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Abstract—Feature engineering can be time-consuming and 

challenging, requiring expertise in Natural Language 

Processing (NLP) techniques and methods. The objective of 

this study was to explore the use of contextual word 

embeddings, specifically Bidirectional Encoder 

Representations from Transformers (BERT)-generated 

word embeddings, for biomedical relation extraction. The 

study utilized machine learning models, including Support 

Vector Machines, Random Forests, and K-nearest neighbor 

algorithms, to classify relationships between medical entities 

based on these embeddings. The attention mechanism of a 

pre-trained BERT model was also used to capture 

information related to the relationship between medical 

entities, leading to more advanced biomedical relation 

extraction. The performance of the machine learning 

classifiers was evaluated as classification models. The 

proposed approach outperformed the most recent state-of-

the-art model on two publicly available biomedical relation 

extraction datasets Chemical-Protein Interactions 

(ChemProt) and Drug-Drug Interactions (DDI), indicating 

that traditional machine-learning techniques can compete 

with recent advancements. Experiments on the ChemProt 

dataset show that the performance of the proposed model’s 

F1-Score is 0.778 and on the DDI dataset, F1-Score is 0.815. 

This study has demonstrated the potential for using 

contextual word embeddings and machine learning models 

for biomedical relation extraction, without the need for 

extensive manual feature engineering. 

Keywords—Bidirectional Encoder Representations from 

Transformers (BERT), hemical-Protein Interactions 

(ChemProt), Drug-Drug Interactions (DDI), K-Nearest 

  

random forest, relation extraction, Support Vector Machine 

(SVM) 

I. INTRODUCTION

Downstream applications in precision medicine greatly 

benefit from a comprehensive and accurate knowledge 

base. However, as the volume of biomedical literature 

expands rapidly, the disparity between curated 

information in existing knowledge bases and the available 

literature widens daily. Manual curation techniques, 

while still used to ensure data integrity, are expensive and 

impractical at scale. To expedite the curation process, an 

automated text mining-based method for relation 

extraction can extract relation candidates and present 

them to human curators for verification [1]. 

In biomedical relation extraction, the manual 

annotation of chemical and protein/gene entity mentions 

plays a crucial role in identifying and understanding 

relationships between these entities in textual data. The 

process involves human annotators carefully reading 

through the text and identifying specific mentions of 

chemicals, proteins, and genes. Annotating chemical 

entities involves identifying and marking the names of 

various chemical compounds, molecules, or substances 

mentioned in the text. This requires annotators to have a 

good understanding of chemical nomenclature and 

terminology. They need to recognize not only common 

chemical names but also synonyms, abbreviations, and 

variations in spelling or formatting. 

On the other hand, annotating protein and gene entities 

involves identifying and marking the names of proteins 

and genes mentioned in the text. This requires annotators 

to be familiar with biological terminology, gene and 

protein names, and their various aliases. They need to 

recognize different naming conventions, such as official 

gene symbols, gene names, or protein names, as well as 

any variations or synonyms that might be used. 

The manual annotation process typically involves 

annotators highlighting the relevant entity mentioned in 

the text and associating them with specific entity types, 

such as chemical, protein, or gene labels. Annotators 

must follow specific annotation guidelines provided by 

the project organizers to ensure consistency and accuracy 

across the annotations. After annotation, these labeled 

entity mentions serve as the foundation for training 

machine learning models that can automatically identify 

and extract chemical-protein/gene relationships from new, 

unseen text. The annotated data is used to create a labeled 

dataset for supervised learning, where the models learn Manuscript received November 19, 2023; revised February 19, 2024; 

accepted March 14, 2024; published June 13, 2024. 

Journal of Advances in Information Technology, Vol. 15, No. 6, 2024

723doi: 10.12720/jait.15.6.723-734

Neighbor  (KNN), Natural Language Processing (NLP), 

mailto:nesma.abdelaziz@must.edu.eg
mailto:raa00@fayoum.edu.eg
mailto:dina.almahdy@must.edu.eg


 

from the annotated examples to generalize and predict 

relationships in new text. 

Natural Language Processing (NLP) primarily focuses 

on automatic techniques for extracting essential 

information from unstructured text. Relation Extraction 

(RE) is a prominent NLP task used to identify and 

classify relationships between entities of interest. 

Biomedical relation extraction, a critical task in NLP, 

involves identifying complex relationships between 

entities in biomedical texts. For instance, extracting drug-

drug interaction relationships or determining the proteins 

affected by specific chemicals can aid precision medicine, 

as demonstrated by ChemProt relation extraction. The 

relationships between entities such as genes, proteins, 

drugs, and diseases are context-dependent, necessitating a 

deep understanding of word meanings within specific 

contexts [2]. These entities exhibit diverse relationships 

depending on the context in which they appear. For 

example, the relationship between the gene “BRCA1” 

and the disease “breast cancer” may differ when 

discussed in the context of prevention versus treatment. 

Traditional methods for relation extraction relied on 

manual feature engineering and rule-based approaches, 

which were time-consuming, labor-intensive, and 

required domain-specific knowledge (see Fig. 1). 

 

 

Fig. 1. Graphical abstract. 

Most modern neural networks utilize word embeddings 

as their input layer. Word embeddings automatically 

capture semantic relationships between words and 

generate dense, low-dimensional vector representations 

that serve as inputs for machine learning models. Several 

word embedding methods, such as Word2Vec [3] and 

GloVe [4], have been proposed in the past decade. While 

these methods employ different architectures, they all 

train word embeddings based on word co-occurrence. 

Word2Vec predicts the current word given its context 

(Continuous Bag-Of-Words or Skip-Gram models), while 

GloVe leverages statistical information from a word-

word co-occurrence matrix to consider local and global 

features of the corpus [5]. However, these word 

embeddings provide context-independent representations 

for words, resulting in two limitations [6]. First, word 

vectors from Word2Vec are static and fail to capture the 

various meanings of polysemous words accurately. 

Second, the feature extraction capability of the neural 

network employed affects the accuracy of relation 

extraction. 

The limitation of context-free language representation 

lies in its inability to differentiate between words with 

distinct meanings. For example, a word like “bat” would 

have the same representation, regardless of whether it 

refers to a cricket bat or an animal. However, contextual 

models address this issue by providing a representation 

for each token based on the surrounding sentence, 

enabling a more comprehensive understanding of 

language by machines. The Bidirectional Encoder 

Representations from Transformers (BERT) model 

specifically excels in generating contextual 

representations for individual tokens, and it can even 

capture the context of entire sentences, sentence pairs, or 

paragraphs. This contextual awareness enhances the 

ability of the model to grasp nuanced meanings and 

relationships within the text, leading to more accurate and 

nuanced language understanding. While both Word2Vec 

and BERT aim to represent words as numerical vectors, 

they differ significantly in their underlying 

methodologies and resulting embeddings [7]. 

Word2Vec models produce context-independent 

embeddings, meaning each word has a single vector 

representation regardless of its different senses. In 

contrast, BERT embeddings are context-dependent, 

allowing multiple vector representations for the same 

word based on its contextual usage. Additionally, 

Word2Vec embeddings do not consider word position, 

whereas BERT explicitly incorporates word position 

information when calculating embeddings. 

Word2Vec pre-trained embeddings can be directly 

utilized without the need for the model itself. These 

embeddings are available as a mapping between words 

and vectors. Conversely, BERT requires the trained 

model to generate contextual embeddings. The input to 

BERT is a sentence rather than a single word, as the 

model needs surrounding context to generate word 

vectors. The output of BERT is a fixed-length vector 

representation for the entire input sentence. 

Recently, pre-trained language representation models 

such as Elmo [8] and BERT [9] have demonstrated their 

effectiveness in improving NLP tasks. Pre-training 

techniques like the Masked Language Model (MLM) and 

Next Sentence Prediction (NSP) allow these models to 
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extract semantic information from large amounts of 

unlabeled text. Unlike word embeddings, BERT is a 

contextualized neural embedding model that uses the 

contextual connections between words or sub-words to 

train embeddings. The input, a list of words, undergoes 

embedding into vectors (Input Embeddings), which are 

then processed by the Transformer Encoder [10]. The 

output consists of feature embeddings that represent the 

local context of corresponding words in the document. 

BERT-based models for biomedical relation extraction 

have shown excellent performance, achieving state-of-

the-art results on various biomedical datasets [11−14]. 

However, BERT models require substantial 

computational resources and can be time-consuming. 

Processing data in parallel with multiple computer 

resources can handle more text, but accessing powerful 

GPUs or distributed computing environments is not 

always feasible. Consequently, there is a need for more 

precise and lightweight relation extraction models. 

By combining machine learning classifiers with 

contextual embeddings, the accuracy of biomedical 

relation extraction can significantly improve. This 

approach enables models to capture the context-specific 

meanings of words and entities in text, leading to state-

of-the-art performance in identifying drug-disease 

relationships, protein-protein interactions, and other 

entity relationships in biomedical texts. To address the 

aforementioned challenges, this paper proposes a novel 

method that leverages pre-trained transformer 

architectures specifically for generating input text 

embeddings. Unlike previous work, which employed the 

entire architecture, this approach focuses solely on 

embedding extraction. By doing so, it avoids the 

computational overhead associated with large parameter 

sets and time-consuming computations of transformers. 

Traditional machine learning classifiers, such as Support 

Vector Machines (SVM), K-Nearest Neighbor (KNN), 

and Random Forest (RF), are utilized for classification 

purposes. The proposed model’s performance is 

evaluated on two datasets: Chemical-Protein Interactions 

(ChemProt) and Drug-Drug Interactions (DDI). By 

combining transformer-based embeddings with 

traditional machine learning classifiers, the aim is to 

create a lightweight yet accurate model for biomedical 

relation extraction. This approach offers a more efficient 

alternative to full-scale BERT models, enabling faster 

inference and broader accessibility in resource-limited 

scenarios. The proposed approach offers a more efficient 

alternative to the full-scale BERT model, enabling faster 

inference and broader accessibility in resource-limited 

scenarios.  

Traditional Machine Learning (ML) and Deep 

Learning (DL) algorithms have found extensive 

applications across various sectors, leveraging the power 

of data-driven analysis to make predictions, gain insights, 

and automate processes. 

In the healthcare sector, ML/DL algorithms have been 

employed for medical image analysis, enabling the 

detection and diagnosis of diseases such as cancer, 

cardiovascular conditions, and neurological disorders. 

They have also been used for clinical decision support 

systems, helping healthcare professionals with treatment 

recommendations and patient risk assessment [15−17]. 

In the finance industry, ML/DL algorithms have been 

utilized for credit scoring, fraud detection, and 

algorithmic trading. These algorithms can analyze large 

volumes of financial data, identify patterns, and make 

accurate predictions about creditworthiness or detect 

suspicious transactions that may indicate fraudulent 

activity [18−20]. 

ML/DL algorithms have also found applications in the 

transportation sector, such as in traffic prediction, route 

optimization, and autonomous vehicles. By analyzing 

historical traffic data and real-time information, these 

algorithms can predict traffic patterns, suggest optimal 

routes, and enable autonomous vehicles to navigate  

safely [21, 22]. 

In the energy sector, ML/DL algorithms have been 

employed for energy demand forecasting, renewable 

energy optimization, and predictive maintenance of 

energy infrastructure. These algorithms can analyze 

historical energy consumption data, weather patterns, and 

operational parameters to make accurate predictions and 

optimize energy generation and distribution [23, 24]. 

Overall, traditional ML/DL algorithms have 

demonstrated their versatility and effectiveness across 

various sectors, enabling data-driven decision-making, 

process automation, and improved efficiency and 

accuracy in numerous applications. 

The proposed research contributions can be described 

as follows:  

• Innovative Use of Pre-trained Transformers: This 

paper introduces a novel technique that harnesses the 

capability of pre-trained transformer architectures, 

specifically to generate text input embeddings. 

Unlike previous studies, the proposed work focuses 

solely on embedding extraction, presenting an 

inventive application of transformer models in 

natural language processing. 

• Computational Efficiency: The proposed method 

successfully mitigates the computationally intensive 

procedures associated with transformer models. By 

not employing the entire architecture, the proposed 

approach circumvents the massive parameter sets and 

computationally expensive processes typical of 

transformers, marking a significant step towards 

more resource-efficient models. 

• Employment of Traditional Machine Learning 

Classifiers: We integrate established machine 

learning classifiers for classification needs. This 

integration of well-known classifiers such as SVM, 

KNN, and RF for multiclass classification, combined 

with modern transformer-based techniques, exhibits 

a unique blend of classic and contemporary 

methodologies. 

• Broad Application and Testing: The performance of 

the proposed model has been rigorously evaluated on 

two distinct datasets−ChemProt and DDI. This 

comprehensive testing further underscores the 
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versatility and adaptability of the proposed 

methodology. 

• Lightweight and Accurate Model: The primary 

objective is to amalgamate the benefits of 

transformer-based embeddings and traditional 

machine learning classifiers to create a lightweight 

yet precision-driven model for biomedical relation 

extraction. The creation of such a model can 

significantly advance biomedical research and 

applications. 

• Resource-Limited Accessibility: The proposed 

technique presents a more efficient alternative to 

full-scale BERT models, enabling quicker inference 

times and broader accessibility. This factor is 

particularly impactful in resource-limited scenarios, 

pushing the boundaries of what’s possible in such 

environments and thereby contributing to the 

democratization of machine learning applications. 

The structure of the remaining sections of this paper 

is as follows: Section II provides a review of research 

papers relevant to this study. Section III outlines the 

design details of the proposed method, including 

implementation details and experimental settings. 

Subsequently, Section IV presents the evaluation results 

and discusses their implications. Finally, the conclusion 

of the findings is in Section V. 

II. LITERATURE REVIEW 

Since pre-trained language models, deep learning 

techniques, and high-quality word representation (word 

embedding) have shown performance improvement, 

extracting various relations in the Biomedical Natural 

Language Processing (BioNLP) domain has received 

considerable interest. 

Zhu et al. [25] employed drug descriptions from 

Wikipedia and DrugBank to augment the BERT model 

with semantic knowledge about drug entities. They 

utilized three types of entity-aware attention to generate 

sentence representations that incorporated entity 

information, mutual drug entity information, and drug 

entity information. The mutual information vector of two 

drug entities was computed by taking the difference 

between the BERT embeddings of the two drugs. To 

obtain drug description information, all drug description 

documents were processed by a Doc2Vec model to obtain 

vector representations for each drug entity in the 2013 

DDI corpus. The resulting vectors for entity information 

were then fed into attention layers to retrieve sentence 

representation vectors that integrated multiple aspects of 

entity information. 

Peng et al. [26] developed pre-trained BERT models 

specifically for biomedical literature, demonstrating their 

superior performance compared to other pre-trained 

language models on specific biomedical datasets. Another 

notable pre-trained BERT model, BioBERT was trained 

on large-scale biomedical corpora [27]. Li and Ji [28] 

incorporated GCNN into a BioBERT-based model to 

integrate dependency structure information. Su and 

Shanker [29] enhanced BioBERT by adding attention 

mechanisms in the final layer, leading to the best results 

on three biomedical extraction datasets. The attention 

layer outperformed LSTM in capturing important 

information from the last hidden state vectors. 

Asada et al. [30] investigated how including diverse 

drug-related information affects DDI extraction and 

obtained an F-Score of 85.40, which they regarded as 

state-of-the-art performance. To construct their approach, 

they created embedding vectors for a Heterogeneous 

Knowledge Graph (HKG) of drugs by performing a link 

prediction task that predicts an entity in the PharmaHKG 

dataset. When processing the input sentence S, they used 

the BERT tokenizer to tokenize it into sub-word tokens 

and then added KG vectors of two drugs to extend it. 

Wang et al. [31] proposed a BERT-based DDIs 

detection model and achieved a state-of-the-art result 

using evidence of supplement-drug interactions from 

scientific text. Mehryary et al. [32] combined a Support 

Vector Machine (SVM) and Long Short-Term Memory 

(LSTM) to extract Chemical–Protein Interactions (CPIs) 

and achieved a high F-Score by a rich set of features. 

Warikoo et al. [33] exploited a set of linguistic features to 

train a tree kernel classifier to obtain CPIs from 

biomedical literature.  

Generally, the above-mentioned previous methods 

depend heavily on feature engineering. Deep learning-

based methods are another promising way to extract CPIs 

from biomedical literature. Because of their ability to 

automatically learn semantic and syntactic information, 

these methods no longer need to build sophisticated 

feature engineering or elaborate kernel functions and 

exhibit more excellent performance. For example,  

Peng et al. [34] proposed an ensemble method to 

combine three model predictions including Support 

Vector Machines (SVMs), Convolutional Neural 

Networks (CNNs), and Recurrent Neural Networks 

(RNNs) [35]. Lu et al. [36] proposed an RNN-based 

model integrating a granular attention mechanism to 

extract CPIs. Zhang et al. [37] proposed an RNN-based 

model that combines deep contextualized word 

representations [38] and the multi-head attention 

mechanism [10] for CPI extraction. Lee et al. [27] 

exploited large-scale biomedical corpora to pre-train 

Bidirectional Encoder Representations from 

Transformers (BERT) and classified Chemical-Protein 

Relation (CPR) types using BioBERT. Overall, deep 

learning-based methods perform better than traditional 

machine learning-based methods. 

Lung et al. [39] extracted a diverse set of features from 

sentences to build multiple machine-learning models. 

Similarly, Corbett and Boyle [40] proposed a two-stage 

approach containing pre-trained LSTM and Bi-LSTM to 

extract CPIs. They utilized unlabeled data to pre-train 

word embedding and LSTM in the neural network.  

Verga et al. [41] used an efficient self-attention encoder 

to form pairwise predictions over entire paper abstracts. 

Liu et al. [42] synthesized GRU and attention pooling. 

Their experimental results show that the attention 

mechanism is effective in selecting important words. 

Peng et al. [34] applied Majority vote or stacking to 

combine the outputs of SVM, CNN, and RNN models. 
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Furthermore, Zhang et al. [37] used contextualized word 

representations and multi-head attention to learn the 

presentation for CPIs. They achieved a more competitive 

result. 

During the evaluation of the ChemProt and DDI 

datasets, we observed a significant data imbalance that 

affected the performance of the model on the 

classification task [30, 43, 44]. This issue was present in 

both the training and test sets and can be attributed to the 

uneven distribution of classes in these datasets. The 

majority of previous research in this area did not focus on 

addressing this problem, with some approaches excluding 

negative classes from their classification or manually 

filtering negative samples that were larger than positive 

samples [45−47]. However, such methods can result in 

biased models that are not effective in predicting the 

minority class. First, merely looking at the positive vs. 

negative classes, only 17.5% of the drug-drug pairs in the 

DDI dataset and 33.8% of the chem-port pairs are in a 

positive class, which includes interaction between 

medical entities. This significant class imbalance can lead 

to a classifier that is biased towards the majority class(es), 

resulting in poor performance of the minority class. 

Therefore, to deal with this, we used a two-stage 

classification strategy that will be described in Section III. 

III. MATERIALS AND METHODS 

This research paper aims to enhance relation extraction 

in biomedical texts by combining contextual embedding 

with machine learning classifiers. By utilizing contextual 

embedding, the paper proposes a method to generate 

word embeddings that capture the contextual meaning of 

words and entities, enabling more accurate identification 

of complex entity relationships. Integration with machine 

learning classifiers such as support vector machines, 

random forest, and K Nearest Neighbor allows these 

models to achieve state-of-the-art performance in 

identifying entity relationships in biomedical texts.  

This approach eliminates the need for manual feature 

engineering and provides a flexible and adaptable 

solution for relation extraction. Language models like 

BERT have the advantage of automatically learning 

representations from the text data itself. This allows them 

to capture both shallow and deep linguistic features, 

including contextual information, semantics, and 

syntactic structures. As a result, language models can 

often outperform traditional machine learning classifiers 

on certain natural language processing tasks, especially 

when large amounts of labeled data are available for 

pretraining and fine-tuning. 

The proposed system follows a sequential pipeline, as 

depicted in Fig. 1, with several key steps. Initially, the 

input text undergoes pre-processing tasks like sentence 

segmentation, sentence tokenization, entity extraction, 

and masking with predefined tags to standardize the text.  

In the feature extraction stage, the BERT architecture, 

specifically BERT, is employed to extract features and 

generate embeddings. BERT is chosen for its ability to 

capture contextualized embeddings that are challenging 

for traditional machine learning classifiers to extract. By 

leveraging BERT, the classifiers’ performance is 

enhanced by incorporating high-quality contextual 

features. Notably, the embeddings are computed directly 

without requiring fine-tuning of the BERT model. The 

final step in the pipeline is the classification stage, where 

class imbalance is addressed through binary classification. 

The samples are classified into positive and negative 

classes to balance the distribution, and only the positively 

predicted samples proceed to the next stage. In the 

subsequent phase, multi-class classification is performed 

using SVM, KNN, and Random Forest classifiers. This 

enables evaluation and comparison of the system’s 

performance across different classifiers, facilitating the 

selection of the most suitable classifier for relation 

extraction in biomedical texts. An Algorithm for the 

methodology described in the research paper is shown in 

Fig. 2. 
 

 

Fig. 2. Relational class extraction framework. 

A. Preprocessing 

By following this approach, we achieve a 

comprehensive and effective methodology for relation 

extraction, encompassing pre-processing, feature 

extraction with BERT, and classification using multiple 

classifiers. This framework enables us to accurately 

classify relations in biomedical texts and assess the 

performance of different classifiers, facilitating informed 

decision-making for relation extraction tasks.  

The proposed system’s first step is the pre-processing 

stage, which involves reducing noise in the text and 

converting it into units that can be used for vectorization. 

The pre-processing stage includes sentence splitting to 
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analyze text at the sentence level, tokenization to break 

sentences into individual words or subwords, and stop 

word removal to improve text analysis efficiency. To 

perform Named Entity  

Recognition (NER) in the biomedical domain, the 

scispaCy library [48] was utilized. This library is 

specifically designed for scientific, biomedical, and 

clinical text data. To facilitate relation extraction, we 

replaced the two named entity mentions of interest in the 

sentence with predefined tags such as @GENE$, 

@CHEMICAL$, @PROTEIN$, and @DRUG$. This 

standard pre-processing method enables the identification 

of chemical-gene relations.  

In the example provided, the original sentence 

“Tomudex treatment increased Cyclin E” has been 

transformed using this pre-processing method. The 

chemical entity “Tomudex” and the gene entity “Cyclin 

E” have been replaced with the tags @CHEMICAL$ and 

@GENE$, respectively. The resulting sentence is 

“@CHEMICAL$ treatment resulted in an increase 

@GENE$”. This pre-processed sentence can then be used 

to identify the chemical-gene relation between Tomudex 

and Cyclin E, which is that Tomudex treatment increases 

Cyclin E. By standardizing the pre-processing of text data 

using predefined tags, relation extraction and other NLP 

tasks become more efficient and accurate. This is because 

the tags provide a consistent and predictable format for 

the input data, making it easier for machine learning 

algorithms and other NLP tools to work with the data (see 

Fig. 3). 

 

 

Fig. 3. Algorithm for the methodology. 

B. Feature Extraction 

After preprocessing the data, the subsequent step 

involves converting the tokens into features, resulting in a 

mathematical vector representation. This vector 

representation serves as input to the machine learning 

classifiers. BERT, a pre-trained deep learning model, 

utilizes a transformer architecture to encode the meaning 

of words within a sentence. In generating word 

embeddings, we employed BERT Base uncased [27], 

which allowed us to calculate the input vectors without 

fine-tuning directly. The extraction of BERT’s 

embeddings was carried out on Google Colab with TPU 

(v2−8) acceleration. The process of creating word 

embeddings with BERT entails tokenizing the input text 

into individual words or subwords using the BERT 

tokenizer. Subsequently, the tokenized input is passed 

through the BERT model, resulting in a sequence of 

hidden states. These hidden states can be employed to 

generate word embeddings for each word in the input text 

by multiplying the hidden states with a learned weight 

matrix.  

To generate word embeddings using BERT, the input 

text needs to be tokenized using WordPress. Additionally, 

Special Tokens Like (CLS) and Separator are added to 

denote the beginning and end of sentences and to 

differentiate between different segments of text. BERT 

also requires fixed-length input sequences, which may 

involve padding or truncation of the input text. 

The BERT tokenizer operates in several steps to 

process the input text. Initially, the text undergoes basic 

tokenization, where it is divided into tokens based on 

simple rules. Punctuation marks become individual 

tokens, while words are split by whitespace. 

Subsequently, the basic tokens are further broken down 

into subword units using the WordPiece algorithm. This 

algorithm constructs a vocabulary of commonly 

occurring subwords from a large corpus, encompassing 

complete words and subwords. The tokenizer then 

searches for each basic token or subword in the 

vocabulary. Tokens found in the vocabulary remain 

Journal of Advances in Information Technology, Vol. 15, No. 6, 2024

728



 

unchanged, while those absent are recursively divided 

into smaller subwords until they match vocabulary entries. 

For instance, “unhappiness” may be split into “un”, 

“##hap”, and “##piness,” where “##” denotes subwords 

that are not standalone words. 

Special tokens, such as CLS and SEP, are essential for 

BERT to mark sentence beginnings, endings, and 

segment distinctions in multiple sentences. These tokens 

are added accordingly to the tokenized input. BERT 

employs segment IDs to differentiate between sentences 

in the input. For tasks involving a single sentence, all 

tokens receive the same segment ID. However, when 

multiple sentences are present, segment IDs are assigned 

to distinguish between them. To ensure consistent input 

length, the tokenizer may apply padding or truncation to 

the tokenized sequence. Padding involves adding special 

tokens like a token named “PAD” to make all sequences 

equal in length, while truncation involves removing 

tokens to satisfy a specified maximum length. 

Once these steps are completed, the input text is 

transformed into a sequence of tokens, encompassing 

special tokens and potentially subwords. This tokenized 

sequence can then be fed into the BERT model to 

generate word embeddings or perform various natural 

language processing tasks. Finally, the input text needs to 

be converted into numerical embeddings to be used as 

input for the classification model. By incorporating these 

additional preprocessing steps, the input text can be 

appropriately formatted for BERT, enabling effective 

feature extraction and embedding generation from the 

text. 

BERT word embeddings offer the advantage of 

contextual awareness, meaning that the embedding of a 

word can vary depending on its specific context. In 

contrast, many other word embedding methods generate a 

fixed embedding for each word, regardless of context. 

C. Classification  

For performing the classification step, In the first stage, 

we trained a binary SVM classifier to classify samples of 

both datasets into positive and negative classes. Then, in 

the second stage, we considered only instances that were 

classified as positive by the first classifier, and classified 

them into one of the multi-classes, using a multi-class 

classifier. A group of machine learning classifiers is used, 

and the classifiers used to categorize the labels in the 

dataset were imported from the sci-kit-learn  

packages [49].  

1) Binary classification 

Class imbalance is a common issue in machine 

learning where one class has a significantly larger 

number of samples than the other. This can lead to biased 

classifiers that perform better in the majority class and 

worse in the minority class. It was observed that 

ChemProt and DDI [50] datasets suffer from class 

imbalance as shown in Fig. 4. Zhao et al. [51] created a 

more balanced dataset by eliminating surplus negative 

instances from the SemEval 2013 DDI Extraction dataset 

through the application of predefined rules. To tackle the 

significant data imbalance in the proposed study, we 

opted to employ a binary classifier to categorize samples 

into positive and negative classes before the 

implementation of the multiclass classifier. This approach 

eliminated the necessity of creating specific rules and 

effectively balanced the sample distribution between the 

two classes, potentially enhancing the performance of the 

multiclass classifier. While several classifiers were 

explored for binary classification, SVM yielded the best 

results. 

 

 

Fig. 4. ChemProt and DDI class imbalance. 

2) Multi-class classification  

Machine learning classifiers are essential for the 

second stage of the classification pipeline as they are used 

to perform multiclass classification. In this stage, the 

extracted embeddings from BERT are fed into the 

classifiers to enable the classification of the samples into 

their respective classes. To achieve this, we evaluated the 

performance of three popular classifiers: Support Vector 

Machines (SVM), K-Nearest Neighbor (KNN), and 

Random Forest. SVM is a powerful and widely used 

classifier that effectively handles high-dimensional data 

and is suitable for both linear and nonlinear classification 

problems. KNN is another popular classifier that is useful 

in identifying patterns in the dataset and classifying 

samples based on their proximity to other samples. 

Random Forest is an ensemble learning method that 

creates multiple decision trees and then aggregates their 

predictions to make a final decision. By exploring the 

performance of these three classifiers, we can identify the 

most suitable and accurate classifier for the given dataset 

and classification task. 

D. Hyperparameter Tunning 

Tables I and II display the parameters that were chosen 

for the classification process. The classifiers utilized to 

perform the classification of biomedical entities were 

imported from sci-kit-learn libraries. After conducting 

various experiments and testing multiple parameters 

using GridSearchCV, the optimal parameter values were 

determined to be the ones mentioned. 

TABLE I. PARAMETERS OF CHEMPROT DATASET FOR MULTICLASS 

CLASSIFICATION 

Model Parameters Selected Values 

Random 

Forest 

n_estimators 

Max_depth 

Min_samples_leaf 

Bootstrap 

Criterion 

20 

40 

1 

TRUE 

Gini 

SVM C 

Kernel 
10 

Poly 
KNN N_neighbours 20 
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TABLE II. PARAMETERS OF DDI DATASET FOR MULTICLASS 

CLASSIFICATION 

Model Parameters Selected Values 

Random 

Forest 

n_estimators 

Max_depth 

Min_samples_leaf 

Bootstrap 

Criterion 

10 

30 

4 

FALSE 

Gini 

SVM 
C 

Kernel 

10 

Poly 

KNN N_neighbours 20 

 

IV. RESULTS AND DISCUSSION 

This section aims to analyze the performance of the 

classifiers using test data. We outline the experimental 

setup and the evaluation metric.  

A. Dataset 

The evaluation of the proposed model is performed on 

two datasets, which are the ChemProt and DDI datasets. 

These datasets are specifically designed for Relation 

Extraction (RE) tasks. The ChemProt track corpus in 

BioCreative VI is used to annotate interactions and 

explore the recognition of chemical-protein relations 

from abstracts. The corpus contains directed relations 

from chemicals/drugs to genes/proteins, indicating how 

the chemical/drug interacts with the gene/protein. These 

chemical-protein relations, referred to as “CPR”, are 

classified into ten semantically related classes based on 

their underlying biological characteristics. For example, 

interactions that increase the activity or expression of a 

target gene or protein, such as “activator”, “indirect 

upregulation”, and “upregulation”, belong to the CPR:3 

group, while interactions that decrease the activity or 

expression of a target gene or protein, such as 

“downregulation”, “indirect downregulation”, and 

“inhibitor”, belong to the CPR:4 group. In this task, only 

relations belonging to CPR:3, CPR:4, CPR:5, CPR:6, and 

CPR:9 was considered for evaluation purposes, and both 

chemical and protein/gene entity mentions were manually 

annotated. Table III provides information on the statistics 

of the ChemProt corpus. 

In the DDIExtraction 2013 shared task, five types of 

interactions were annotated, and false pairs, which are 

drug pairs that do not interact. DDI corpus of the 2013 

DDI extraction challenge, which is made up of 175 

MEDLINE abstracts about DDIs and 730 Drug Bank data. 

The corpus is divided into two sets: a training set, which 

includes 572 Drug Bank documents and 142 MEDLINE 

abstracts, and a test set, which includes 158 Drug Bank 

documents and 33 MEDLINE abstracts.  

TABLE III. STATISTICS OF CHEMPROT CORPUS 

Dataset Classes Training Testing 

CPR:3 784 667 

CPR:4 2278 1667 

CPR:5 173 198 

CPR:6 235 293 

CPR:9 727 644 

False 11969 10540 

 

Each sentence has annotated lists of all the medications 

and drug pairs. The following four types of drug-drug 

interactions (DDIs) are identified among the drug pairs 

(33508): Advice, Effect, Mechanism, and Int. 

• When DDI’s pharmacokinetic mechanism is 

described, a mechanism is assigned. 

• When a DDI’s effect is described, an effect is 

assigned. 

• When a recommendation or piece of advice 

regarding a DDI is offered, advice is assigned. 

• When a DDI happens but the sentence doesn't 

give any further details about it, it is allocated. 

Table IV provides information on the statistics of the 

DDI corpus. 

TABLE IV. STATISTICS OF DDI CORPUS 

Dataset Classes Training Testing 

Advice 826 218 

Effect 1,687 356 

Mechanism 1,319 302 

Int 188 96 

false 15,842 4,782 

 

B. Dataset Evaluation 

In this section, we analyze the performance of the 

machine learning classifiers using test data on two 

benchmark datasets: ChemProt and DDI. The goal of this 

analysis is to evaluate the effectiveness of the proposed 

models for label categorization tasks on these datasets. To 

conduct the evaluation, we first trained the machine 

learning classifiers on the training data of each dataset. 

We then tested the classifiers on the test data and 

recorded their precision, recall, and F1-Score. We 

repeated this process for each classifier and each dataset. 

To address the issue of data imbalance in the datasets, we 

conducted binary classification experiments and 

compared the performance of several classifiers, Fig. 5. 

showed that SVM performed better than other tested 

classifiers. which shows the F1-Score of different 

classifiers’ performance on the two datasets ChemProt 

and DDI. 

 

 

Fig. 5. Binary classification on ChemProt and DDI datasets. 

Based on the experimental results presented in Figs. 6 

and 7, it is found that the SVM classifier outperformed 

the other classifiers in terms of precision, recall, and F1-

Score. To further evaluate the performance of the SVM 

classifier, we analyzed its performance on each class of 

the ChemProt and DDI datasets. The results of this 

analysis are presented in Tables V and VI, which show 
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the precision, recall, and F1-Score of the SVM classifier 

for each class. As expected, the SVM classifier yielded 

the best results among the classifiers for each class, 

demonstrating its effectiveness for label categorization 

tasks. 
 

 

Fig. 6. Chemprot dataset evaluation. 

 

Fig. 7. DDI dataset evaluation. 

TABLE V. SVM PERFORMANCE ON EACH CLASS FOR CHEMPROT 

DATASET 

Classes Precision Recall F1-Score Support 

CPR:3 0.749 0.747 0.748 665 

CPR:4 0.653 0.677 0.660 1661 

CPR:5 0.733 0.806 0.768 195 

CPR:6 0.825 0.835 0.830 293 

CPR:9 0.850 0.789 0.819 644 

Weighted Avg 0.768 0.774 0.778 3458 

TABLE VI. SVM PERFORMANCE ON EACH CLASS FOR DDI DATASET 

Classes Precision Recall F1-Score Support 

Advice 0.842 0.854 0.848 235 

Effect 0.770 0.872 0.818 360 

INT 0.847 0.462 0.605 95 

Mech 0.862 0.843 0.853 303 

Weighted Avg 0.822 0.819 0.815 993 

 

Fig. 8 shows that the confusion matrix of the SVC 

model is performing very well in the CPR:4 class. 

However, the model is making more mistakes in the other 

classes. For example, the model sometimes predicts that 

samples belong to the class CPR:5 when their true label is 

CPR:3 or CPR:6. The model makes more mistakes in the 

CPR:3 and CPR:5 classes than in the other classes. This 

could be due to several factors, such as the classes being 

more similar to each other or the model having less 

training data for these classes. 

In Fig. 9 the confusion matrix shows that the SVC 

model is performing well overall, with an accuracy of 

95%. However, there are some areas where the model is 

making mistakes. For example, the model sometimes 

predicts that samples belong to the class DDI-advise 

when their true label is DDI-effect or DDI-int. The model 

is performing very well in the DDI-effect and DDI-

mechanism classes. This could be due to the classes being 

very distinct from the other classes or the model having a 

lot of training data for these classes. 

 

 

Fig. 8. Confusion matrix of SVM model on ChemProt dataset. 

 

Fig. 9. Confusion matrix of SVM model on DDI dataset. 

C. Comparison with Previous State-of-the-Art Models 

Table VII presents a comprehensive comparison of the 

performance of the proposed model with previous 

systems regarding Drug-Drug Interaction (DDI) and 

chemical-protein (ChemProt) relation extraction. The 

table provides an overview of how the proposed model 

performs in comparison to the existing systems in this 

field. It allows us to compare it with different models and 

systems in terms of various metrics such as precision, 

recall, F1-Score, and others.  

TABLE VII. COMPARISON WITH PREVIOUS SOTA MODELS 

Method 
Chemprot 

F1-Score 
Method 

DDI 

F1-Score 

Peng et al. [34] 64.10 Liu et al. [52] 73.7 

Corbet and Boyle [40] 62.58 Sahu and Anand [53] 68.6 

Verga et al. [41] 50.8 Zhang et al. [54] 72.9 

Biobert [27] 73.51 Luo et al. [55] 75.1 

Proposed Method 77.8 Proposed Method 81.5 
 

V. CONCLUSION 

In this paper, we propose a novel model for text 

classification in the biomedical domain. The proposed 
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model combines a pre-trained language model (BERT) 

with traditional machine learning classifiers. BERT is 

used to generate embeddings of the input text, which are 

then passed to the machine learning classifiers for 

classification. We observed that collecting, aggregating, 

and enhancing the essential elements of the input text that 

were mapped to word embeddings led to an increase in 

the accuracy of the classification task. This is because 

BERT can learn the semantic relationships between 

words in a corpus of biomedical text, which helps to 

improve the representation of the input text. Furthermore, 

after analyzing the two datasets there is a prevalent issue 

of class imbalance. Unlike previous approaches that 

involved manually curating the dataset by removing 

repeated relations or similar entity names, we opted to 

grant the classifier complete autonomy in filtering out 

negative sentences. This decision was based on the 

observation that allowing the classifier to make such 

determinations yielded improved performance compared 

to prior studies and outcomes. In addition to the 

aforementioned improvements, the proposed model offers 

several advantages. Firstly, it demonstrates enhanced 

efficiency compared to previous models that solely rely 

on BERT. Since machine learning classifiers are used 

solely for text classification, they do not need to learn the 

semantic relationships between words, leading to 

improved computational efficiency. Secondly, it exhibits 

greater flexibility compared to previous models that 

solely employ traditional machine learning classifiers. 

BioBERT’s ability to generate embeddings for any text, 

regardless of the domain, makes it adaptable to various 

contexts. Lastly, the model showcases increased 

robustness in comparison to previous models that solely 

utilize BERT. The machine learning classifiers serve as a 

means to compensate for any errors made by BERT, 

enhancing the overall resilience of the system. 

In summary, the proposed model introduces a novel 

approach to text classification in the biomedical domain, 

combining BERT’s language modeling capabilities with 

traditional machine learning classifiers. The 

improvements achieved, along with the discussed 

advantages, contribute to the advancement of text 

classification methodologies in the biomedical field. It 

plays a crucial role in biomedical literature analysis by 

categorizing and organizing scientific articles, enabling 

efficient navigation, and staying updated with 

advancements. This improves literature review processes, 

and decision-making, and facilitates the development of 

therapies and medical guidelines. In clinical decision 

support systems, text classification extracts valuable 

information from medical texts, aiding healthcare 

professionals in making informed decisions, enhancing 

patient care, and improving outcomes. It also assists in 

identifying adverse drug reactions and improving 

medication management and patient safety. 

Text classification is vital in drug discovery and 

pharmacovigilance, analyzing biomedical literature, 

clinical trial data, and adverse event reports. It identifies 

drug targets, predicts efficacy, and detects adverse 

reactions, accelerating drug discovery, improving safety 

monitoring, and enhancing pharmacovigilance efforts. In 

public health, text classification monitors disease 

outbreaks, detects emerging infectious diseases, and 

tracks public sentiments, aiding in early detection, 

response planning, and targeted interventions. 

Overall, text classification enhances literature analysis, 

supports clinical decision-making, accelerates drug 

discovery, improves pharmacovigilance, and aids in 

public health monitoring. Its application advances 

biomedical knowledge and improves patient care through 

valuable insights, increased efficiency, and informed 

decision-making. 

The proposed model has the potential to be used in a 

variety of biomedical applications, such as drug 

discovery, clinical decision support, and natural language 

processing. 

This paper presents a novel model for text 

classification in the biomedical domain. The model 

combines a pre-trained language model called BERT with 

traditional machine learning classifiers. BERT is used to 

generate word embeddings for the input text, which are 

then used by the machine learning classifiers for 

classification. The researchers found that by carefully 

collecting and enhancing the important elements of the 

input text, they were able to improve the accuracy of the 

classification task. BERT's ability to learn semantic 

relationships between words in biomedical text helps 

improve the representation of the input text. 

Furthermore, after analyzing the two datasets there is a 

prevalent issue of class imbalance. Unlike previous 

approaches that involved manually curating the dataset by 

removing repeated relations or similar entity names, we 

opted to grant the classifier complete autonomy in 

filtering out negative sentences. This decision was based 

on the observation that allowing the classifier to make 

such determinations yielded improved performance 

compared to prior studies and outcomes. The proposed 

model offers several advantages over previous models. 

Firstly, it is more computationally efficient since the 

machine learning classifiers only focus on text 

classification and don't need to learn semantic 

relationships between words. Secondly, it is more flexible 

as it can generate embeddings for any text, regardless of 

the domain. Lastly, the model is more robust as the 

machine learning classifiers help compensate for any 

errors made by BERT, improving the overall resilience of 

the system. 

In summary, this novel model combining BERT and 

machine learning classifiers improves text classification 

in the biomedical domain. It has various advantages and 

contributes to advancements in the field. Text 

classification plays a crucial role in biomedical literature 

analysis, clinical decision support, drug discovery, 

pharmacovigilance, and public health monitoring. The 

proposed model has the potential to be applied in several 

biomedical applications, such as drug discovery, clinical 

decision support, and natural language processing. 
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