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Abstract—X-ray examinations are widely used in the 

diagnosis of Rheumatoid Arthritis (RA). However, the 

condition of many phalanges and joints must be evaluated 

visually, which causes a lack of objectivity due to subjective 

evaluation by the physician and an increased workload for 

the physician in reading the images. In this paper, we propose 

an image analysis method for hand Computed Radiography 

(CR) images based on the temporal subtraction method to 

support the diagnosis of rheumatoid arthritis. The proposal 

method consists of three steps. First, a Convolutional Neural 

Network (CNN) model for semantic segmentation, which is 

efficient in terms of computational complexity and accuracy, 

is proposed to extract phalangeal regions. Second, a 

geometric-matching CNN with instance-specific optimization 

is used to align the phalangeal regions. Finally, the current 

image and the aligned past image are subtracted to visualize 

the temporal changes. We applied the proposed method to 

hand CR images and confirmed its effectiveness.  
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I. INTRODUCTION 

Rheumatoid Arthritis (RA) is a chronic inflammatory 

disease characterized by joint swelling, joint tenderness, 

and destruction of synovial joints [1]. In the early stages, 

the joints of the hands and feet are easily affected, and 

gradually destruction and deformation of joints throughout 

the body occur. Aggressive treatment and tight monitoring 

from an early stage are important to control the progression 

of symptoms [2]. However, the diagnosis of rheumatoid 

arthritis requires a lot of time and effort due to visual 

evaluation on X-ray images. of rheumatoid arthritis has 

required a lot of time and effort due to the need for visual 

evaluation using X-ray images. To solve these problems, 

the development of a Computer Aided Diagnosis (CAD) 

system is expected to provide physicians with the results 

of computer analysis as a second opinion. 

The temporal subtraction technique [3] is one of the 

image analysis techniques that support the reading of X-

ray images. This technique visualizes the presence or 

absence of temporal changes by generating subtraction 

images of the past and current images from X-ray image 

of the same patient. By visualizing temporal changes, it is 

expected to improve diagnostic accuracy and shorten 

reading time on visual screening. 

In a study of temporal subtraction techniques to aid in 

the diagnosis of rheumatoid arthritis, Ichikawa et al. [4] 

proposed a CAD system to detect the progression of joint 

space narrowing. However, visual alignment of the joints 

is necessary. Kajihara et al. [5] also proposed an image 

segmentation method for phalangeal region using Multi 

Scale Gradient Vector Flow (MSGVF) Snakes and image 

registration method based on Salient Region Feature 

(SRF). Although these methods achieve automatic 

segmentation and registration, they have issues with 

accuracy and processing speed. 

To analyze the temporal changes in phalanges, it is 

necessary to develop accurate segmentation methods and 

correct alignment methods of previous and current images 

on same subject. Therefore, we propose a segmentation 

and registration method for phalangeal regions using a 

Convolutional Neural Network (CNN). In the 

segmentation step, we propose U-ConvNeXt, which is 

efficient in terms of computational complexity and 

accuracy. In the registration step, the phalangeal region 

images are aligned using geometric matching CNN [6] 

with instance-specific optimization [7]. Finally, the 

proposed method is applied to hand CR images and the 

results and discussion are described. This paper develops 

an image segmentation methods using deep learning and 

confirms its usefulness with synthetic data on CT images. 

It also proposed an accurate image registration method 

based on geometric CNN based image alignment methods. 

As a result, we established a technique for correctly 

detecting of temporal changes from difference images. 

This technique enables effective enhancement of newly 

appearing lesions and contributes to assisting radiologist 

in diagnosis. From the experimental results, segmentation 

performance and registration accuracy are improved 

compare with conventional method.  

The rest of this work is organized as follows: The 

fundamental technique for the proposed method based on 

segmentation and registration are described in Section II. 

Experimental results and discussions are shown in 

Section  III. Finally, conclusion is presented in Section IV. 
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II. METHODS 

In this section we provide segmentation and registration 

methods to generate temporal subtraction images of the 

phalangeal region. 

A. U-ConvNeXt 

It is necessary to extract the phalangeal region from the 

hand CR image for registration. The extraction of 

phalangeal regions is automated using CNN. We propose 

a new CNN model called U-ConvNeXt for automatic 

extraction of phalangeal regions. U-ConvNeXt extends U-

Net [8] and uses the ConvNeXt block [9] as an encoder to 

expand the receptive field and reduce computational 

complexity. 

An overview of the U-ConvNeXt architecture is 

presented in Fig. 1. First, the input image is reduced to 1/2 

the image size by the stem block shown in Fig. 2. Our stem 

block differs from U-Net in that the first convolutional 

layer is changed to stride = 2 to reduce computational 

complexity. The feature map output from the stem block is 

input to “Stage 1”, which consists of a down sampling 

block and a ConvNeXt blocks. The down sampling block 

consists of a 33 convolutional layer with stride = 2 and 

BN (Batch Normalization) to reduce the size of the feature 

map. The ConvNeXt block consists of a 77 depthwise 

convolution layer and two 11 convolution layers, as 

shown in Fig. 3, to expand the receptive field and reduce 

computational complexity. This process is repeated four 

times, from “Stage 1” to “Stage 4”. The number of 

ConvNeXt blocks in each stage is [2,2,6,2], respectively. 

The decoder is built by replacing the activation function in 

the double convolution block of U-Net from Rectified 

Linear Unit (ReLU) to Gaussian Error Linear Unit 

(GELU)  [10], with the other layers kept the same. 

 

Fig. 1. An overview of the U-ConvNeXt architecture. 

 

Fig. 2. Architecture of the stem block. “Conv” indicates convolution 
and “BN” indicates batch normalization. 

 

Fig. 3. Architecture of the ConvNeXt block. “DWConv” indicates 
depthwise convolution and “LN” indicates layer normalization. 

B. Generation of Phalangeal Region Images 

The phalangeal region image is generated based on the 

segmentation map output from the CNN. First, the area of 

each region is calculated. Regions with small areas are 

considered as noise, they are deleted, and only the 

phalangeal regions are selected. Next, the region 

corresponding to the phalangeal region of the 

segmentation map is extracted from the CR image. The 

extracted region is placed in the center of the image to 

generate a phalangeal region image. 

C. Image Registration 

Geometric-matching CNN [6] is used to align the past 

and current images. Because the images in this paper were 

taken with equipment and hands in the same position in the 

past and current, rigid transformation shown in Eq. (1) is 

used for registration. 

 𝑅 = (
cos 𝜃 −sin 𝜃 𝑇𝑥
sin 𝜃 cos 𝜃 𝑇𝑦
0 0 1

) (1) 

Since it is necessary to estimate the three parameters 

(𝜃, 𝑇𝑥 , 𝑇𝑦) in a rigid transformation, the number of output 

dimensions in the Geometric-matching CNN is changed to 

three. 

An overview of the proposed registration method is 

shown in Fig. 4. The geometric transformation parameters 

estimated by the CNN can be interpreted as simply an 

approximation or initialization to the optimal 

deformation  [7]. Therefore, after initial alignment by 

Geometric-matching CNN, the weight parameters of the 

CNN model can be improved by using instance-specific 

optimization [7]. The geometrical transformation 

parameters re-estimated by the CNN are applied to the 

initially aligned phalangeal region images and optimized 

to minimize the mean squared error in pixel values 

between image pairs. 

 

Fig. 4. Overview of the registration method. 
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D. Generation of Subtraction Images 

After the registration process, a subtraction image of the 

past and current images is generated to highlight temporal 

changes. Since the image density of CR images differs 

from case to case due to differences in imaging conditions, 

the linear gradation process [11] shown in Eq. (2) is 

applied before generating the subtraction image. 

 𝑦 = (
𝜎

𝜎′
) 𝑥 + {𝜇 − (

𝜎

𝜎′
) 𝜇′}  (2) 

where, 𝑥  is the pixel value of the image, 𝑦  is the pixel 

value after correction, 𝜇 is the mean of pixel values of the 

base image, 𝜎 is the standard deviation of pixel values of 

the base image, 𝜇′ is the mean of pixel values of the 

corrected image, and 𝜎′ is the standard deviation of pixel 

values of the corrected image, respectively. 

III. EXPERIMENTAL RESULTS 

We evaluated the performance of our proposed method 

for segmentation and registration to confirm its 

effectiveness. Information on the experimental equipment 

is shown in Table I. 

TABLE I. EXPERIMENTAL EQUIPMENT 

Equipment Information 

OS Ubuntu 20.04.4 LTS 

CPU Intel® Core™ i7-6850K CPU@3.6GHz 

RAM 32GB 

GPU NVIDIA GeForce RTX 2080 SUPER 

VRAM 8GB 

A. Evaluation of Segmentation Performance 

In this paper, U-ConvNeXt was applied to hand CR 

images for segmentation of the phalangeal regions. The 

data set consists of 202 one-hand-only images cropped to 

a size of 512512 from the hand CR images of 101 cases. 

We evaluated with 5-fold cross validation due to the 

number of data. IoU (Intersection over Union) and mIoU 

(mean Intersection over Union) shown in Eq. (3) and (4) 

were used as evaluation metrics. 

 IoU =
|𝐴∩𝐵|

|𝐴∪𝐵|
   (3) 

  mIoU =
1

𝐿
∑ IoU𝑙
𝐿
𝑙=1  (4) 

where 𝐴 is the ground truth, 𝐵 is the prediction, 𝐿 is the 

number of classes, IoU𝑙 is the IoU in class 𝑙. 
We compared U-ConvNeXt with U-Net [8] and 

DeepLabv3+ [12]. Table II shows the segmentation 

accuracy and Table III shows the memory usage and 

processing speed for each model. Fig. 5 also shows an 

example of the segmentation results for each model. In the 

figure, the gray region represents the media phalanges and 

the white region represents the proximal phalanges. The 

mIoU of each model was 95.30% for U-Net, 95.15% for 

DeepLabv3+, and 95.21% for U-ConvNeXt. 

TABLE II. COMPARISON OF SEGMENTATION ACCURACY 

Model Media(%) Proximal(%) mIoU 

U-Net [8] 94.89 95.71 95.30 
DeepLabv3+ [12] 94.65 95.66 95.15 

U-ConvNeXt 94.76 95.66 95.21 

TABLE III. COMPARISON OF MEMORY USAGE AND PROCESSING SPEED 

Model Memory 
Speed (iteration /sec)  

Train/Test 

U-Net [8] 7.42 1.70/12.30 

DeepLabv3+ [12] 5.11 2.66/12.67 
U-ConvNeXt 4.63 3.79/17.68 

 

  
(a) Original image (b) Ground truth 

   
(c) U-Net (d) DeepLabv3+ (e) U-ConvNeXt 

Fig. 5. Example of segmentation results. 

B. Evaluation of Registration Performance 

In this paper, the proposed method is applied to 

240×240 pixels phalangeal region images to evaluate the 

registration performance. Due to the small number of 

phalangeal region images, we used the Pascal VOC 2011 

dataset [13] for training the Geometrical-matching CNN. 

Registration accuracy is evaluated by the overlap of the 

phalangeal regions obtained by segmentation. As 

evaluation metrics, we use TP, FP, and Dice: 

 TP =
|𝐴∩𝐵|

|𝐴|
 (5) 

  FP =
|𝐵|−|𝐴∩𝐵|

|𝐴|
 (6) 

 Dice =
2|𝐴∩𝐵|

|𝐴|+|𝐵|
 (7) 

where, 𝐴 is the area of the target image and 𝐵 is the area 

of the aligned image respectively. 

C. Experimental Results on Synthetic Data 

Real data consisting of past and current images is 

difficult to accurately evaluate the registration accuracy 

due to bone deformation and other factors. Therefore, we 

used 560 pairs of synthetic data. The synthetic data were 

created by randomly adding rotations in the range of −15 

to 15 and translations in the range of −10 to 10 pixels to 

the phalangeal region images. 

In this paper, the proposed method is compared with 

Scale-Invariant Feature Transform (SIFT) [14], Genetic 

Algorithm (GA) [15], and Geometric-matching CNN  [6]. 

The parameters of the GA were determined based on 

Ref.  [15] and the number of generations was set to 200. 

The proposed method used gradient descent for 50 

iterations on each test pair. Table IV shows the 

experimental results of registration on synthetic data. 

However, SIFT lacked the feature points necessary to 

calculate the rigid transformation parameters in the four 
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image pairs. The proposed method achieved a Dice score 

of 99.04%. Fig. 6 also shows an example of result images. 

Fig. 6(c) to (d) are composites of the target image in red 

and the aligned image in green, with the area where both 

overlap represented in yellow. 

TABLE IV. RESULTS ON SYNTHETIC DATA (GM CNN SHOWS 

GEOMETRIC-MATCHING CNN) 

Method TP (%) FP (%) Dice (%) 

SIFT 95.17 4.86 95.15 

GA [15] 95.59 4.52 95.54 
GM CNN [6] 93.66 6.39 93.64 

Ours 99.08 1.00 99.04 

 

  
(a) Target (b) Source 

  
(c) SIFT (d) Genetic algorithm 

  

(e) Geometric-matching CNN (f) Ours 

Fig. 6. Example of result image on synthetic data. 

D. Results on Synthetic Data with Pseudo Lesions 

Bone erosions and deformities due to rheumatoid 

arthritis may be present in the actual phalangeal region 

image pairs. Therefore, we created pseudo-lesion images 

with 1%, 3%, and 5% of the phalangeal region missing. 

Table V shows the experimental results on synthetic data 

with pseudo lesions in the proposed method.  

TABLE V. RESULTS ON SYNTHETIC DATA WITH PSEUDO LESIONS 

Missing rate (%) TP (%) FP (%) 

1 99.15 1.79 
3 99.11 3.78 

5 99.07 5.90 

 

For images with missing regions, the closer the FP is to 

the missing rate, indicates a better result. Examples of the 

results images at each missing rates are shown in Fig. 7 to 

Fig. 9. It can be seen that 1%, 3%, and 5% of missing rates 

of source images are correctly represented in all overlay 

images. 

 

   
(a) Target (b) Source (c) Overlay 

Fig. 7. Example with 1% missing rate. 

   
(a) Target (b) Source (c) Overlay 

Fig. 8. Example with 3% missing rate. 

   
(a) Target (b) Source (c) Overlay 

Fig. 9. Example with 5% missing rate. 

  
(a) Past image (b) Current image 

  

(c) SIFT (d) Genetic algorithm 

  
(e) Geometric-matching CNN (f) Ours 

Fig. 10. Example of result image on real data. 

E. Results on Real Data 

Real data consisting of past and current images of the 

same subject were used to evaluate the registration 

accuracy. In this paper, 144 pairs of phalangeal region 

images were created by extracting the media and proximal 

phalanges from hand CR images of 9 cases. The 

comparison method is the same as in the experiment on 

synthetic data. Table VI shows the experimental results on 
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real data. However, SIFT lacked the feature points 

necessary to calculate the rigid transformation parameters 

in the one image pairs. The proposed method achieved a 

Dice score of 97.98%. Fig. 10 also shows an example of 

result images. 

TABLE VI. RESULTS ON REAL DATA 

Method TP (%) FP (%) Dice (%) 

SIFT 89.46 9.73 89.82 

GA [15] 94.93 4.34 95.27 

GM CNN [6] 93.58 5.58 93.96 
Ours 97.61 1.61 97.98 

 

F. Running Time 

The runtime required for each method to align a pair of 

images is shown in Table VI. Although the SIFT and GA 

methods can be implemented on GPUs, they are not 

implementation in the library used in this experiment and 

the programs and algorithms need to be improved. The 

number of generations in GA is 200 and the number of 

instance-specific optimization in the proposed method is 

50 iterations. Table VII shows the comparison of the 

running time. Proposed method has increased processing 

times on CPU compared to SIFT and GM CNN, however 

has faster than GA. Also, the use of GPU provides 

sufficient processing time. 

TABLE VII. COMPARISON OF RUNNING TIME 

Method CPU (s) GPU (s) 

SIFT 0.031 - 
GA [15] 16.33 - 

GM CNN [6] 0.238 0.011 

Ours 12.48 0.633 

 

G. Subtraction Image 

We generated subtraction images by aligning the real 

data with the proposed method. Fig. 11 shows an example 

of subtraction images. The subtraction image shows a 

tinted shadow in the phalangeal region, indicating that the 

temporal changes between the past and current images can 

be visualized. 

 

                     
(a) Past image                             (b) Current image 

                     
(c) Subtraction                          (d) Highlighting image 

Fig. 11. Example of subtraction image. 

H. Discussion 

Compared to U-Net, our proposed U-ConvNeXt has 

0.09% lower accuracy, but 38% less memory usage, 2.2 

times faster training speed, and 1.4 times faster prediction 

speed. Therefore, U-ConvNeXt has a better tradeoff 

between accuracy and computational complexity.  

In registration, the proposed method achieved the 

highest accuracy on synthetic and real data by applying 

instance-specific optimization. In addition, the proposed 

method performs fast initial alignment by CNN before 

iterative process by instance-specific optimization, so the 

run time per image pair is as fast as about 0.6 s on a GPU. 

The evaluation using synthetic data with pseudo lesions 

shows that the proposed method performs well in each 

missing ratio, indicating that the proposed method is 

effective even in real images with bone deformities such 

as bone erosion. The accuracy of the real data for the 

proposed method was lower than that of the synthetic data. 

This may be because of bone deformation or segmentation 

accuracy. Therefore, further improvement in segmentation 

accuracy is needed. 

IV. CONCLUSION 

In this paper, we proposed a U-ConvNeXt for automatic 

extraction of phalangeal regions and image registration 

method based on Geometric-matching CNN for detection 

of temporal changes which is obtained difference time 

series. 

The temporal changes were visualized on the 

subtraction images generated by the proposed method. 

This result indicates that the temporal subtraction images 

generated by the proposed method may be useful in the 

diagnosis and evaluation of rheumatoid arthritis. 

As a future work, it is necessary to verify the 

effectiveness of the proposed method as a diagnostic 

support system by applying it to a large number of 

rheumatoid arthritis cases. Furthermore, state-of-the-art 

deep learning-based medical image segmentation 

techniques  and non-rigid image registration methods have 

been proposed. We will be improved to further increase 

accuracy of the segmentation. 
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