conference on Empirical Methods in Natural Language
Processing, 2016, pp. 247–256.

[2] M. A. Rahman, M. A. Haque, M. N. A. Tawhid, and M. S. Siddik,
“Classifying non-functional requirements using rnn variants for

quality software development,” in Proc. the 3rd ACM SIGSOFT

International Workshop on Machine Learning Techniques for
Software Quality Evaluation, Aug. 2019.

[3] K. Rahman, A. Ghani, R. Ahmad, and S. H. Sajjad, “Hybrid deep

learning approach for nonfunctional software requirements
classifications,” in Proc. the 2023 International Conference on

Communication, Computing and Digital Systems (CCODE), IEEE,

2023.
[4] F. Khayashi, B. Jamasb, R. Akbari, and P. Shamsinejadbabaki,

“Deep learning methods for software requirement classification: A

performance study on the pure dataset,” arXiv preprint,
arXiv:2211.05286, 2022.

[5] F. Yucalar, “Developing an advanced software requirements

classification model using BERT: An empirical evaluation study
on newly generated Turkish data,” Applied Sciences, vol. 13, no.

20, 11127, 2023.

[6] K. Kaur and P. Kaur, “A self-attention based bidirectional-RNN
deep model for requirements classification,” Journal of Software:

Evolution and Process, February 2022.

[7] N. Rahimi, F. Eassa, and L. Elrefaei, “One- and two-phase
software requirement classification using ensemble deep

learning,” Entropy, vol. 23, 1264, 2021.

[8] A. M. Ali and N. N. Saleem, “Classification of software systems
attributes based on quality factors using linguistic knowledge and

machine learning: A review,” Journal of Education and Science,

vol. 31, pp. 66–90, 2022.
[9] M. Sabir, “Optimisation method for training deep neural networks

in classification of non-functional requirements,” Doctoral

dissertation, London South Bank University, UK, September 2022.
[10] S. Saratha and S. Mukherjee, “A novel approach for improving the

accuracy using word embedding on deep neural networks for

software requirements classification,” Research Square preprint,
2023. https://doi.org/10.21203/rs.3.rs-2742342/v1

[11] F. Baskoro, R. A. Andrahsmara, B. R. P. Darnoto, and Y. A.

Tofan, “A systematic comparison of software requirements
classification,” IPTEK The Journal for Technology and Science,

vol. 32, 2021.

[12] G. Li, C. Zheng, M. Li, and H. Wang, “Automatic requirements
classification based on graph attention network,” IEEE Access, vol.

10, pp. 30080–30090, March 2022.

[13] B. Jang, M. Kim, G. Harerimana, S.-U. Kang, and J. W. Kim, “Bi-
LSTM model to increase accuracy in text classification:

Combining word2vec CNN and attention mechanism,” Applied

Sciences, vol. 10, 5841, 2020.
[14] K. Kaur and P. Kaur, “Improving BERT model for requirements

classification by bidirectional LSTM-CNN deep model,”

Computers and Electrical Engineering, vol. 108, 108699, 2023.
[15] B. Li and X. Nong, “Automatically classifying non-functional

requirements using deep neural network,” Pattern Recognition,
vol. 132, 108948, 2022.

[16] S. Tiun, U. A. Mokhtar, S. H. Bakar, and S. Saad, “Classification

of functional and non-functional requirement in software
requirement using word2vec and fast text,” Journal of Physics:

Conference Series, vol. 1529, 042077, 2020.

[17] H. Huan, J. Yan, Y. Xie, Y. Chen, P. Li, and R. Zhu, “Feature-
enhanced nonequilibrium bidirectional long short-term memory

model for Chinese text classification,” IEEE Access, vol. 8, pp.

199629–199637, 2020.

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

921

[18] K. Rahman, A. Ghani, S. Misra, and A. U. Rahman, “A deep

learning framework for non-functional requirement classification,”

Scientific Reports, vol. 14, no. 1, 3216, 2024.
[19] A. E. Yahya, A. Gharbi, W. M. Yafooz, and A. Al-Dhaqm, “A

novel hybrid deep learning model for detecting and classifying

non-functional requirements of mobile apps issues,” Electronics,
vol. 12, no. 5, 1258, 2023.

[20] D. Zheng, “Transfer learning-based English translation text

classification in a multimedia network environment,” PeerJ
Computer Science, vol. 10, e1842, 2024.

[21] G. Tian, Q. Wang, Y. Zhao, L. Guo, Z. Sun, and L. Lv, “Smart

contract classification with a BI-LSTM based approach,” IEEE
Access, vol. 8, pp. 43806–43816, 2020.

[22] H. Huan, Z. Guo, T. Cai, and Z. He, “A text classification method

based on a convolutional and bidirectional long short-term
memory model,” Connection Science, vol. 34, no. 1, pp. 2108–

2124, 2022.

[23] H. Wang and D. Hu, “Comparison of SVM and LS-SVM for

regression,” in Proc. 2005 International Conference on Neural

Networks and Brain, IEEE, 2005, pp. 279–283.
[24] D. Kici, G. Malik, M. Cevik, D. Parikh, and A. Basar, “A BERT-

based transfer learning approach to text classification on software

requirements specifications,” in Proc. Canadian Conference on AI,
2021, vol. 1, 042077.

[25] X. Xu, Y. Dou, W. Ouyang, J. Jiang, K. Yang, and Y. Tan, “A

product requirement development method based on multi-layer
heterogeneous networks,” Advanced Engineering Informatics, vol.

58, 102184, 2023.

Copyright © 2024 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any
medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

922

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V15N8-914

