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Abstract—An Image-to-Image (I2I) translation technique is a 

method that transforms an image from one domain to 

another by mapping one domain onto another. This 

technique involves two generators and two discriminators. 

Each generator can only translate one domain to another. 

This paper proposes a new approach called Knowledge 

Distillation Generative Adversarial Network (KD-GAN). The 

KD-GAN uses an image generated from Cycle-Consistent 

Generative Adversarial Networks (CycleGAN) as part of the 

target in training for a new generator. Our experiment 

involved translating between males and females in the 

CelebA dataset. We compared our model’s results with the 

state-of-the-art using Fréchet Inception Distance (FID) and 

Kernel Inception Distance (KID). The experiment showed 

that while KD-GAN is not the best regarding FID and KID, 

the output image can better keep the skin tone and hairstyle 

from the input image than other methods.  

 

Keywords—Generative Adversarial Network (GAN), 

unpaired Image-to-Image (I2I) translation, Knowledge 

Distillation (KD), deep learning, cycle-consistency loss 

 

I. INTRODUCTION 

Image to Image (I2I) [1] translation is an area within 

computer vision and artificial intelligence that involves 

transforming visual content from one form to another. 

Unlike traditional image processing tasks, I2I translation 

requires converting an input image from a source domain 

to an output image in a target domain while retaining 

important information and preserving the overall structure 

of the image.  

The I2I technology differs from Generative Adversarial 

Networks (GANs) [2–4], requiring an input image to 

transform to another domain. I2I technology can be 

applied in various fields, such as image segmentation [5], 

sketch-to-image [6], and image colorization [7]. However, 

the basic I2I requires a pair of image datasets for input and 

output, which can be challenging in large-scale model 

training.  

CycleGAN [8] is a type of GAN that utilizes the Cycle-

Consistency technique to enable the model to learn how to 

translate images between different domains even when the 

datasets are unpaired. CycleGAN-based models use two 

generators and two discriminators to translate images 

between two domains. There are separate generators for 

translating from domain A to domain B (GA→B) and from 

domain B to domain A (GB→A), as well as discriminators 

for each domain.  

To simplify I2I usage, KD-GAN combines the 

techniques of Knowledge Distillation (KD) [9] and GAN 

loss function [2]. KD is a commonly used method for 

transferring knowledge from one model (teacher model) to 

another (student model), where the output from a trained 

model is used as a soft target for a new model. In addition 

to using soft targets from GA→B and GB→A, we proposed to 

train the KD-GAN with a new GAN loss function.  

Our experiment aims to find the optimal settings for 

KD-GAN in male-to-female image transformation tasks. 

To achieve this goal, we utilized the CelebA dataset [10] 

for training and employed the state-of-the-art UNet Vision 

Transformer cycle-consistent GAN version 2 

(UVCGANv2) [11] as the teacher model. Moreover, we 

enhanced the image translation results by applying post-

processing with GAN Prior Embedded Network 

(GPEN)  [12]. 

This paper introduces three key contributions: 1) A new 

learning method that combines unsupervised GAN loss 

with supervised Pixel-to-Pixel loss; 2) We present KD-

GAN, a conditional GAN model capable of performing 

image-to-image translation; and 3) Analyze and discuss 

the post-processing techniques to enhance the translated 

results. 

The rest of the paper is structured as follows: Section II 

reviews related work, and Section III presents a detailed 

explanation of our proposed method. Section IV outlines 

the experimental details, including the dataset and 

evaluation metrics. Section V discusses the results 

obtained for each metric and analyzes the image quality 

through visualization. Finally, Section VI presents the 

conclusion. 

II. RELATED WORK 

The CycleGAN framework, as shown in Fig. 1, is 

utilized for unpaired I2I translation. It makes use of two 

generator-discriminator pairs. In CycleGAN, there are two 

domains, A and B. The generator GA→B is responsible for 

converting images from domain A to resemble those from 

domain B. Simultaneously, discriminator DB distinguishes 
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images in domain B from those converted from domain A. 

The same process applies to the other translation directions, 

GB→A and DA. The discriminators are trained by 

backpropagating the loss in distinguishing between real 

and translated (fake) images. The CycleGAN is designed 

to learn the mapping without paired training examples. 

 

Fig. 1. (a) Overview of CycleGAN, (b) Learning to translate A to B, (c) 
Learning to translate B to A. 

UVCGAN [13] is an upgraded version of CycleGAN 

that incorporates the generator’s transformer 

architecture  [14, 15] and new training methods, such as 

self-supervised pre-training. It has been proven that 

UVCGAN outperforms CycleGAN concerning FID and 

KID scores for male-to-female, cat-to-dog, and selfie-to-

anime transformations. 

UVCGANv2 [11] is the updated version of UVCGAN, 

which inherits the concept of UVCGAN but has 

improvements in the generator network architecture. 

UVCGANv2 enhances the design at the generator’s 

bottleneck; the image is encoded as a sequence of tokens 

to be fed to the Transformer network. The result is an 

improvement in UVCGAN concerning the FID and KID 

benchmarks. 

CycleGAN-based Image-to-Image (I2I) translation 

requires two generators to translate images between 

different domains. However, it is possible to have 

generator networks that can translate between more than 

two image domains. Image translation can be 

accomplished using technologies such as GAN. The basic 

GAN architecture includes a conditional GAN 

(cGCN)  [16], which can generate a design image domain. 

However, it is important to note that while cGAN is an 

image generator, CycleGAN is an image translator, which 

feeds different inputs to the model. Both of these are used 

in unsupervised learning. 

To combine the generators of CycleGAN, we utilize the 

KD technique [9]. KD is a universal approach to 

supervising the training of student networks by 

transferring the knowledge of already-trained teacher 

networks. The primary purpose of KD is to compress the 

model size by replicating the output of a group of models. 

Knowledge distillation has recently been widely explored 

and adopted in various applications such as image 

classification [17, 18], domain adaptation [19, 20], object 

detection [21, 22], semantic segmentation [23, 24], and 

GAN [25]. 

GANs [2–4] generate low-resolution images, which 

need to be upscaled and sharpened to meet the 

requirements of real-world applications. Super-resolution 

models [26] are commonly used to increase the size and 

sharpness of images. Super-resolution is a computer vision 

task that takes low-resolution input to produce an output 

image with higher resolution while maintaining the 

original content and structure. 

Our research experiment focuses on male-to-female 

image translation, which is highly relevant to facial 

recognition research. Many studies have utilized super-

resolution techniques in facial images, such as [12, 27]. In 

this paper, we have used the pre-trained model from 

reference [12] to sharpen the image through facial 

restoration, thereby improving the results. 

III. METHODS 

A. Knowledge Distillation for GANs 

KD [9] is a technique to transfer knowledge from one 

model to another. The most common use case is to transfer 

knowledge from a large model to a smaller one. Transfer 

knowledge is done because large models have a higher 

knowledge capacity (or parameters) that need to be utilized 

more, making them computationally expensive to evaluate. 

KD aims to transfer knowledge to smaller models without 

losing validity. Smaller models are less computationally 

expensive and can deploy on less powerful hardware like 

mobile or IoT devices. 

The teacher model has been trained and provided 

knowledge. On the other hand, the student model receives 

the knowledge from the teacher model and enhances its 

performance. In supervised learning, the student model 

acquires knowledge from actual targets and the output 

from the teacher model, also called a soft target. 

KD is designed for supervised learning, but GANs are 

unsupervised learning models that rely on loss functions 

for their generator and discriminator. It is necessary to 

introduce new loss functions to apply KD and soft targets 

to GANs and make the model semi-unsupervised. 

 𝐿𝑜𝑠𝑠𝑑𝑖𝑠𝑐 = 𝔼𝑋𝑙𝑔𝑎𝑛(𝐷(𝑥), 1) + 𝔼𝑍𝑙𝑔𝑎𝑛(𝐷(𝐺(𝑧)), 0)  (1) 

 𝐿𝑜𝑠𝑠𝑔𝑒𝑛 = 𝔼𝑋𝑙𝑔𝑎𝑛𝐷(𝐺(𝑧), 1) (2) 

Eqs. (1) and (2) show the original loss function of GANs, 

where 𝑙𝑔𝑎𝑛  presents a classification loss function (L2, 

cross-entropy, Wasserstein [3], etc.) In 𝐿𝑑𝑖𝑠𝑐 the first term 

represents the expected probability the discriminator 

assigns to real data. The second term means the expected 

log probability assigned by the discriminator to fake data 

generated by the generator. The main objective of GAN’s 

loss function is to optimize the balance between the 

discriminator’s ability to distinguish real and fake data and 

the generator’s ability to produce realistic data. 

Our proposed model, KD-GAN, involves training a 

model using both a soft target and GAN’s loss. The soft 

target directs the output image, while GAN’s loss guides 

the model in producing a realistic image. 
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B. KD-GAN Loss Function 

We used the soft target obtained from UVCGANv2 as 

teacher models. Our 𝐿𝑠𝑜𝑓𝑡  function is defined to measure 

the difference between results from teacher models and our 

model. To calculate the Losssoft, we use mean square error 

as described in Eq. (3), where n represents the number of 

samples, 𝑌  represents the pixel value of the generated 

image using trained UVCGANv2, and 𝑌𝑖̂  represents the 

pixel value of the newly generated image. 

 𝐿𝑜𝑠𝑠𝑠𝑜𝑓𝑡 = ∑
|𝑌𝑖̂−𝑌𝑖|

𝑛

𝑛
𝑖   (3) 

It is not advisable to rely solely on 𝐿𝑜𝑠𝑠𝑠𝑜𝑓𝑡  when 

training a new generator as it may result in the generator 

producing an image that is too similar to the teaching 

model. Since the teaching model still does not create the 

real image, a modified discriminator is used to output zero 

for the real image. The new discriminator output helps the 

training generator to minimize the output of the 

discriminator in the same way as a GAN loss. 

 𝐿𝑜𝑠𝑠𝑑𝑖𝑠𝑐 =  𝔼𝐶  𝑙𝑔𝑎𝑛𝐷(𝑥, 𝐶, 1) + 𝔼𝐶́  𝑙𝑔𝑎𝑛𝐷(𝐺𝐶→𝐶́́
(𝑥), 𝐶́, 0)  (4) 

 𝐿𝑜𝑠𝑠𝐺𝐴𝑁 =  𝔼𝐶́  𝑙𝑔𝑎𝑛𝐷(𝐺(𝑥), 𝐶́, 1)  (5) 

Eqs. (4) and (5) represent the updated discriminator and 

generator loss, where C is the image’s label and 𝐶́ is the 

target translation label. The first term indicates the 

expected probability distribution of the discriminator to 

assign to real data. The second term means the expected 

probability distribution of the discriminator to give to the 

data generated by UVCGANv2 in different image domains. 

The modification aims to create a discriminator that 

does not consider UVCGANv2-generated data as real data. 

This modification 𝐿𝑜𝑠𝑠𝐺𝐴𝑁 has the objective to produce an 

image that is similar to the real image and has the same 

direction as the teacher model. 

In addition, we have incorporated the identity loss 

function employed in CycleGAN to ensure that the image 

is not altered when both the source and target label 

translations are identical. The 𝐿𝑜𝑠𝑠𝑖𝑑𝑡 , described by 

Eq.  (6), ensures that the input and output data are alike, 

where 𝑙𝑟𝑒𝑔 is can be any regression loss function (L1 or L2, 

etc.) 

 𝐿𝑜𝑠𝑠𝑖𝑑𝑡 = 𝔼𝐶𝑙𝑟𝑒𝑔(𝐺𝑐́→𝑐(𝑥), 𝑥) (6) 

Eq. (7) defines the loss function during the KD-GAN 

training process. The equation optimizes the model’s 

performance by adjusting the importance of three 

hyperparameters: λ𝐺𝐴𝑁 , λ𝑠𝑜𝑓𝑡 , and λ𝑖𝑑𝑡 . Each of these 

hyperparameters has a specific objective in the training 

process. By adjusting their values, certain objectives can 

be prioritized over others, allowing for fine-tuning of the 

model’s performance. 

 𝐿𝑜𝑠𝑠𝐾𝐷𝐺𝐴𝑁 = λ𝐺𝐴𝑁Loss𝐺𝐴𝑁 + λ𝑠𝑜𝑓𝑡Loss𝑠𝑜𝑓𝑡 + λ𝑖𝑑𝑡Loss𝑖𝑑𝑡  (7) 

C. KD-GAN Network Architecture 

1) Generator 

Different network architectures can be used as the 

generator to transfer knowledge from multiple teacher 

models to a single student model. UVCGANv2 is based on 

the U-Net [28] architecture with modifications to the 

transformer [14] in the backbone. Therefore, the generator 

used should be based on U-Net and transformer. 

In KD-GAN, we also use the U-Net architecture, but we 

require the target translation label to be inputted into the 

model. Our generator uses U-Net with positional encoding. 

The network architecture of KD-GAN is based on U-

Net and Positional Embedding. The label is encoded using 

a transformer at the end of each down-sampling and up-

sampling block. Overall, the KDGAN network has more 

parameters and is larger than the UVCGANv2 generator. 

However, the larger network has the advantage of having 

more capacity to learn from the teacher model, which 

allows it to train for translation for more than two domains. 

2) Discriminator 

The discriminator is an essential component of a GAN, 

distinguishing between genuine data and data generated by 

the generator network. We have used the standard 

GAN  [2] setup as the basis for our discriminator 

architecture. 

In the KD-GAN model, we have modified the 

discriminator to handle 256256 pixel images by 

increasing the number of layers and channels. Although 

the discriminator architecture is similar to the original 

GAN, it has been refined to be suitable for large image 

sizes.  

In summary, our proposed KD-GAN framework is 

presented in Fig. 2, which provides an overview of the KD-

GAN architecture. 

 

 

Fig. 2. Overview of KD-GAN framework. 

D. Post-Processing 

Our experiment focuses on translating images between 

the domains (male and female) and improving the realism 

of translated images. While GANs can generate images up 
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to 256256 pixels using UVCGANv2 models, they still 

lack the detail required for many real-world applications, 

where many researchers have overcome this issue using 

super-resolution methods to improve low-resolution 

images in scale, resolution, and level of detail. 

To enhance the detail and realism of our translated 

images, we use a GPEN [1] state-of-the-art Face 

Restoration. By applying this pre-trained model to our 

translated images, we can improve their level of detail and 

make them more realistic. Improving the facial image’s 

realism is crucial because our image-to-image translation 

process primarily focuses on changing its domain. 

IV. EXPERIMENTAL 

A. Dataset 

To compare the effectiveness of KD-GAN with other 

advanced models for translating male-to-female facial 

features, we conducted an experiment using the CelebA 

dataset [10]. Our experiment used a version of the dataset 

that included 30,000 facial images and was also used to 

train UVCGANv2. The dataset was divided into two 

subsets: the training and validation sets. The training set 

consisted of 17,943 images of females and 10,057 images 

of males, while the validation set had an equal number of 

images of both genders, with 1,000 images in total. All 

images were resized to 256256 pixels for consistency. 

B. Training Detail 

A commonly used technique for cycle consistency 

training involves using two generators. However, a single 

generator using a standard GAN training approach with 

soft targets is possible in our proposed KD-GAN training. 

In this approach, the discriminator processes the input data, 

which generates an image. This generated image is then 

compared with the soft target image, and the discriminator 

provides feedback to the generator. This feedback helps 

the generator produce more accurate and realistic images 

during training. The generator is trained with the 

discriminator loss and soft-target, aiming to generate real 

images in the same direction as the output from the teacher 

model. 

We trained the KD-GAN model on a training set and 

then evaluated its performance on a validation set. As KD-

GAN is a semi-supervised learning model, we trained it 

similarly to supervised learning. To optimize the model, 

we used the Adam optimizer with β values of (0.5, 0.99) 

and set the learning rate to 1×10−4 at the beginning. At the 

end of each epoch, we calculated the loss with a validation 

set; if the loss was not reduced compared to the previous 

epoch, we decreased the learning rate by 50% until it 

reached 1×10−6. We considered the best model with the 

lowest loss value during evaluation and used it to evaluate 

the result. 

Hyperparameter tuning is essential while conducting 

experiments as it can significantly affect the results. 

However, our research indicates no significant difference 

in outcomes when λ𝐺𝐴𝑁  is less than 0.5. However, our 

model fails to translate when λ𝐺𝐴𝑁 is greater than or equal 

to 0.5. It is important to note that the results presented in 

this paper are obtained with specific hyperparameter 

values of λ𝐺𝐴𝑁 = 0.1, λ𝑠𝑜𝑓𝑡 = 0.8, and λ𝑖𝑑𝑡 = 0.1. 

C. Evaluation Metric 

In the context of unpaired image-to-image translation, it 

is customary to employ metrics like Fréchet Inception 

Distance (FID) and Kernel Inception Distance (KID) to 

evaluate the similarity between the generated images and 

the real ones. FID and KID serve as benchmarks to 

determine the quality of the generated images. This 

benchmark confirms the quality of the generated images 

and provides a means of comparison with baseline and 

state-of-the-art models. 

1) Fréchet inception distance 

The FID [29] is a measure used to assess the quality of 

images produced by GANs. FID uses the Fréchet distance, 

a statistical method for determining the similarity between 

two probability distributions. In the case of GANs, these 

distributions represent the features extracted from real and 

generated images using a pre-trained Inception-v3 [30] 

neural network. 

The mean and covariance matrix of the feature 

representations for both real and generated samples are 

determined to calculate FID. Then, the Fréchet distance is 

computed between the multivariate Gaussian distributions 

defined by these statistics, yielding a singular FID score. 

A lower FID score indicates a higher degree of similarity 

between the distributions, implying that the generated 

images closely match the characteristics of real images. 

 𝐹𝐼𝐷 =  ‖𝜇1 − 𝜇2‖2 + 𝑇𝑟(𝜎1 + 𝜎2 − 2√𝜎1 × 𝜎2) (8) 

Eq. (8) provides a detailed explanation of FID. The 

terms μ1 and μ2 represent the average features in the real 

and generated images. Similarly, σ1 and σ2 represent the 

covariance matrix of the feature vectors for the real and 

generated images. The expression ‖μ1 − μ2‖2 refers to the 

squared sum of the differences between the two mean 

vectors, while the operation Tr denotes a trace in linear 

algebra. Lower FID scores indicate that the statistics of the 

two sets of images are more similar. A score of 0.0 implies 

that the two groups of images are identical. 

2) Kernel inception distance 

KID [29] is a metric widely used to evaluate the 

performance of GANs in generating high-quality and 

diverse images. KID is calculated by extracting features 

from real and generated images using a pre-trained 

Inception model. These features are then used to compute 

the Gram matrix, which captures the statistical properties 

of the images.  

The KID value is then obtained by measuring the 

distance between the Gram matrices of the real and 

generated images. By considering the statistical properties 

of the images, KID provides a reliable measure of the 

similarity between the generated and real datasets. 

Therefore, it is an essential tool for assessing the quality 

and diversity of the images generated by GANs. 

 KID = MMD(𝑓(𝑥), 𝑓(𝑥′))2 (9) 
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Eq. (9) provides the calculation details for the Kernel 

Inception Distance (KID), where the function f uses a pre-

trained Inception-v3 model [29], x represents a real image, 

and x' represents a generated image. The Maximum Mean 

Discrepancy (MMD) function calculates KID’s mean and 

standard deviation over several subsets. 

FID and KID differ in how they measure the similarity 

between the feature representations of real and generated 

images. FID calculates the distance between the feature 

representations, while KID focuses on the statistical 

properties of the images captured by the Gram matrix. 

Unlike FID, which considers the mean and covariance of 

feature representations, KID only examines the covariance 

matrix. As a result, KID offers a unique perspective on 

evaluating GANs by emphasizing the statistical properties 

of the images rather than just the feature representations. 

V. RESULT ANALYSIS AND DISCUSSION 

As part of our experiment, we comprehensively 

compared various models, including the baseline and state-

of-the-art ones. We evaluated the effectiveness of our 

method against these models, which comprised 

UVCGAN  [13] and UVCGANv2 [11] for both male-to-

female and female-to-male comparisons. It’s important to 

mention that our KD-GAN was trained with smaller 

datasets than those used in UVCGAN and UVCGANv2. 

To compare the results with state-of-the-art, we used the 

trained weights of UVCGAN and UVCGANv2 and 

evaluated them with our version of the validation set. In 

our evaluation, results in FID/KID of UVCGAN and 

UVCGANv2 differ from those in the UVCGANv2 paper. 

Our analysis involved a detailed assessment of the 

performance of each model, which included a comparison 

of their features, strengths, and weaknesses. Our 

experiment’s results provided valuable insights into the 

performance of these models and helped us identify the 

most effective one for our specific use case. 

A. Quantitative Analysis 

In this experiment, we used three different methods to 

generate images and measured their performance using 

FID and KID metrics. The methods were UVCGAN, an 

updated version of CycleGAN; UVCGANv2, the latest 

iteration of UVCGAN; and our proposed KD-GAN, a 

technique that distills knowledge from trained 

UVCGANv2. Moreover, we include the result when 

applying post-processing to each model to see the 

effectiveness of post-processing. 

TABLE I. FID AND KID SCORES 

Model 
Male-to-Female Female-to-Male 

FID KID FID KID 

UVCGAN 32.583 0.018 45.762 0.024 
UVCGANv2 34.175 0.023 39.992 0.024 

KD-GAN 62.631 0.040 54.295 0.035 
UVCGAN+GPEN 27.666 0.012 37.648 0.017 

UVCGANv2+GPEN 24.357 0.009 31.883 0.012 

KD-GAN+GPEN 35.124 0.018 57.172 0.038 

 

Table I displays the FID and KID results of our 

experiment. It indicates that UVCGAN and UVCGANv2 

demonstrate better performance compared to KD-GAN. 

Furthermore, we found that UVCGANv2 has slightly 

surpassed UVCGAN. Upon analyzing the results, we 

discovered that KD-GAN has an issue that causes high FID 

and KID scores due to the sharpness of the image in the 

jawline and ear. Fig. 3 (upper) shows the results that cause 

higher FID and KID in KD-GAN. 

 

  

Fig. 3. Male-to-female translated using KD-GAN and KD-GAN with 
post-processing (Upper male to female, lower female to male). 

KD-GAN significantly improves male-to-female image 

translation tasks when used with post-processing 

techniques. The scores of KD-GAN with post-processing 

are similar to those of UVCGANv2 without post-

processing. The improvement is because image blur can be 

corrected in post-processing. 

However, in female-to-male, the score of KD-GAN is 

not improved while using post-processing. From the 

observation, we found that some translations with a 

hairline cover partial of the face remain in the output as a 

transparency overlay. The examples are shown in Fig. 3 

(lower), where the transparency overlay cannot be 

removed by using post-processing. 

The analysis of FID and KID measurements suggests 

that the KD-GAN algorithm can be further optimized to 

improve the realism of generated images. Although some 

issues can be resolved through post-processing, we 

recommend incorporating a sharpness loss function [31] to 

enhance the final image quality without relying on post-

processing. 

B. Qualitative Analysis 

Our visual representations are used to evaluate the 

quality of image translation models. Figs. 4 and 5 

demonstrate the results of image translations from male to 

female and female to male using our method and state-of-

the-art models.  

The translated images generated by UVCGAN, 

UVCGANv2, and KD-GAN successfully depicted the 

intended image translation. However, upon closer 

examination, it was observed that some of the images 

produced by UVCGAN (v1 and v2) exhibited over-

modification of the facial features, destroying the original 

image structure, such as aging and hairstyle. 
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Fig. 4. Sample translation for male-to-female. 

 

Fig. 5. Sample translation for female-to-male. 

For male-to-female transformations, the primary 

changes to the input image were removing facial hair and 

smoothing the skin. All the models could convert the 

image successfully; however, UVCGAN and UVCGANv2 

models tended to produce unrealistic images by over-

modifying the hairstyles. On the other hand, KD-GAN 

generated a more realistic hairstyle that maintained the 

original image’s structure. 

All models successfully translated images from female 

to male, but UVCGAN produced unrealistic images, and 

UVCGANv2 aged the input image’s skin. On the other 

hand, KD-GAN can maintain the skin tone from the 

original image. 

According to the experiment, Fig. 6 demonstrates that 

post-processing using GPEN [12] can enhance the 

outcome of image translation between male and female 

domains. However, it’s important to note that GPEN is 

customized for facial images, and for other image-to-

image tasks, individual task post-processing needs to be 

investigated. 

 

 

Fig. 6. Sample translation with and without post-processing. 

To summarize, the experiment results show that KD-

GAN’s learning method has the potential for I2I 

translation by incorporating assistance from the 

discriminator and teacher models. The discriminator 

model assists in optimizing the image translation process 

by identifying differences between the generated and real 

images, enabling the generator to produce more accurate 

and consistent images. The teacher models provide 

guidelines for image output. However, the results still have 

sharpness issues that require post-processing. 

VI. CONCLUSION 

Our research paper presented a new learning method 

and model called KD-GAN. This method combines the 

KD technique with GANs to translate images between 

different domains. KD-GAN is a conditional generator that 

uses the target domain as input and the original image to 

produce the output for the respective image domain. We 

used the CelebA dataset for male-to-female and female-to-

male translations to test KD-GAN and used the 

UVCGANv2 models as the teachers for training. Our 

experiment showed that KD-GAN can translate images 

successfully between male and female domains. However, 

KD-GAN still faces image quality issues, which can be 

resolved by post-processing in male-to-female tasks. 

Further investigation is needed for female-to-male tasks. 

In our future work, we aim to analyze the factors that 

can significantly impact our results, such as feature 

normalization [32]. Our objective is to gain a better 

understanding of how hyperparameters, generator network 

architecture, datasets, loss functions, and objective 

functions interact with each other. 
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