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Abstract—Tomatoes represent a globally significant and 

commercially valuable crop, yet they are susceptible to a 

multitude of diseases that can significantly reduce their 

production and quality. To address this critical issue, we 

have introduced the BR-TomatoCNN, a novel lightweight 

Convolutional Neural Network (CNN) model that uses 

Bottleneck Residuals (BR) to increase the classification 

accuracy of tomato diseases. This research includes a 

comprehensive examination of how various optimizers 

influence the proposed model’s performance using 

evaluation metrics such as accuracy, loss, precision, recall, 

and F1−Score. A dataset consisting of nine distinct tomato 

disease classes collected from the Plant Village repository 

and the Powdery Mildew disease class was prepared with 

the help of farmers and experts. That was used to train the 

proposed model achieved remarkable results of 99.82% 

accuracy and an F1−Score of 1.00. These findings not only 

underscore the BR-TomatoCNN’s capability to accurately 

identify tomato diseases but also position it as a superior 

alternative to existing methodologies and pre-trained models. 

Our study underscores the significance of exploring a new 

approach, such as utilizing bottleneck residuals to improve 

the accuracy of the classification model. BR-TomatoCNN 

promises to play a pivotal role in disease management in the 

agricultural sector by facilitating early disease detection. 

This advancement in technology has the potential to 

enhance tomato crop yields and overall produce quality. 
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I. INTRODUCTION 

The agriculture industry has increasingly prioritized 

the utilization of machine intelligence technology as a 

means to tackle the issue of food demand. Agricultural 

activity consists of three distinct stages: pre-harvesting, 

harvesting, and post-harvesting. The agricultural and food 

sectors place significant importance on post-harvesting 

operations such as fruit grading, humidity detection, 

quality detection, and temperature identification. Machine 

intelligence models can be utilized to execute these 

activities. The act of farmers choosing commercial crops 

has the potential to augment production levels and 

strengthen food security.   

The tomato (Solanum lycopersicum) holds the 

distinction of being the most widely consumed and 

economically consequential vegetable crop globally. 

Tomato plants, meanwhile, exhibit vulnerability to a 

multitude of diseases resulting from fungal, bacterial, 

viral, and environmental factors. If these diseases are not 

promptly diagnosed and controlled, they can result in 

substantial reductions in yield and deterioration in quality. 

The timely and precise identification of tomato diseases 

is crucial for the efficient administration and mitigation 

of these conditions. Nevertheless, conventional 

approaches to disease identification, such as expert eye 

examination or laboratory tests, are laborious, expensive, 

and reliant on personal judgment. Machine intelligence 

technologies are necessary for the early detection of 

diseases in tomato crops. However, the cost of the 

required computing equipment may be prohibitive for 

farmers. Hence, there exists a pressing necessity to 

establish a proficient and precise framework for 

categorizing and diagnosing tomato plant ailments, to 

expedite timely intervention and mitigate agricultural 

yield losses. The objective of this research is to tackle the 

crucial problem of identifying tomato plant diseases by 

creating a strong and precise categorization system, 

which will ultimately be advantageous for tomato 

growers and the agricultural sector as a whole. 

Researchers have a challenging problem in developing 

machine intelligence-based plant disease detection 

systems for mobile phones with limited processing 

capacity, aiming to aid farmers. 

The major contributions of this research work are: 

• A novel lightweight deep learning model of size 

0.87 MB has been developed to detect 10 different 

types of tomato plant diseases. This model is 

computationally efficient, making it appropriate for 
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use on devices with limited resources, such as 

smartphones, through mobile applications. The 

minimal specification for a viable smartphone is a 

minimum of 4 GB of Random Access Memory 

(RAM) and 16 GB of internal storage, a high-

performance CPU, and compatibility with either the 

Android or the iPhone Operating System (iOS). 

• The Bottleneck Residuals (BR) in the BR-

TomatoCNN model help to reduce the 

computational complexity of the model while 

maintaining its predictive performance. 

• To explore the attention mechanism to handle 

specific characteristics of tomato diseased leaf 

images, such as variations in color, shape, or size. 

• Use various optimizers, like Stochastic Gradient 

Descent (SGD), Adam, Root Mean Squared 

Propogation (RMSProp), Adagrad, Adadelta, 

Adamax, and Adabelief, to find the best one with 

the BR-TomatoCNN model. 

• The proposed model is tested on nine different types 

of tomato plant diseases from the plant village 

dataset. One more diseased class with Powdery 

Mildew gained the best accuracy, precision, and F1− 

Score compared to five Convolutional Neural 

Network (CNN) models that the author had already 

trained on the same dataset. 

This article is structured with subsequent sections, 

starting with a literature survey on plant disease detection 

discussed in Section II. Section III outlines the materials 

and methodology used in our research, which includes a 

description of the dataset, pre-processing, and BR-

TomatoCNN model. Section IV focuses on the details of 

the experiments carried out and the discussion of the 

research contributions, followed by conclusions. 

II. RELATED WORK 

Machine learning algorithms utilize historical 

information on agricultural yield, weather, soil conditions, 

and other relevant factors to predict future crop yields [1]. 

Targeted weed control measures, enabled by machine 

learning algorithms trained to recognize various weed 

species, can lead to a reduction in the use of 

herbicides  [2]. The accurate classification of fruits based 

on features such as size, shape, color, and ripeness remain 

crucial for sorting and grading in fruit processing 

facilities [3]. Machine learning techniques are also 

applied in plant disease diagnosis and other agricultural 

applications. Researchers have developed classifiers for 

plant disease recognition using machine-learning 

algorithms, but they face a basic flaw as they require 

external methods for feature extraction, and their 

performance tends to degrade with an increasing number 

of data points [4]. These challenges can be overcome by 

employing deep learning methods. In deep learning 

models like CNN, features are automatically learned from 

raw pixel data through convolutional layers. These 

learned features are hierarchical, enabling them to capture 

complex patterns and hierarchies. 

Deep learning algorithms play a crucial role and find 

widespread application in various fields. The authors 

have developed pre-trained CNN architectures for the 

classification of plant-diseased leaf images.  

Rangarajan et al. [5] employed a transfer learning 

approach on pre-trained deep-learning models such as 

AlexNet and VGG16 to identify tomato crop maladies in 

seven classes, with six being diseased and one healthy. 

The author asserts that AlexNet outperforms VGG16 in 

terms of both execution speed and accuracy.  

Ferentinos [6] created and compared multiple CNN 

models to detect maladies in 25 plant categories, 

encompassing 58 classes and 87,848 leaf images, 

including both healthy and diseased leaves. VGGNet 

achieves higher accuracy compared to AlexNet, 

GoogleNet, and Overfeat. Mohanty et al. [7] proposed a 

model, which is trained on the Inception model for 26 

classes in the plant village dataset to achieve an accuracy 

of 98.36%. Saleem et al. [8] evaluated pre-trained CNN 

architectures on 38 classes of plant village datasets, 

noting better performance on the Xception architecture. 

Zaki et al. [9] developed the MobileNet model trained on 

a smaller number of images, with a maximum accuracy 

of 95%. All pre-trained architectures are designed with a 

larger number of layers for the ImageNet dataset and the 

weights are saved. The use of CNN models can help 

mitigate the problems caused by larger models trained on 

datasets with fewer classes. 

Many researchers have developed the CNN 

architecture for plant disease classification.  

Chen et al. [10] created a modified pre-trained VGG19 

model that includes two Inception modules. They showed 

that it works better than other pre-trained CNN models by 

testing it on a dataset of images of rice and maize crops. 

Khan et al. [11] proposed an integrated Sage Maker into 

Amazon Web Services (AWS) DeepLens for plant 

evaluation in real-time using a transfer learning method 

in the cloud with scalability on AWS. This paradigm 

might not be usable by farmers in developing countries 

with limited resources. Agarwal et al. [12] proposed the 

CNN model with three layers of convolution and max-

pooling layers. The CNN model trained on 39 classes of 

the plant village dataset in 5000 epochs to achieve the 

best result. Ahmed et al. [13] developed a mobile 

application using a three-convolution layer deep learning 

model trained on 38 classes of the plant village dataset 

for 10 epochs, which is obtained with 93.6% accuracy. 

Patil et al. [14] have proposed a hybrid LSTM-CNN 

model that includes a Long Short-Term Memory (LSTM) 

layer added before the CNN layers and achieved 97.5% 

accuracy on a dataset of six classes of tomato diseases. 

Pal et al. [15] created the Inception-VGG and Kohonen-

based models for finding diseases in multiple crops. They 

used the grabcut algorithm to fix problems with occlusion, 

which led to a 95.64% success rate. However, Kohonen 

networks may face scalability challenges with larger 

datasets. These studies collectively highlight the 

importance of model choice, preprocessing, and dataset 

size in plant disease detection. Shelke et al. [16] 

presented an innovative in plant leaf classification 

method that employs convolutional neural networks 

(CNN) for effective classification. The classifier has 
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demonstrated notable proficiency in the model.  

Gosh et al. [17] combined the power of CNN with PB3C, 

aiming for an enhanced and efficient leaf classification 

system. The optimization techniques are applied to 

exhibit a commendable trait of high convergence, 

indicating a promising feature for the model’s 

performance. However, it is essential to note a significant 

drawback: the optimization process is susceptible to 

falling into local optima, posing a challenge that warrants 

careful consideration in the design and implementation of 

the classification system. 

The above-studied existing models often have high 

computational and memory requirements, making them 

challenging to integrate with resource-constrained 

hardware devices, which are commonly used in 

agriculture. Many deep learning models are designed for 

image classification tasks, including those for plant 

disease recognition, and can have a large number of 

parameters. This leads to increased computational 

demands during both training and inference. Large 

models may not be feasible for deployment on low-power 

devices. These issues are to be addressed by developing a 

lightweight model that is more suitable for deployment 

on mobile devices and can facilitate real-time tomato 

plant disease classification in the field. Our research 

study is focused on a lightweight deep-learning model 

using bottleneck residuals with the best suitable 

optimizers for tomato plant disease classification.  

III. MATERIALS AND METHODS 

Our research addresses the challenges of classifying 

tomato plant pathology using CNN models. The BR-

TomatoCNN model uses the bottleneck residuals to make 

it possible to build a deeper CNN architecture without the 

need for more computing power. Deeper networks have 

the potential to capture more complex and abstract 

features, leading to improved classification accuracy. A 

structured flow of our research is illustrated in Fig. 1.  

Initially, the Plant Village dataset is collected, and the 

data augmentation technique is used to enhance the 

diversity in training the model and to ensure fairness 

across all the classes. Model optimization employs the 

Adam optimizer to train the five pre-trained models and 

the proposed BR-TomatoCNN model. The ability of 

Adam Optimizer to adapt its learning rate makes it 

suitable for a variety of tasks, which is the driving force 

behind the choice. The continuous monitoring of training 

and validation results using the accuracy and loss of the 

metric to select the most promising CNN model. These 

results show that the BR-TomatoCNN model is superior 

to all the pre-trained models. To enhance the performance, 

it has been experimented with different optimizers by 

fine-tuning hyperparameters such as learning rate, 

moments of gradients, epsilon, and decay. This rigorous 

optimization process aims to maximize the BR-

TomatoCNN model’s accuracy in tomato disease 

classification. Ultimately, the novelty of our approach is 

demonstrated by analyzing the performance of the BR-

TomatoCNN model with the Adadelta optimizer. This 

model demonstrates its effectiveness and uniqueness in 

tomato disease classification. 
 

 

Fig. 1. The approach of this research. 

A. Dataset and Pre-processing 

The BR-TomatoCNN model is trained on a publicly 

available tomato plant disease leaf dataset from Plant 

Village [18]. That consists of nine classes of tomato 

diseases and healthy leaves. Three more classes are added 

to the available dataset: one is powdery mildew disease, 

and the other two are negative classes. Negative classes 

are non-tomato leaves, and non-leaf images are included 

to avoid miss-classification issues. Tomato powdery 

mildew disease: 173 images are collected using a mobile 

phone camera and included to identify more additional 

tomato diseases compared to existing models. The 

curated dataset consists of 10 tomato leaf diseased classes 

(class No. 1−10 is given in Table I), a healthy tomato leaf 

class (class No.11 in Table I), and 2 negative classes 

(class no. 12 and 13 in Table I). Sample images from 

each class considered in the dataset to train the proposed 

model are shown in Fig. 2. 

TABLE I. DESCRIPTION OF THE DATASET 

Class No. Class Label Number of Images 

1 BacterialSpot 2,127 
2 EarlyBlight 1,000 

3 LateBlight 1,909 

4 Leaf Mold 1,000 
5 SeptoriaLeafSpot 1,771 

6 SpiderMites 1,676 

7 TargetSpot 1,404 
8 YellowLeafCurlVirus 2,704 

9 TomatoMosaicVirus 1,000 

10 PowderyMildew 1,258 

11 Healthy 1,591 

12 NonTomatoLeaf 2,642 

13 NonLeaf 1,143 
Total 21,225 
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Fig 2. Example images of different classes: (a). TargetSpot, (b). 
TomatoMosaicVirus, (c). YellowLeafCurlVirus, (d). BacterialSpot, e. 

Healthy, (f). EarlyBlight, (g). LateBlight, (h). LeafMold, (i). 

SeptoriaLeafSpot, (j). SpiderMites, (k). PowderyMildew, (l). 
NonTomatoLeaf, (m). NonLeaf. 

In comparison to the number of images in all classes, 

the Tomato Mosaic Virus and Powdery Mildew classes 

have fewer images. Hence, to increase the number of 

images, the rotation and flip method of data augmentation 

is used in preprocessing. The class labels of the dataset 

and the number of images considered in the dataset for 

each class are given in Table I. The total number of 

images considered in the dataset is 21,225. Resize is 

applied to all images to 227 by 227 and scales image 

pixels between 0 and 255 in the pre-processing stage. 

B. BR-Tomato CNN Model 

Many researchers rely on a pre-trained model for plant 

disease identification that is trained for 1,000 classes of 

image data, and models have a large number of  

layers [19−21]. More layers in the model necessitate 

more storage and processing time for parameter 

management. Overfitting may occur when pre-trained 

models are applied to available datasets and lead to 

inaccurate results. A fundamental linear model without a 

hidden layer would result in underfitting and an incorrect 

conclusion. Consequently, a CNN model is more efficient 

when the proposed number of classes is smaller. 

A novel BR-TomatoCNN lightweight model is 

proposed to classify tomato plant diseases using 

bottleneck residuals [22]. Lightweight models typically 

have fewer parameters, and the number of parameters in 

the proposed BR-TomatoCNN is 223,653. A lower 

parameter count reduces the model’s size and memory 

footprint. Bottleneck residuals are additional layers to the 

BR-TomatoCNN model; they often have fewer 

parameters compared to traditional stacked layers. This 

reduces the model’s complexity and helps to prevent 

overfitting. Especially when the dataset is limited, the 

proposed model is improved with generalization to 

unseen data. The BR-TomatoCNN model includes three 

basic parts: stem, body, and head, as shown in Fig. 3, and 

a layer description is given in Table II. 

 

 

Fig. 3. The BR-TomatoCNN architecture. 

TABLE II. SUMMARY OF THE PROPOSED MODEL’S MAIN LAYERS 

Type of the Layer Input Size Output Size 

Stem 2272273 11411432 

Layer_1_Bottleneck_ 
Residual_Block_0 

11411432 575764 

Layer_2_Bottleneck_Residual_

Block _1 
575764 2929128 

Layer_2_Bottleneck_Residual_
Block _2 

2929128 1515128 

Global Average Pooling 1515128 128 

Dense 128 512 

Dense 512 13 

Total parameters 223,653 

 

The stem layer plays a crucial role in shaping the 

hierarchy of feature extraction in the network and can 

significantly affect the model’s performance and 

efficiency in tomato disease classification. In a BR-

TomatoCNN model, the stem layer is used to do initial 

data preprocessing and feature extraction. This prepares 

the input image of a diseased tomato leaf for the next 

layers of the network. The stem portion consists of a 

convolution operation with 32 filters, each of size 33, 

and a downsampling with stride 2 to accomplish it. Then, 

Batch Normalization (BN) and ReLU activation will 

occur. The stem part can be expressed as: 

StemReLU (BN (Conv (32, (3, 3), Stride=2))) 

The body part is composed of two layers, each 

composed of bottleneck residuals. Layer 1 includes one 

bottleneck residual with 64 filters, and two bottleneck 
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residuals are adopted in Layer 2 with 128 filters. A 

smaller number of bottleneck residuals simplifies the 

model architecture. This reduction in complexity makes 

the model easier to train, interpret, and optimize, 

especially when dealing with limited computational 

resources. Reducing the model’s complexity decreases 

the risk of overfitting. Overfitting occurs when a model 

learns to fit the training data too closely and performs 

poorly on unseen data. Fig. 4 shows the structure of the 

bottleneck residual block in the BR-TomatoCNN model.  

 

 

Fig. 4. Bottleneck structured residual block. 

Steps 1 through 5 show the order of layer operations 

for the bottleneck residual block. 

Step 1: The model takes the input feature map from 

Stem and applies a 11 convolution with a stride of 2, 

which reduces the spatial dimensions of the feature map 

and introduces some non-linearity. Followed by batch 

normalization, a ReLU activation function is applied, and 

the result is stored in Xskip. This skip connection is used in 

training networks by allowing gradients to flow more 

easily during backpropagation and is expressed as: 

Xskip ReLU (BN (Conv (Stem, 11, stride=2))) 

Step 2: In this layer, the input feature maps are taken 

from Stem and apply a 11 convolution with a stride of 1, 

which performs a linear transformation of the input 

features. The batch normalization is applied to normalize 

the output of the convolutional layer, and the ReLU 

activation function introduces non-linearity. The result is 

stored in X1, which is used as input to subsequent layers 

in the model. It is given as: 

X1ReLU (BN (Conv (Stem, 11, stride=1))) 

Step 3: To reduce the number of multiplication 

operations, depthwise separable convolution is used in 

conjunction with batch normalization and ReLU6 

activation [23]. The two layers of the depthwise separable 

convolution operation are depthwise and pointwise. 

Applying a 33 filter and a stride of 2, along with batch 

normalization and ReLU operations, results in the 

depthwise convolution (X2). Applying a 11 filter with a 

stride of 1 and then performing batch normalization and 

ReLU operations results in the pointwise convolution 

(X3). The depthwise convolution is used in the 

development of the BR-TomatoCNN model, which can 

be used in mobile and resource-constrained applications 

due to its efficiency and ability to capture spatial features. 

Pointwise convolution is often used to perform channel-

wise adjustments and helps reduce or expand the number 

of feature channels to capture different levels of 

abstraction in the image data. The depthwise separable 

convolution is expressed as: 

X2 ReLU6 (BN (DeptwiseConv(X1, 33, stride=2))) 

X3 ReLU6 (BN (PointwiseConv(X2, 11, stride=1))) 

Step 4: The ElementMultiply is an element-wise 

multiplication operation that is applied between the 

SpatialAttention feature maps and the X3 feature maps, 

and the result is stored in X4 and given as: 

X4 ElementMultipy {SpatialAttention, X3} 

The spatial attention operation is included in the 

bottleneck residuals that give more importance to the 

diseased regions of tomato leaves in the feature map 

while suppressing other regions. The process of spatial 

attention block (X4) is adopted in the bottleneck-

structured residual block, as shown in Fig. 5. Spatial 

attention is used to focus more on the information on 

diseases in the leaf, and it includes global average 

pooling and two convolution layers. The output features 

of the first convolution layer constitute 25% of the spatial 

attention block’s input. The output features of the second 

convolution layer are equal to the input features of the 

spatial attention block. The spatial attention operation is 

expressed as: 

SpatialAttentionσ (Conv (ReLU (Conv 

(GlobalAvgPooling (X4))))) 

Step 5: The result of 11 convolution applied to the 

feature map X4, followed by batch normalization, is 

stored in X5, which is added to the features from the 

earlier layer (Xskip), followed by the ReLU activation 

function, and the obtained resultant feature maps are 
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stored in X6. This sequence of operations, designed to 

extract and combine features while allowing information 

from earlier layers to influence the final output, is 

expressed as: 

X5BN (Conv (X4, 11, stride=1) 

X6ReLU(X5+Xskip) 

The head part of the model is the classification phase, 

which takes the features extracted from the previous layer 

(X6) and performs global average pooling to reduce the 

spatial dimensions. The fully connected layers (FC1 and 

FC2) are applied to transform the features, and finally, the 

Softmax activation function is used to produce the class 

probabilities in XOutput. The head part of the BR-

TomatoCNN model is expressed as follows: 

X7GlobalAvgPooling(X6) 

X8FC1(X7, 512, ReLU) 

XOutPutFC2(X8, 13, Softmax) 

where, FC=Fully Connected, FC1 and FC2 generally 

expressed as FC (inputFrom, #nodes, activation). 

 

 

Fig. 5. Spatial attention block. 

The bottleneck residual in the proposed model is 

improved by training speed, model efficiency, and the 

ability to extract intricate features from tomato plant leaf 

images. These benefits contribute to the development of 

an accurate and efficient tomato disease detection system, 

ultimately aiding farmers and agricultural experts in 

managing plant diseases effectively. 

C. Comparison of BR-TomatoCNN with Pretrained 

Models 

CNN models have been extensively utilized for image 

classification in a variety of fields, including the 

classification of tomato plant diseases. In previous 

studies, researchers have utilized pre-trained architectures 

such as AlexNet [24], VGGNet [25], 

GoogleNet/InceptionNet [26], ResNet [27], and 

EfficientNet [28] to classify tomato plant diseases [29]. 

These pre-trained models include significant layers and 

filters in each layer because they were developed for 

1000 classes of ImageNet data. The cost of these pre-

trained models is considerable since they require high 

storage memory and take a long time to execute. 

Furthermore, their implementation on edge devices can 

be challenging.  

The comparison of the proposed BR-TomatoCNN 

model with pre-trained models is as follows: 

• ResNet: ResNet introduced the residual connections 

to address the vanishing gradient problem. It uses 

skip connections to add the input to the output of 

multiple layers. Effective in training deep neural 

networks and avoiding degradation issues. This can 

be computationally expensive and memory-

intensive. 

• MobileNet and MobileNetV2: An improvement 

over MobileNet, it introduces inverted residuals and 

linear bottlenecks for better performance. Improved 

accuracy over MobileNet is still efficient for mobile 

and edge devices. This may not match the accuracy 

of larger models like ResNet in some scenarios. 

• RegNetX and RegNetY: Introduces the concept of 

“network design space” and scaling to achieve a 

balance between model size and performance. 

Flexible design space allows for efficient scaling for 

various tasks. The specific architecture and scaling 

may not be suitable for all use cases. 

• BR-TomatoCNN: The BR-TomatoCNN 

incorporates bottleneck residual blocks, which 

typically consist of depthwise convolution and 

spatial attention mechanisms. The bottleneck 

structure reduces computational costs, and spatial 

attention can enhance model performance by 

focusing on diseased regions. 
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IV. RESULT AND DISCUSSION 

Keras and TensorFlow libraries are used to implement 

CNN models. To speed up the work with TensorFlow, the 

cuDNN 8.6 libraries are installed. All of these 

experiments are run on an NVIDIA GeForce RTX 3090 

GPU with 24GB of memory and a 1.7 GHz boost clock 

speed, as well as a Core i9 processor and 128GB of RAM 

in the central processing unit. The metrics used to 

measure the performance of pre-trained CNN models and 

the BR-TomatoCNN model in multi-class classification 

are the loss function, accuracy, specificity, precision, 

recall, and F1−Score [30−32]. To find the error in the 

CNN model, the categorical cross-entropy loss function is 

employed. 

A. Performance of BR-TomatoCNN Model 

In the initial stage of our research, experiments are 

conducted on a dataset of infected tomato leaves, which 

is provided in Section II-A. Initially, the dataset is 

divided into three sections: training for 80%, validation 

for 10%, and testing for 10%. The BR-TomatoCNN and 

pre-trained classifiers are trained for 50 epochs with the 

Adam optimizer. After each epoch, the model is validated 

using the validation dataset, and the final trained model is 

evaluated using unseen images. The BR-TomatoCNN 

model resulted in a higher accuracy of 99.02% and a 

lower error rate of 0.0373 on the testing dataset, as shown 

in Fig. 6. Precision, recall, and F1−Scores have reached 

0.99. BR-TomatoCNN outperforms in comparison of the 

results of five pre-trained CNN models, as given in 

Table  III. Fig. 7 demonstrates that the BR-TomatoCNN 

model outperforms all pre-trained models. 
 

 
(a) 

 
(b) 

Fig. 6. Performance of BR-TomatoCNN using Adam optimizer: (a) 

Training loss vs Validation loss, (b) Training loss vs Validation 
accuracy. 

TABLE III. CNN MODELS TESTING RESULTS 

Models Loss Accuracy(%) Precision Recall F1−Score 

ResNet50 0.0809 98.27 0.98 0.98 0.98 

MobileNet 0.2511 92.40 0.92 0.92 0.92 

MobliNet V2 0.3383 89.65 0.90 0.90 0.90 
RegNetX 0.1185 97.09 0.97 0.97 0.97 

RegNetY 0.0482 98.32 0.98 0.98 0.98 

BR-TomatoCNN 0.0373 99.02 0.99 0.99 0.99 

 

 

Fig. 7. Visualization of the BR-TomatoCNN model’s performance 
analysis. 

B. Enhanced Performance of BR-TomatoCNN Model 

In the second part of our study, seven different deep-

learning optimizers are used on the BR-TomatoCNN 

model to check how well they work. These are SGD, 

RMSProp, Adagrad, Adamax, Adadelta, and Adabelief. 

The Adamax and Adadelta optimizers with 

hyperparameter tuning yielded superior results in 

comparison to the Adam optimizer used in the initial 

phase of our research. When a learning rate of 0.5, a rho 

of 0.95, and an epsilon of 1e-06 are used with the 

Adadelta optimizer on a testing dataset, the proposed 

model does better. It can achieve a lower error rate of 

0.008, a higher accuracy of 99.82%, and 1.0 precision, 1.0 

recall, and 1.0 F1−Score, as shown in Table IV. 

TABLE IV. BR-TOMATOCNN MODEL WITH OPTIMIZER’S 

PERFORMANCE REPORT ON TEST DATASET 

Optimization 

Techniques 
Loss Accuracy (%) Precision Recall F1−Score 

SGD 0.032 98.69 0.99 0.99 0.99 

RMSprop 0.048 98.97 0.99 0.99 0.99 
Adam 0.037 99.02 0.99 0.99 0.99 

Adamax 0.017 99.49 0.99 0.99 0.99 

Adadelta 0.008 99.82 1.00 1.00 1.00 
Adagrad 0.057 98.23 0.98 0.98 0.98 

AdaBelief 0.082 97.95 0.98 0.98 0.98 

 

The BR-TomatoCNN model with the Adadelta 

optimizer is the optimal model for classifying tomato 

plant diseases. Fig. 8 depicts the graph of loss and 

accuracy on training versus validation outcomes for 50 

epochs of the BR-TomatoCNN model. After epoch 

number 27, the model becomes stable, and the difference 

between the accuracy of training and validation is 

reduced.  
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Fig. 8. Performance of BR-TomatoCNN model using Adadelta 

optimizer: (a) Training loss vs Validation loss, (b) Training loss vs 
validation accuracy. 

The confusion matrix is used to predict the results of 

the BR-TomatoCNN model on the testing dataset, as 

shown in Fig. 9. 

The specificity, precision, recall, and F1−Score 

between the positive predictive value and the true 

positive rate are used to rate the performance of each 

class. These metrics are shown in Table V. The BR-

TomatoCNN model reduces the number of false 

negatives and achieves excellent precision. 
 

 

Fig. 9. Confusion Matrix of BR-TomatoCNN model with Adadelta 
optimizer. 

TABLE V. BR-TOMATOCNN MODEL WITH ADADELTA OPTIMIZER 

PERFORMANCE REPORT OF ALL THE CLASSES 

Class Label Specificity Precision Recall F1−Score 

NonTomatoLeaf 1.00 1.00 1.00 1.00 

NonLeaf 0.99 0.99 1.00 1.00 
BacterialSpot 1.00 1.00 1.00 1.00 

EarlyBlight 1.00 1.00 1.00 1.00 

Healthy 1.00 1.00 1.00 1.00 
LateBlight 1.00 1.00 1.00 1.00 

LeafMold 1.00 1.00 1.00 1.00 

PowderyMildew 1.00 1.00 0.99 1.00 
SeptoriaLeaf Spot 1.00 1.00 1.00 1.00 

SpiderMites 0.99 0.99 0.99 0.99 

TargetSpot 1.00 0.99 0.99 0.99 
YellowLeafCurlVirus 1.00 1.00 1.00 1.00 

TomatoMosaicVirus 1.00 1.00 1.00 1.00 

Average Accuracy    1.00 

Macro Average  1.00 1.00 1.00 

Weighted Average  1.00 1.00 1.00 
 

C. Discussion 

The authors have developed a novel BR-TomatoCNN 

that incorporates bottleneck residual blocks with a limited 

number of parameters. This approach effectively 

decreases both the computational complexity and training 

time. The CNN model proposed incorporates three 

bottleneck residuals within layers consisting of 64 and 

128 filters. This framework presents a robust approach 

for the timely identification of tomato plant diseases. By 

integrating the advantages of depth, hierarchical feature 

extraction, and interpretability, this approach has the 

potential to provide precise crop disease control solutions. 

The utilization of bottleneck residuals has resulted in 

enhanced network efficiency and reduced computational 

expenses. The utilization of a depthwise convolution 

layer and pointwise convolution operations within the 

residual layer results in a decrease the number of 

multiplication operations, hence leading to a drop in both 

the number of calculations and the training time. The 

combination of global average pooling and two 

convolutional layers forms a spatial attention mechanism 

that specifically highlights the unhealthy regions of a 

tomato leaf image while concealing the remaining areas. 

The performance of the BR-TomatoCNN model has been 

enhanced through parameter reduction, mitigation of 

overfitting issues, and enhancement of the model's 

capacity to acquire significant features. Furthermore, the 

suggested methodology exhibits not only high accuracy 

and computational efficiency but also has strong 

generalization capabilities when applied to novel and 

unfamiliar data. This is crucial for the detection of 

diseases in tomato plants since it allows the model to 

precisely identify diseases in various growing conditions 

and geographic areas. 

The proposed BR-TomatoCNN model has been 

evaluated in two phases using a dataset that has been 

developed and trained for 50 epochs. This approach 

yields the highest level of accuracy in classifying 10 

distinct types of tomato plant diseases, with no instances 

of misclassification. The BR-TomatoCNN model 

achieves an accuracy of 99.02% in the initial stage, 

outperforming the results of five pre-trained models using 

Adam Optimizer. The performance of the proposed 
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approach is improved in the second stage by 

experimentation with several optimizers, such as SGD, 

RMSProp, Adamax, Adagrad, Adadelta, and Adabelief. 

The Adadelta optimizer on the improved BR-

TomatoCNN model results in an accuracy of 99.82%, 

which is better than the approaches suggested in [33–37].  

This paper presents a case study on the BR-

TomatoCNN model for tomato plant disease 

classification through experiments. Experiments are 

conducted using the dataset described in Section III-A. 

Images are randomly selected from each class for the 

splitting of the training, validation, and testing datasets. 

The results of each experiment are given in Table VI. 

TABLE VI. CASE STUDY ON BR-TOMATOCNN MODEL 

Experiment 

No. 

Accuracy (%) 
F1−Score 

Training Validation Testing 

1 100 99.71 99.71 1.00 
2 100 99.76 99.66 1.00 

3 100 99.61 99.86 1.00 

 

The results demonstrate that the BR-TomatoCNN 

model is successful at identifying and classifying tomato 

diseases with high accuracy across all three experiments 

carried out, as shown in Fig. 10. To verify the robustness 

of the algorithm, three data sets are derived from the main 

dataset described in Section III-A. A random selection of 

image data members from the main dataset allows for the 

split-up of the dataset. This is meant to ensure that the 

derived datasets truly represent variety in the data. BR-

TomatoCNN models Experiment 1 performance is as 

shown in Fig. 10(a). It can be concluded that the 

validation result of the BR-TomatoCNN model has 

become stable after the 27th epoch and has achieved a 

testing accuracy of 99.71% at the 50th epoch. Similarly, 

as shown in Fig. 10(b), the model has become stable after 

the 28th epoch and has achieved an accuracy of 99.66% 

in Experiment 2. In Experiment 3, as shown in Fig. 10(c), 

the model has become stable after the 27th epoch and has 

achieved an accuracy of 99.86%. In comparison with the 

testing results of each experiment on the BR-

TomatoCNN model, it is proven that the model is robust. 

When numerous diseases occur in a plant, the proposed 

model may have the limitation that it can only identify 

the most likely diseases. The diversity of the training 

dataset can be increased by incorporating images from 

different sources, under different lighting conditions, and 

capturing various stages of tomato growth. The 

techniques for online learning or incremental training for 

a model can be explored to adapt to new data over time, 

especially in dynamic agricultural environments. 

To integrate domain expertise into the development 

process, we intend to collaborate with specialists in 

agriculture and tomato farming to interface the BR-

TomatoCNN model with an edge device. Because 

resources are limited in some areas, especially in 

agriculture, where computers are often hard to come by, it 

is important to lower the processing needs of deep neural 

networks. To address this, we need to employ network 

compression techniques such as fine-tuning [38], 

quantization [39], pruning [40], knowledge  

distillation [41], weight clustering [42], and even 

frameworks like OpenVINO [43], with the help of which 

we can optimize the models. Among various compression 

strategies, network pruning stands out as a commonly 

utilized method. This approach follows a traditional 

three-stage pipeline where large models are initially 

trained, redundant weights are subsequently pruned while 

retaining essential ones, and fine-tuning is performed to 

optimize accuracy. When the BR-TomatoCNN model 

undergoes pruning to reduce its size, extraneous 

connections and neurons are eliminated based on their 

weight magnitude, which is indicative of their importance 

level. Such an approach holds significant potential to 

improve the model’s characteristics and practical utility 

in the agricultural field. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. Training versus Validation Accuracy: (a) Experiment 1, (b) 
Experiment 2, (c) Experiment 3. 
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V. CONCLUSION 

This research presents a unique model called BR-

TomatoCNN, which incorporates bottleneck residuals to 

improve the classification of tomato diseases. The present 

study aims to meet the growing need for intelligent 

systems in the field of agriculture by offering a highly 

effective and precise solution for the automated diagnosis 

of diseases affecting tomato plants. The inclusion of 

bottleneck residuals in the model’s design significantly 

enhances training stability, gradient flow, and the model’s 

capacity to identify disease-related challenging 

characteristics. The experiment is carried out in two 

phases using a dataset comprising 10 distinct categories 

of tomato disease classification. During the preliminary 

phase, the outputs of the BR-TomatoCNN model are 

analyzed using the results acquired from the five pre-

trained models. The experimental results exhibit promise 

and provide evidence for the efficacy of the BR-

TomatoCNN model in the classification of tomato 

diseases. The model has demonstrated superior 

performance compared to the pre-trained models, with an 

excellent accuracy rate of 99.02% on unseen data. During 

the second step, the BR-TomatoCNN model’s 

performance is improved by implementing several 

optimization techniques. The utilization of the Adadelta 

optimizer has yielded noteworthy accomplishments, 

exhibiting the highest accuracy of 99.82% and an 

F1−Score of 1.00 when applied to previously unexplored 

data.  

The findings of this study highlight the significance of 

careful optimizer selection in determining the overall 

performance of the model. The algorithm’s robustness 

has been validated using three derived datasets. In their 

future research, the scientists intend to investigate the 

efficacy of the model under different climatic 

circumstances and datasets encompassing a wide range of 

tomato disease severity levels. Furthermore, it is 

important to take into account the possibility of scaling 

and implementation in real-world agricultural contexts to 

optimize the practical implications of the model. 
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