
Improving Tomato Disease Classification Using

BR-TomatoCNN: An Efficient Model Utilizing

Bottleneck Residuals

U. Shruthi 1,2,*, V. Nagaveni 1, and Sunil G. L. 3

1 Department of Computer Science and Engineering, Acharya Institute of Technology Affiliated to Visvesvaraya,

Technological University, Bengaluru, India
2 Department of Artificial Intelligence and Machine Learning, RNS Institute of Technology, Bengaluru, India

3 Department of Data Science, RNS Institute of Technology, Bengaluru, India

Email: shruthi.u23@gmail.com (U.S.); nagaveniveerakyatharayappa@gmail.com (V.N.); sunilgl.gls@gmail.com (S.G.L.)

*Corresponding author

Abstract—Tomatoes represent a globally significant and

commercially valuable crop, yet they are susceptible to a

multitude of diseases that can significantly reduce their

production and quality. To address this critical issue, we

have introduced the BR-TomatoCNN, a novel lightweight

Convolutional Neural Network (CNN) model that uses

Bottleneck Residuals (BR) to increase the classification

accuracy of tomato diseases. This research includes a

comprehensive examination of how various optimizers

influence the proposed model’s performance using

evaluation metrics such as accuracy, loss, precision, recall,

and F1−Score. A dataset consisting of nine distinct tomato

disease classes collected from the Plant Village repository

and the Powdery Mildew disease class was prepared with

the help of farmers and experts. That was used to train the

proposed model achieved remarkable results of 99.82%

accuracy and an F1−Score of 1.00. These findings not only

underscore the BR-TomatoCNN’s capability to accurately

identify tomato diseases but also position it as a superior

alternative to existing methodologies and pre-trained models.

Our study underscores the significance of exploring a new

approach, such as utilizing bottleneck residuals to improve

the accuracy of the classification model. BR-TomatoCNN

promises to play a pivotal role in disease management in the

agricultural sector by facilitating early disease detection.

This advancement in technology has the potential to

enhance tomato crop yields and overall produce quality.

Keywords—convolution neural network, bottleneck

residuals, image classification, plant disease detection

I. INTRODUCTION

The agriculture industry has increasingly prioritized

the utilization of machine intelligence technology as a

means to tackle the issue of food demand. Agricultural

activity consists of three distinct stages: pre-harvesting,

harvesting, and post-harvesting. The agricultural and food

sectors place significant importance on post-harvesting

operations such as fruit grading, humidity detection,

quality detection, and temperature identification. Machine

intelligence models can be utilized to execute these

activities. The act of farmers choosing commercial crops

has the potential to augment production levels and

strengthen food security.

The tomato (Solanum lycopersicum) holds the

distinction of being the most widely consumed and

economically consequential vegetable crop globally.

Tomato plants, meanwhile, exhibit vulnerability to a

multitude of diseases resulting from fungal, bacterial,

viral, and environmental factors. If these diseases are not

promptly diagnosed and controlled, they can result in

substantial reductions in yield and deterioration in quality.

The timely and precise identification of tomato diseases

is crucial for the efficient administration and mitigation

of these conditions. Nevertheless, conventional

approaches to disease identification, such as expert eye

examination or laboratory tests, are laborious, expensive,

and reliant on personal judgment. Machine intelligence

technologies are necessary for the early detection of

diseases in tomato crops. However, the cost of the

required computing equipment may be prohibitive for

farmers. Hence, there exists a pressing necessity to

establish a proficient and precise framework for

categorizing and diagnosing tomato plant ailments, to

expedite timely intervention and mitigate agricultural

yield losses. The objective of this research is to tackle the

crucial problem of identifying tomato plant diseases by

creating a strong and precise categorization system,

which will ultimately be advantageous for tomato

growers and the agricultural sector as a whole.

Researchers have a challenging problem in developing

machine intelligence-based plant disease detection

systems for mobile phones with limited processing

capacity, aiming to aid farmers.

The major contributions of this research work are:

• A novel lightweight deep learning model of size

0.87 MB has been developed to detect 10 different

types of tomato plant diseases. This model is

computationally efficient, making it appropriate for

Manuscript received December 25, 2023; revised February 11, 2024;

accepted March 11, 2024; published August 7, 2024.

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

903doi: 10.12720/jait.15.8.903-913

use on devices with limited resources, such as

smartphones, through mobile applications. The

minimal specification for a viable smartphone is a

minimum of 4 GB of Random Access Memory

(RAM) and 16 GB of internal storage, a high-

performance CPU, and compatibility with either the

Android or the iPhone Operating System (iOS).

• The Bottleneck Residuals (BR) in the BR-

TomatoCNN model help to reduce the

computational complexity of the model while

maintaining its predictive performance.

• To explore the attention mechanism to handle

specific characteristics of tomato diseased leaf

images, such as variations in color, shape, or size.

• Use various optimizers, like Stochastic Gradient

Descent (SGD), Adam, Root Mean Squared

Propogation (RMSProp), Adagrad, Adadelta,

Adamax, and Adabelief, to find the best one with

the BR-TomatoCNN model.

• The proposed model is tested on nine different types

of tomato plant diseases from the plant village

dataset. One more diseased class with Powdery

Mildew gained the best accuracy, precision, and F1−

Score compared to five Convolutional Neural

Network (CNN) models that the author had already

trained on the same dataset.

This article is structured with subsequent sections,

starting with a literature survey on plant disease detection

discussed in Section II. Section III outlines the materials

and methodology used in our research, which includes a

description of the dataset, pre-processing, and BR-

TomatoCNN model. Section IV focuses on the details of

the experiments carried out and the discussion of the

research contributions, followed by conclusions.

II. RELATED WORK

Machine learning algorithms utilize historical

information on agricultural yield, weather, soil conditions,

and other relevant factors to predict future crop yields [1].

Targeted weed control measures, enabled by machine

learning algorithms trained to recognize various weed

species, can lead to a reduction in the use of

herbicides [2]. The accurate classification of fruits based

on features such as size, shape, color, and ripeness remain

crucial for sorting and grading in fruit processing

facilities [3]. Machine learning techniques are also

applied in plant disease diagnosis and other agricultural

applications. Researchers have developed classifiers for

plant disease recognition using machine-learning

algorithms, but they face a basic flaw as they require

external methods for feature extraction, and their

performance tends to degrade with an increasing number

of data points [4]. These challenges can be overcome by

employing deep learning methods. In deep learning

models like CNN, features are automatically learned from

raw pixel data through convolutional layers. These

learned features are hierarchical, enabling them to capture

complex patterns and hierarchies.

Deep learning algorithms play a crucial role and find

widespread application in various fields. The authors

have developed pre-trained CNN architectures for the

classification of plant-diseased leaf images.

Rangarajan et al. [5] employed a transfer learning

approach on pre-trained deep-learning models such as

AlexNet and VGG16 to identify tomato crop maladies in

seven classes, with six being diseased and one healthy.

The author asserts that AlexNet outperforms VGG16 in

terms of both execution speed and accuracy.

Ferentinos [6] created and compared multiple CNN

models to detect maladies in 25 plant categories,

encompassing 58 classes and 87,848 leaf images,

including both healthy and diseased leaves. VGGNet

achieves higher accuracy compared to AlexNet,

GoogleNet, and Overfeat. Mohanty et al. [7] proposed a

model, which is trained on the Inception model for 26

classes in the plant village dataset to achieve an accuracy

of 98.36%. Saleem et al. [8] evaluated pre-trained CNN

architectures on 38 classes of plant village datasets,

noting better performance on the Xception architecture.

Zaki et al. [9] developed the MobileNet model trained on

a smaller number of images, with a maximum accuracy

of 95%. All pre-trained architectures are designed with a

larger number of layers for the ImageNet dataset and the

weights are saved. The use of CNN models can help

mitigate the problems caused by larger models trained on

datasets with fewer classes.

Many researchers have developed the CNN

architecture for plant disease classification.

Chen et al. [10] created a modified pre-trained VGG19

model that includes two Inception modules. They showed

that it works better than other pre-trained CNN models by

testing it on a dataset of images of rice and maize crops.

Khan et al. [11] proposed an integrated Sage Maker into

Amazon Web Services (AWS) DeepLens for plant

evaluation in real-time using a transfer learning method

in the cloud with scalability on AWS. This paradigm

might not be usable by farmers in developing countries

with limited resources. Agarwal et al. [12] proposed the

CNN model with three layers of convolution and max-

pooling layers. The CNN model trained on 39 classes of

the plant village dataset in 5000 epochs to achieve the

best result. Ahmed et al. [13] developed a mobile

application using a three-convolution layer deep learning

model trained on 38 classes of the plant village dataset

for 10 epochs, which is obtained with 93.6% accuracy.

Patil et al. [14] have proposed a hybrid LSTM-CNN

model that includes a Long Short-Term Memory (LSTM)

layer added before the CNN layers and achieved 97.5%

accuracy on a dataset of six classes of tomato diseases.

Pal et al. [15] created the Inception-VGG and Kohonen-

based models for finding diseases in multiple crops. They

used the grabcut algorithm to fix problems with occlusion,

which led to a 95.64% success rate. However, Kohonen

networks may face scalability challenges with larger

datasets. These studies collectively highlight the

importance of model choice, preprocessing, and dataset

size in plant disease detection. Shelke et al. [16]

presented an innovative in plant leaf classification

method that employs convolutional neural networks

(CNN) for effective classification. The classifier has

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

904

demonstrated notable proficiency in the model.

Gosh et al. [17] combined the power of CNN with PB3C,

aiming for an enhanced and efficient leaf classification

system. The optimization techniques are applied to

exhibit a commendable trait of high convergence,

indicating a promising feature for the model’s

performance. However, it is essential to note a significant

drawback: the optimization process is susceptible to

falling into local optima, posing a challenge that warrants

careful consideration in the design and implementation of

the classification system.

The above-studied existing models often have high

computational and memory requirements, making them

challenging to integrate with resource-constrained

hardware devices, which are commonly used in

agriculture. Many deep learning models are designed for

image classification tasks, including those for plant

disease recognition, and can have a large number of

parameters. This leads to increased computational

demands during both training and inference. Large

models may not be feasible for deployment on low-power

devices. These issues are to be addressed by developing a

lightweight model that is more suitable for deployment

on mobile devices and can facilitate real-time tomato

plant disease classification in the field. Our research

study is focused on a lightweight deep-learning model

using bottleneck residuals with the best suitable

optimizers for tomato plant disease classification.

III. MATERIALS AND METHODS

Our research addresses the challenges of classifying

tomato plant pathology using CNN models. The BR-

TomatoCNN model uses the bottleneck residuals to make

it possible to build a deeper CNN architecture without the

need for more computing power. Deeper networks have

the potential to capture more complex and abstract

features, leading to improved classification accuracy. A

structured flow of our research is illustrated in Fig. 1.

Initially, the Plant Village dataset is collected, and the

data augmentation technique is used to enhance the

diversity in training the model and to ensure fairness

across all the classes. Model optimization employs the

Adam optimizer to train the five pre-trained models and

the proposed BR-TomatoCNN model. The ability of

Adam Optimizer to adapt its learning rate makes it

suitable for a variety of tasks, which is the driving force

behind the choice. The continuous monitoring of training

and validation results using the accuracy and loss of the

metric to select the most promising CNN model. These

results show that the BR-TomatoCNN model is superior

to all the pre-trained models. To enhance the performance,

it has been experimented with different optimizers by

fine-tuning hyperparameters such as learning rate,

moments of gradients, epsilon, and decay. This rigorous

optimization process aims to maximize the BR-

TomatoCNN model’s accuracy in tomato disease

classification. Ultimately, the novelty of our approach is

demonstrated by analyzing the performance of the BR-

TomatoCNN model with the Adadelta optimizer. This

model demonstrates its effectiveness and uniqueness in

tomato disease classification.

Fig. 1. The approach of this research.

A. Dataset and Pre-processing

The BR-TomatoCNN model is trained on a publicly

available tomato plant disease leaf dataset from Plant

Village [18]. That consists of nine classes of tomato

diseases and healthy leaves. Three more classes are added

to the available dataset: one is powdery mildew disease,

and the other two are negative classes. Negative classes

are non-tomato leaves, and non-leaf images are included

to avoid miss-classification issues. Tomato powdery

mildew disease: 173 images are collected using a mobile

phone camera and included to identify more additional

tomato diseases compared to existing models. The

curated dataset consists of 10 tomato leaf diseased classes

(class No. 1−10 is given in Table I), a healthy tomato leaf

class (class No.11 in Table I), and 2 negative classes

(class no. 12 and 13 in Table I). Sample images from

each class considered in the dataset to train the proposed

model are shown in Fig. 2.

TABLE I. DESCRIPTION OF THE DATASET

Class No. Class Label Number of Images

1 BacterialSpot 2,127
2 EarlyBlight 1,000

3 LateBlight 1,909

4 Leaf Mold 1,000
5 SeptoriaLeafSpot 1,771

6 SpiderMites 1,676

7 TargetSpot 1,404
8 YellowLeafCurlVirus 2,704

9 TomatoMosaicVirus 1,000

10 PowderyMildew 1,258

11 Healthy 1,591

12 NonTomatoLeaf 2,642

13 NonLeaf 1,143
Total 21,225

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

905

Fig 2. Example images of different classes: (a). TargetSpot, (b).
TomatoMosaicVirus, (c). YellowLeafCurlVirus, (d). BacterialSpot, e.

Healthy, (f). EarlyBlight, (g). LateBlight, (h). LeafMold, (i).

SeptoriaLeafSpot, (j). SpiderMites, (k). PowderyMildew, (l).
NonTomatoLeaf, (m). NonLeaf.

In comparison to the number of images in all classes,

the Tomato Mosaic Virus and Powdery Mildew classes

have fewer images. Hence, to increase the number of

images, the rotation and flip method of data augmentation

is used in preprocessing. The class labels of the dataset

and the number of images considered in the dataset for

each class are given in Table I. The total number of

images considered in the dataset is 21,225. Resize is

applied to all images to 227 by 227 and scales image

pixels between 0 and 255 in the pre-processing stage.

B. BR-Tomato CNN Model

Many researchers rely on a pre-trained model for plant

disease identification that is trained for 1,000 classes of

image data, and models have a large number of

layers [19−21]. More layers in the model necessitate

more storage and processing time for parameter

management. Overfitting may occur when pre-trained

models are applied to available datasets and lead to

inaccurate results. A fundamental linear model without a

hidden layer would result in underfitting and an incorrect

conclusion. Consequently, a CNN model is more efficient

when the proposed number of classes is smaller.

A novel BR-TomatoCNN lightweight model is

proposed to classify tomato plant diseases using

bottleneck residuals [22]. Lightweight models typically

have fewer parameters, and the number of parameters in

the proposed BR-TomatoCNN is 223,653. A lower

parameter count reduces the model’s size and memory

footprint. Bottleneck residuals are additional layers to the

BR-TomatoCNN model; they often have fewer

parameters compared to traditional stacked layers. This

reduces the model’s complexity and helps to prevent

overfitting. Especially when the dataset is limited, the

proposed model is improved with generalization to

unseen data. The BR-TomatoCNN model includes three

basic parts: stem, body, and head, as shown in Fig. 3, and

a layer description is given in Table II.

Fig. 3. The BR-TomatoCNN architecture.

TABLE II. SUMMARY OF THE PROPOSED MODEL’S MAIN LAYERS

Type of the Layer Input Size Output Size

Stem 2272273 11411432

Layer_1_Bottleneck_
Residual_Block_0

11411432 575764

Layer_2_Bottleneck_Residual_

Block _1
575764 2929128

Layer_2_Bottleneck_Residual_
Block _2

2929128 1515128

Global Average Pooling 1515128 128

Dense 128 512

Dense 512 13

Total parameters 223,653

The stem layer plays a crucial role in shaping the

hierarchy of feature extraction in the network and can

significantly affect the model’s performance and

efficiency in tomato disease classification. In a BR-

TomatoCNN model, the stem layer is used to do initial

data preprocessing and feature extraction. This prepares

the input image of a diseased tomato leaf for the next

layers of the network. The stem portion consists of a

convolution operation with 32 filters, each of size 33,

and a downsampling with stride 2 to accomplish it. Then,

Batch Normalization (BN) and ReLU activation will

occur. The stem part can be expressed as:

StemReLU (BN (Conv (32, (3, 3), Stride=2)))

The body part is composed of two layers, each

composed of bottleneck residuals. Layer 1 includes one

bottleneck residual with 64 filters, and two bottleneck

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

906

residuals are adopted in Layer 2 with 128 filters. A

smaller number of bottleneck residuals simplifies the

model architecture. This reduction in complexity makes

the model easier to train, interpret, and optimize,

especially when dealing with limited computational

resources. Reducing the model’s complexity decreases

the risk of overfitting. Overfitting occurs when a model

learns to fit the training data too closely and performs

poorly on unseen data. Fig. 4 shows the structure of the

bottleneck residual block in the BR-TomatoCNN model.

Fig. 4. Bottleneck structured residual block.

Steps 1 through 5 show the order of layer operations

for the bottleneck residual block.

Step 1: The model takes the input feature map from

Stem and applies a 11 convolution with a stride of 2,

which reduces the spatial dimensions of the feature map

and introduces some non-linearity. Followed by batch

normalization, a ReLU activation function is applied, and

the result is stored in Xskip. This skip connection is used in

training networks by allowing gradients to flow more

easily during backpropagation and is expressed as:

Xskip ReLU (BN (Conv (Stem, 11, stride=2)))

Step 2: In this layer, the input feature maps are taken

from Stem and apply a 11 convolution with a stride of 1,

which performs a linear transformation of the input

features. The batch normalization is applied to normalize

the output of the convolutional layer, and the ReLU

activation function introduces non-linearity. The result is

stored in X1, which is used as input to subsequent layers

in the model. It is given as:

X1ReLU (BN (Conv (Stem, 11, stride=1)))

Step 3: To reduce the number of multiplication

operations, depthwise separable convolution is used in

conjunction with batch normalization and ReLU6

activation [23]. The two layers of the depthwise separable

convolution operation are depthwise and pointwise.

Applying a 33 filter and a stride of 2, along with batch

normalization and ReLU operations, results in the

depthwise convolution (X2). Applying a 11 filter with a

stride of 1 and then performing batch normalization and

ReLU operations results in the pointwise convolution

(X3). The depthwise convolution is used in the

development of the BR-TomatoCNN model, which can

be used in mobile and resource-constrained applications

due to its efficiency and ability to capture spatial features.

Pointwise convolution is often used to perform channel-

wise adjustments and helps reduce or expand the number

of feature channels to capture different levels of

abstraction in the image data. The depthwise separable

convolution is expressed as:

X2 ReLU6 (BN (DeptwiseConv(X1, 33, stride=2)))

X3 ReLU6 (BN (PointwiseConv(X2, 11, stride=1)))

Step 4: The ElementMultiply is an element-wise

multiplication operation that is applied between the

SpatialAttention feature maps and the X3 feature maps,

and the result is stored in X4 and given as:

X4 ElementMultipy {SpatialAttention, X3}

The spatial attention operation is included in the

bottleneck residuals that give more importance to the

diseased regions of tomato leaves in the feature map

while suppressing other regions. The process of spatial

attention block (X4) is adopted in the bottleneck-

structured residual block, as shown in Fig. 5. Spatial

attention is used to focus more on the information on

diseases in the leaf, and it includes global average

pooling and two convolution layers. The output features

of the first convolution layer constitute 25% of the spatial

attention block’s input. The output features of the second

convolution layer are equal to the input features of the

spatial attention block. The spatial attention operation is

expressed as:

SpatialAttentionσ (Conv (ReLU (Conv

(GlobalAvgPooling (X4)))))

Step 5: The result of 11 convolution applied to the

feature map X4, followed by batch normalization, is

stored in X5, which is added to the features from the

earlier layer (Xskip), followed by the ReLU activation

function, and the obtained resultant feature maps are

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

907

stored in X6. This sequence of operations, designed to

extract and combine features while allowing information

from earlier layers to influence the final output, is

expressed as:

X5BN (Conv (X4, 11, stride=1)

X6ReLU(X5+Xskip)

The head part of the model is the classification phase,

which takes the features extracted from the previous layer

(X6) and performs global average pooling to reduce the

spatial dimensions. The fully connected layers (FC1 and

FC2) are applied to transform the features, and finally, the

Softmax activation function is used to produce the class

probabilities in XOutput. The head part of the BR-

TomatoCNN model is expressed as follows:

X7GlobalAvgPooling(X6)

X8FC1(X7, 512, ReLU)

XOutPutFC2(X8, 13, Softmax)

where, FC=Fully Connected, FC1 and FC2 generally

expressed as FC (inputFrom, #nodes, activation).

Fig. 5. Spatial attention block.

The bottleneck residual in the proposed model is

improved by training speed, model efficiency, and the

ability to extract intricate features from tomato plant leaf

images. These benefits contribute to the development of

an accurate and efficient tomato disease detection system,

ultimately aiding farmers and agricultural experts in

managing plant diseases effectively.

C. Comparison of BR-TomatoCNN with Pretrained

Models

CNN models have been extensively utilized for image

classification in a variety of fields, including the

classification of tomato plant diseases. In previous

studies, researchers have utilized pre-trained architectures

such as AlexNet [24], VGGNet [25],

GoogleNet/InceptionNet [26], ResNet [27], and

EfficientNet [28] to classify tomato plant diseases [29].

These pre-trained models include significant layers and

filters in each layer because they were developed for

1000 classes of ImageNet data. The cost of these pre-

trained models is considerable since they require high

storage memory and take a long time to execute.

Furthermore, their implementation on edge devices can

be challenging.

The comparison of the proposed BR-TomatoCNN

model with pre-trained models is as follows:

• ResNet: ResNet introduced the residual connections

to address the vanishing gradient problem. It uses

skip connections to add the input to the output of

multiple layers. Effective in training deep neural

networks and avoiding degradation issues. This can

be computationally expensive and memory-

intensive.

• MobileNet and MobileNetV2: An improvement

over MobileNet, it introduces inverted residuals and

linear bottlenecks for better performance. Improved

accuracy over MobileNet is still efficient for mobile

and edge devices. This may not match the accuracy

of larger models like ResNet in some scenarios.

• RegNetX and RegNetY: Introduces the concept of

“network design space” and scaling to achieve a

balance between model size and performance.

Flexible design space allows for efficient scaling for

various tasks. The specific architecture and scaling

may not be suitable for all use cases.

• BR-TomatoCNN: The BR-TomatoCNN

incorporates bottleneck residual blocks, which

typically consist of depthwise convolution and

spatial attention mechanisms. The bottleneck

structure reduces computational costs, and spatial

attention can enhance model performance by

focusing on diseased regions.

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

908

IV. RESULT AND DISCUSSION

Keras and TensorFlow libraries are used to implement

CNN models. To speed up the work with TensorFlow, the

cuDNN 8.6 libraries are installed. All of these

experiments are run on an NVIDIA GeForce RTX 3090

GPU with 24GB of memory and a 1.7 GHz boost clock

speed, as well as a Core i9 processor and 128GB of RAM

in the central processing unit. The metrics used to

measure the performance of pre-trained CNN models and

the BR-TomatoCNN model in multi-class classification

are the loss function, accuracy, specificity, precision,

recall, and F1−Score [30−32]. To find the error in the

CNN model, the categorical cross-entropy loss function is

employed.

A. Performance of BR-TomatoCNN Model

In the initial stage of our research, experiments are

conducted on a dataset of infected tomato leaves, which

is provided in Section II-A. Initially, the dataset is

divided into three sections: training for 80%, validation

for 10%, and testing for 10%. The BR-TomatoCNN and

pre-trained classifiers are trained for 50 epochs with the

Adam optimizer. After each epoch, the model is validated

using the validation dataset, and the final trained model is

evaluated using unseen images. The BR-TomatoCNN

model resulted in a higher accuracy of 99.02% and a

lower error rate of 0.0373 on the testing dataset, as shown

in Fig. 6. Precision, recall, and F1−Scores have reached

0.99. BR-TomatoCNN outperforms in comparison of the

results of five pre-trained CNN models, as given in

Table III. Fig. 7 demonstrates that the BR-TomatoCNN

model outperforms all pre-trained models.

(a)

(b)

Fig. 6. Performance of BR-TomatoCNN using Adam optimizer: (a)

Training loss vs Validation loss, (b) Training loss vs Validation
accuracy.

TABLE III. CNN MODELS TESTING RESULTS

Models Loss Accuracy(%) Precision Recall F1−Score

ResNet50 0.0809 98.27 0.98 0.98 0.98

MobileNet 0.2511 92.40 0.92 0.92 0.92

MobliNet V2 0.3383 89.65 0.90 0.90 0.90
RegNetX 0.1185 97.09 0.97 0.97 0.97

RegNetY 0.0482 98.32 0.98 0.98 0.98

BR-TomatoCNN 0.0373 99.02 0.99 0.99 0.99

Fig. 7. Visualization of the BR-TomatoCNN model’s performance
analysis.

B. Enhanced Performance of BR-TomatoCNN Model

In the second part of our study, seven different deep-

learning optimizers are used on the BR-TomatoCNN

model to check how well they work. These are SGD,

RMSProp, Adagrad, Adamax, Adadelta, and Adabelief.

The Adamax and Adadelta optimizers with

hyperparameter tuning yielded superior results in

comparison to the Adam optimizer used in the initial

phase of our research. When a learning rate of 0.5, a rho

of 0.95, and an epsilon of 1e-06 are used with the

Adadelta optimizer on a testing dataset, the proposed

model does better. It can achieve a lower error rate of

0.008, a higher accuracy of 99.82%, and 1.0 precision, 1.0

recall, and 1.0 F1−Score, as shown in Table IV.

TABLE IV. BR-TOMATOCNN MODEL WITH OPTIMIZER’S

PERFORMANCE REPORT ON TEST DATASET

Optimization

Techniques
Loss Accuracy (%) Precision Recall F1−Score

SGD 0.032 98.69 0.99 0.99 0.99

RMSprop 0.048 98.97 0.99 0.99 0.99
Adam 0.037 99.02 0.99 0.99 0.99

Adamax 0.017 99.49 0.99 0.99 0.99

Adadelta 0.008 99.82 1.00 1.00 1.00
Adagrad 0.057 98.23 0.98 0.98 0.98

AdaBelief 0.082 97.95 0.98 0.98 0.98

The BR-TomatoCNN model with the Adadelta

optimizer is the optimal model for classifying tomato

plant diseases. Fig. 8 depicts the graph of loss and

accuracy on training versus validation outcomes for 50

epochs of the BR-TomatoCNN model. After epoch

number 27, the model becomes stable, and the difference

between the accuracy of training and validation is

reduced.

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

909

(a)

(b)

Fig. 8. Performance of BR-TomatoCNN model using Adadelta

optimizer: (a) Training loss vs Validation loss, (b) Training loss vs
validation accuracy.

The confusion matrix is used to predict the results of

the BR-TomatoCNN model on the testing dataset, as

shown in Fig. 9.

The specificity, precision, recall, and F1−Score

between the positive predictive value and the true

positive rate are used to rate the performance of each

class. These metrics are shown in Table V. The BR-

TomatoCNN model reduces the number of false

negatives and achieves excellent precision.

Fig. 9. Confusion Matrix of BR-TomatoCNN model with Adadelta
optimizer.

TABLE V. BR-TOMATOCNN MODEL WITH ADADELTA OPTIMIZER

PERFORMANCE REPORT OF ALL THE CLASSES

Class Label Specificity Precision Recall F1−Score

NonTomatoLeaf 1.00 1.00 1.00 1.00

NonLeaf 0.99 0.99 1.00 1.00
BacterialSpot 1.00 1.00 1.00 1.00

EarlyBlight 1.00 1.00 1.00 1.00

Healthy 1.00 1.00 1.00 1.00
LateBlight 1.00 1.00 1.00 1.00

LeafMold 1.00 1.00 1.00 1.00

PowderyMildew 1.00 1.00 0.99 1.00
SeptoriaLeaf Spot 1.00 1.00 1.00 1.00

SpiderMites 0.99 0.99 0.99 0.99

TargetSpot 1.00 0.99 0.99 0.99
YellowLeafCurlVirus 1.00 1.00 1.00 1.00

TomatoMosaicVirus 1.00 1.00 1.00 1.00

Average Accuracy 1.00

Macro Average 1.00 1.00 1.00

Weighted Average 1.00 1.00 1.00

C. Discussion

The authors have developed a novel BR-TomatoCNN

that incorporates bottleneck residual blocks with a limited

number of parameters. This approach effectively

decreases both the computational complexity and training

time. The CNN model proposed incorporates three

bottleneck residuals within layers consisting of 64 and

128 filters. This framework presents a robust approach

for the timely identification of tomato plant diseases. By

integrating the advantages of depth, hierarchical feature

extraction, and interpretability, this approach has the

potential to provide precise crop disease control solutions.

The utilization of bottleneck residuals has resulted in

enhanced network efficiency and reduced computational

expenses. The utilization of a depthwise convolution

layer and pointwise convolution operations within the

residual layer results in a decrease the number of

multiplication operations, hence leading to a drop in both

the number of calculations and the training time. The

combination of global average pooling and two

convolutional layers forms a spatial attention mechanism

that specifically highlights the unhealthy regions of a

tomato leaf image while concealing the remaining areas.

The performance of the BR-TomatoCNN model has been

enhanced through parameter reduction, mitigation of

overfitting issues, and enhancement of the model's

capacity to acquire significant features. Furthermore, the

suggested methodology exhibits not only high accuracy

and computational efficiency but also has strong

generalization capabilities when applied to novel and

unfamiliar data. This is crucial for the detection of

diseases in tomato plants since it allows the model to

precisely identify diseases in various growing conditions

and geographic areas.

The proposed BR-TomatoCNN model has been

evaluated in two phases using a dataset that has been

developed and trained for 50 epochs. This approach

yields the highest level of accuracy in classifying 10

distinct types of tomato plant diseases, with no instances

of misclassification. The BR-TomatoCNN model

achieves an accuracy of 99.02% in the initial stage,

outperforming the results of five pre-trained models using

Adam Optimizer. The performance of the proposed

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

910

approach is improved in the second stage by

experimentation with several optimizers, such as SGD,

RMSProp, Adamax, Adagrad, Adadelta, and Adabelief.

The Adadelta optimizer on the improved BR-

TomatoCNN model results in an accuracy of 99.82%,

which is better than the approaches suggested in [33–37].

This paper presents a case study on the BR-

TomatoCNN model for tomato plant disease

classification through experiments. Experiments are

conducted using the dataset described in Section III-A.

Images are randomly selected from each class for the

splitting of the training, validation, and testing datasets.

The results of each experiment are given in Table VI.

TABLE VI. CASE STUDY ON BR-TOMATOCNN MODEL

Experiment

No.

Accuracy (%)
F1−Score

Training Validation Testing

1 100 99.71 99.71 1.00
2 100 99.76 99.66 1.00

3 100 99.61 99.86 1.00

The results demonstrate that the BR-TomatoCNN

model is successful at identifying and classifying tomato

diseases with high accuracy across all three experiments

carried out, as shown in Fig. 10. To verify the robustness

of the algorithm, three data sets are derived from the main

dataset described in Section III-A. A random selection of

image data members from the main dataset allows for the

split-up of the dataset. This is meant to ensure that the

derived datasets truly represent variety in the data. BR-

TomatoCNN models Experiment 1 performance is as

shown in Fig. 10(a). It can be concluded that the

validation result of the BR-TomatoCNN model has

become stable after the 27th epoch and has achieved a

testing accuracy of 99.71% at the 50th epoch. Similarly,

as shown in Fig. 10(b), the model has become stable after

the 28th epoch and has achieved an accuracy of 99.66%

in Experiment 2. In Experiment 3, as shown in Fig. 10(c),

the model has become stable after the 27th epoch and has

achieved an accuracy of 99.86%. In comparison with the

testing results of each experiment on the BR-

TomatoCNN model, it is proven that the model is robust.

When numerous diseases occur in a plant, the proposed

model may have the limitation that it can only identify

the most likely diseases. The diversity of the training

dataset can be increased by incorporating images from

different sources, under different lighting conditions, and

capturing various stages of tomato growth. The

techniques for online learning or incremental training for

a model can be explored to adapt to new data over time,

especially in dynamic agricultural environments.

To integrate domain expertise into the development

process, we intend to collaborate with specialists in

agriculture and tomato farming to interface the BR-

TomatoCNN model with an edge device. Because

resources are limited in some areas, especially in

agriculture, where computers are often hard to come by, it

is important to lower the processing needs of deep neural

networks. To address this, we need to employ network

compression techniques such as fine-tuning [38],

quantization [39], pruning [40], knowledge

distillation [41], weight clustering [42], and even

frameworks like OpenVINO [43], with the help of which

we can optimize the models. Among various compression

strategies, network pruning stands out as a commonly

utilized method. This approach follows a traditional

three-stage pipeline where large models are initially

trained, redundant weights are subsequently pruned while

retaining essential ones, and fine-tuning is performed to

optimize accuracy. When the BR-TomatoCNN model

undergoes pruning to reduce its size, extraneous

connections and neurons are eliminated based on their

weight magnitude, which is indicative of their importance

level. Such an approach holds significant potential to

improve the model’s characteristics and practical utility

in the agricultural field.

(a)

(b)

(c)

Fig. 10. Training versus Validation Accuracy: (a) Experiment 1, (b)
Experiment 2, (c) Experiment 3.

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

911

V. CONCLUSION

This research presents a unique model called BR-

TomatoCNN, which incorporates bottleneck residuals to

improve the classification of tomato diseases. The present

study aims to meet the growing need for intelligent

systems in the field of agriculture by offering a highly

effective and precise solution for the automated diagnosis

of diseases affecting tomato plants. The inclusion of

bottleneck residuals in the model’s design significantly

enhances training stability, gradient flow, and the model’s

capacity to identify disease-related challenging

characteristics. The experiment is carried out in two

phases using a dataset comprising 10 distinct categories

of tomato disease classification. During the preliminary

phase, the outputs of the BR-TomatoCNN model are

analyzed using the results acquired from the five pre-

trained models. The experimental results exhibit promise

and provide evidence for the efficacy of the BR-

TomatoCNN model in the classification of tomato

diseases. The model has demonstrated superior

performance compared to the pre-trained models, with an

excellent accuracy rate of 99.02% on unseen data. During

the second step, the BR-TomatoCNN model’s

performance is improved by implementing several

optimization techniques. The utilization of the Adadelta

optimizer has yielded noteworthy accomplishments,

exhibiting the highest accuracy of 99.82% and an

F1−Score of 1.00 when applied to previously unexplored

data.

The findings of this study highlight the significance of

careful optimizer selection in determining the overall

performance of the model. The algorithm’s robustness

has been validated using three derived datasets. In their

future research, the scientists intend to investigate the

efficacy of the model under different climatic

circumstances and datasets encompassing a wide range of

tomato disease severity levels. Furthermore, it is

important to take into account the possibility of scaling

and implementation in real-world agricultural contexts to

optimize the practical implications of the model.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

U.S. played a central role in this study, contributing to

the conceptualization, methodology, validation, formal

analysis, investigation, allocation of resources, and the

preparation of the original draft. U.S is also responsible

for meticulously reviewing and editing the manuscript

and creating data visualizations. V.N. provided valuable

supervision and oversaw the project administration,

ensuring that the research proceeded smoothly and

efficiently. S.G.L. contributed significantly to data

curation and played a vital role in preparing the initial

draft of the manuscript and enhancing the quality of the

final document; all authors had approved the final version.

ACKNOWLEDGMENT

We extend our appreciation to the farmers for

providing access to their agriculture farms and the

Department of Horticulture, Government of Karnataka,

for providing expertise to identify Powdery Mildew

diseased leaves.

REFERENCES

[1] G. L. Sunil, V. Nagaveni, and U. Shruthi. “A review on Prediction

of crop yield using machine learning techniques,” in Proc. IEEE

Region 10 Symposium (TENSYMP), Mumbai, India, 2022.
[2] Z. G. Wu, Y. J. Chen, B. Zhao, X. B. Kang, and Y. Y. Ding,

“Review of weed detection methods based on computer vision,”

Sensors, vol. 21, no. 3647, pp. 1−23, 2021.

[3] U. Shruthi, K. S. Narmadha, E. Meghana, D. N. Meghana, K. P.

Lakana, and M. P. Bhuvan. “Apple varieties classification using
light weight CNN model,” in Proc. International Conf. On

Circuits, Control, Communication and Computing (I4C),

Bengaluru, India, 2022, pp. 68−72.

[4] U. Shruthi, V. Nagaveni, and B. K. Raghavendra, “A review on

machine learning classification techniques for plant disease

detection,” in Proc. International Conf. On Advanced Computing
& Communication Systems (ICACCS), Coimbatore, India, 2019,

pp. 281−284.

[5] R. A. Krishnaswamy, R. Purushothaman, and A. Ramesh,
“Tomato crop disease classification using pre-trained deep

learning algorithm,” Procedia Computer Science, vol. 133, pp.

1040−1047, 2018.

[6] P. F. Konstantinos, “Deep learning models for plant disease

detection and diagnosis,” Computers and Electronics in

Agriculture, vol. 145, pp. 311−318, 2018.

[7] P. M. Sharada, D. P. Hughes, and M. Salathé, “Using deep

learning for image-based plant disease detection,” Frontiers in

Plant Science, vol. 7, 1419, pp. 1−10, 2016.

[8] M. H. Saleem, J. Potgieter, and K. M. Arif, “Plant disease

classification: A comparative evaluation of convolutional neural

networks and deep learning optimizers,” Plants, vol. 9, 1319, pp

1−16, 2020.

[9] S. Z. M. Zaki, M. A. Zulkifley, M. M. Stofa, N. A. M. Kamari,

and N. A. Mohamed, “Classification of tomato leaf diseases using
MobileNet V2,” IAES International Journal of Artificial

Intelligence, vol. 9, no. 29, pp. 290−296, 2020.

[10] J. Chen, J. X. Chen, D. F. Zhang, Y. D. Sun, and Y. A.
Nanehkaran, “Using deep transfer learning for image-based plant

disease identification,” Computers and Electronics in Agriculture,

vol. 173, 105393, 2020.
[11] A. Khan, U. Nawaz, A. Ulhaq, and R. W. Robinson, “Real-time

plant health assessment via implementing cloud-based scalable

transfer learning on AWS deeplens,” Plos One, vol. 15, no. 12, pp.

1−23, 2020.

[12] M. Agarwal, S. K. Gupta, and K. K. Biswas, “Development of

efficient CNN model for tomato crop disease identification,”
Sustainable Computing: Informatics and Systems, vol. 28, 100407,

2020.

[13] A. A. Abdelmoamen and G. H. Reddy, “A mobile-based system
for detecting plant leaf diseases using deep learning,”

AgriEngineering, vol. 3, no. 3, pp. 478−493, 2021.

[14] M. A. Patil and M. Manohar, “Plant leaf disease classification
using optimal tuned hybrid LSTM-CNN model,” SN Computer

Science, vol. 4, no. 6, 710, 2023.

[15] P. Arunangshu and V. Kumar, “AgriDet: Plant leaf disease
severity classification using agriculture detection framework,”

Engineering Applications of Artificial Intelligence, vol. 119,

105754, 2023.
[16] A. Shelke and N. Mehendale, “A CNN-Based android Application

for plant leaf classification at remote locations,” Neural

Computing and Applications, vol. 35, no. 3, pp. 2601−2607, 2023.

[17] S. Ghosh, A. Singh, and S. Kumar, “PB3C-CNN: An integrated

PB3C and CNN based approach for plant leaf classification,”

Inteligencia Artificial, vol. 26, no. 72, pp. 15−29, 2023.

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

912

[18] J. A. Pandian and G. Geetharamani, “Data for: Identification of

plant leaf diseases using a 9-layer deep convolutional neural

network,” Mendeley Data, vol. 1, 2019.
[19] X. Li and L. Rai, “Apple leaf disease identification and

classification using ResNet models,” in Proc. 2020 IEEE 3rd

International Conference on Electronic Information and

Communication Technology (ICEICT), 2020, pp. 738−742.

[20] S. Vallabhajosyula, V. Sistla, and V. K. K. Kolli, “Transfer

learning-based deep ensemble neural network for plant leaf
disease detection,” Journal of Plant Diseases and Protection, vol.

129, no. 3, pp. 545−558, 2022.

[21] V. Suryawanshi, S. Adivarekar, K. Bajaj, and R. Badami,
“Comparative study of regularization techniques for VGG16,

VGG19 and ResNet-50 for plant disease detection,” in Proc.

International Conference on Communication and Computational

Technologies, 2023, pp. 771−781.

[22] X. Zhang, Y. Sun, Y. Wang, Z. Li, N. Li, and J. Su, “A novel

effective and efficient capsule network via bottleneck residual
block and automated gradual pruning,” Computers and Electrical

Engineering, vol. 80, 106481, 2019.

[23] G. A. Howard, M. L. Zhu, B. Chen, D. Kalenichenko, W. J. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient

convolutional neural networks for mobile vision applications,”

arXiv preprint, arXiv:1704.04861, 2017.
[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,” Advances

in Neural Information Processing Systems, vol. 25, 2012.
[25] K. Simonyan and A. Zisserman, “Very deep convolutional

networks for large-scale image recognition,” arXiv preprint,

arXiv:1409.1556, 2014.
[26] C. Szegedy, V. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,

Inception-ResNet and the impact of residual connections on

learning,” in Proc. AAAI Conf. on Artificial Intelligence, 2017.
[27] K. M. He, X. G. Zhang, S. Q. Ren, and J. Sun, “Deep residual

learning for image recognition,” in Proc. International Conf. on

Computer Vision and Pattern Recognition, Las Vegas, USA, 2016,

pp. 770−778.

[28] M. X. Tan and Q. Le, “Efficientnet: Rethinking model scaling for

convolutional neural networks,” in Proc. International Conf. on

Machine Learning, 2019, vol. 97, pp. 6105−6114.

[29] U. Shruthi, V. Nagaveni, C. S. Arvind, and G. L. Sunil, “Tomato

plant disease classification using deep learning architectures: A
review,” in Proc. International Conf. on Advances in Computer

Engineering and Communication Systems, Algorithms for

Intelligent Systems, Singapore, 2022, pp. 153−169.

[30] M. Grandini, E. Bagli, and G. Visani, “Metrics for multi-class

classification: An overview,” arXiv preprint, arXiv: 2008.05756,

2020.
[31] M. Hossin and M. N. Sulaiman, “A review on evaluation metrics

for data classification evaluations,” International Journal of Data

Mining and Knowledge Management Process, vol. 5, no. 2, pp.

1−11, 2015.

[32] U. Shruthi and V. Nagaveni, “TomSevNet: A hybrid CNN model
for accurate tomato disease identification with severity level

assessment,” Neural Computing and Applications, vol. 36, no. 10,

pp. 5165−5181, 2024.

[33] H. Durmuş, E. O. Güneş, and M. Kırcı, “Disease detection on the

leaves of the tomato plants by using deep learning,” in Proc.

International Conf. on Agro-geoinformatics, Fairfax, USA, 2017.
[34] A. Mohit, A. Singh, S. Arjaria, A. Sinha, and S. Gupta, “ToLeD:

tomato leaf disease detection using convolution neural network,”

Procedia Computer Science, vol. 167, pp. 293−301, 2020.

[35] M. A. Alzahrani and F. W. Alsaade, “Transform and deep learning

algorithms for the early detection and recognition of tomato leaf

disease,” Agronomy, vol. 13, no. 5, 1184, 2023.
[36] E. Suryawati, R. R. Sustika, R. S. Yuwana, A. Subekti, and H. F.

Pardede, “Deep structured convolutional neural network for

tomato diseases detection,” in Proc. International Conf. on
Advanced Computer Science and Information Systems,

Yogyakarta, Indonesia, 2018, pp. 385−390.

[37] S. Gnanavel, G. W. Sathianesan, V. S. Murugan, A. J. Reddy, P.
Jayagopal, and M. Elsisi, “Detection and classification of tomato

crop disease using convolutional neural network,” Electronics, vol.

11, no. 21, 3618, 2022.
[38] B. Chu, V. Madhavan, B. Oscar, J. Hoffman, and T. Darrell, “Best

practices for fine-tuning visual classifiers to new domains,” in

Proc. Computer Vision–ECCV, 2016, vol. 14, pp. 435−442.

[39] S. U. Hussain and B. Triggs, “Visual recognition using local

quantized patterns,” in Proc. European Conference on Computer

Vision, 2012, pp. 716−729.

[40] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking

the value of network pruning,” arXiv preprint, arXiv:1810.05270,

2018.
[41] J. P. Gou, B. S. Yu, S. J. Maybank, and D. C. Tao, “Knowledge

distillation: A survey,” International Journal of Computer Vision,

vol. 129, no. 6, pp. 1789−1819, 2021.

[42] D. Lior and D. Horn, “The weight-shape decomposition of density

estimates: A framework for clustering and image analysis

algorithms,” Pattern Recognition, vol. 81, pp. 190−199, 2018.

[43] V. V. Zunin, “Intel openvino toolkit for computer vision: Object

detection and semantic segmentation,” in Proc. 2021 International

Russian Automation Conference (RusAutoCon), IEEE, 2021, pp.

847−851.

Copyright © 2024 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-
NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 15, No. 8, 2024

913

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V15N8-903

