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Abstract—The consequences of climate change are becoming 

increasingly urgent, with contrails emerging as a potential 

contributing factor to this phenomenon. Consequently, there 

is an urgent need for precise techniques to detect them in 

satellite imagery. This study uses deep learning models and 

band selection to improve contrails detection in geostationary 

satellite imagery, using the Landsat-8 dataset with human-

labeled contrails sourced from the GOES-16 Advanced 

Baseline Imager. By comparing different deep learning 

model methods such as DeepLabV3, U-Net, Fully 

Convolutional Network (FCN), Pyramid Scene Parsing 

Network (PSPNET2), ensemble deep learning, and different 

bands such as ash color scheme using Bands 11, 14, 15, and 

08, this study investigates their collective impact in improving 

contrail identification. Results found that the selected deep 

learning model significantly affected the detection process, 

but incorporating band 08 into the input channel did not 

significantly improve model performance. The most effective 

model was the FCN equipped with Band 08, with the lowest 

average loss during training (0.032591) and validation 

(0.013321). This research is expected to improve contrail 

detection in satellite imagery by using deep learning models 

and band selection to assist policymakers and researchers in 

developing strategies to reduce aviation climate impacts. 

 

Keywords—climate change, contrails, Fully Convolutional 

Network (FCN), DeepLab, deep learning model, satellite 
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I. INTRODUCTION 

Artificial cirrus clouds, often called contrails, are 

condensation trails that form behind airplanes as they pass 

through the upper atmosphere. These trails, while they 

may seem harmless, have a significant impact on global 

warming. In their contribution to global climate change, 

according to Intergovernmental Panel on Climate Change 

(IPCC) [1], contrails are thought to be responsible for 

about 35% of the total environmental impact stemming 

from aviation activities.  

Reducing the environmental impact of contrails is an 

important challenge in dealing with global climate change. 

One approach that can be taken is to change the flight 

altitude of aircraft away from high-humidity areas, which 

is one of the main factors in the formation of  

contrails [2, 3]. This research utilizes image recognition 

technology, satellite data analysis, and a large dataset of 

labeled contrail images to achieve this goal. Through data 

processing, this research attempts to predict the potential 

locations of contrails with a high degree of accuracy. 

Several deep-learning algorithms have been created to 

identify contrails in satellite images, including 

Convolutional Neural Networks (CNN), U-Net, Fully 

Convolutional Network (FCN), Pyramid Scene Parsing 

Network (PSPNET), and DeepLabV3. Convolutional 

Neural Networks (CNN) are a popular deep learning 

model for object identification and image categorization 

applications. One type of deep learning artificial neural 

network often used for image recognition and 

classification applications is the convolutional artificial 

neural network [4]. These networks have been used in 

hyperspectral image classification and are excellent at 

extracting spatial characteristics from images [5]. U-Net is 

a type of CNN commonly applied to jobs requiring 

segmentation or dividing an image into parts; U-Net can 

produce accurate segmentation results and is designed to 

operate with relatively few datasets [6, 7].  

Fully Convolutional Network (FCN) excels in semantic 

segmentation by using locally connected layers like 

convolution, pooling, and upsampling. Its architecture is 

designed to reduce parameters and speed up training by 

streamlining the process. The network comprises a 

downsampling path for context extraction and an 

upsampling path for localization [8, 9]. High-accuracy 

object detection in images is achieved by integrating 

CNNs with additional approaches, as demonstrated by 

advanced image segmentation models such as PSPNET 

and DeepLabV3 [5, 10]. The DeepLabV3 model is an 

enhanced version of the DeepLabV2 model that considers 

objects at multiple scales and segments with much better 

accuracy thanks to the Atrous Convolution and Atrous 

Spatial Pyramid Pooling (ASPP) modules. Unlike its 

predecessors, the V1 and V2 models, the DeepLabV3 

model does not include the Conditional Random Field 

(CRF) [11]. Another architecture for semantic 

segmentation is PSPNet. For improving semantic 

segmentation accuracy, PSPNet uses a pyramid pooling 
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module to extract global context information from the 

input image [12, 13]. This approach finds application in 

various image segmentation tasks, including object 

detection and picture segmentation. These models are used, 

for example, in satellite photography to detect contrails. 

Band ash color contrail detection uses particular color 

channels in satellite imagery to detect contrails. For this 

purpose, the Ash RGB color band is accommodating since 

it monitors and detects sulfur dioxide gas and volcanic ash 

day and night using infrared window channels [14].  

In a study conducted by Meijer et al. [15], the objective 

was to enhance the capacity to distinguish distinct clouds 

by utilizing the Ash RGB color scheme. The Ash RGB 

product is a false-color composite that combines four 

GOES-16 Advanced Baseline Imager (ABI) infrared 

bands. Utilizing this technology enhances the separation of 

clouds and better distinguishes between them. [16]. This 

method enabled the development of a strategic approach to 

analyzing satellite images, which could enhance the 

efficiency of contrail detection and monitoring. 

Recent studies [17, 18] have attempted to use deep 

learning to detect contrails, but the accuracy remains to be 

improved. Additionally, the model is solely based on CNN, 

U-Net, PSPNet, DeepLabV3, and DeepLabV3+. 

Based on the problems described, this research 

contribution highlighted exploring machine learning 

models and optimal bands for contrail detection in satellite 

images. The goal is to find the most effective band and 

model for detecting contrails and assess its precision using 

the dice loss metric. This study is expected to help develop 

strategies to reduce contrails’ impact on climate change by 

providing an accurate and dependable method for 

detecting contrails on satellite imagery. The outcomes of 

this research can also contribute to the growing research 

on contrail detection and offer an understanding of the 

potential advantages and disadvantages of using deep 

learning models for contrail detection. 

The rest of this article is structured as follows: 

Section  II briefly overviews previous research. Section III 

outlines the suggested research approach. Section IV 

discusses the experiments, the data sets used, the models 

and parameters evaluated, and the comparison results. 

Finally, Section V concludes this research and outlines 

potential future directions. 

II. LITERATURE REVIEW 

Bhandari et al. [17] comprehensively explores contrail 

detection methodologies and their implications on climate 

change. It presents a meticulous benchmarking study 

involving cutting-edge semantic segmentation models 

tailored for discerning contrails within low-orbit satellite 

imagery. Delving deeper, it elucidates the formation of 

contrails arising from aircraft engine emissions and their 

consequential impact on global warming by intensifying 

cloud cover, thereby trapping heat. Offering potential 

remedies to mitigate contrail formation and diminish their 

environmental influence, the paper showcases a human-

labeled Landsat-8 contrails dataset comprising false color 

images and corresponding contrail masks. Through 

meticulous experimentation with diverse segmentation 

models like U-Net, PSPNet, DeepLabV3, and 

DeepLabV3+, coupled with varying loss functions and 

encoder backbones, the research scrutinizes their efficacy. 

The results divulge nuanced insights, with U-Net 

leveraging the Xception 71 backbone exhibiting the most 

promising IoU score of 0.4395. Additionally, the paper 

illustrates train and test IoU scores for all models and 

presents visual examples of predicted masks. However, it 

underscores existing limitations and complexities within 

the study, paving the way for future research directions and 

potential enhancements in contrail detection 

methodologies. 

Hoffman et al. [18] introduced a new method using the 

convolutional neural network U-Net to detect contrails in 

satellite images. The research used the GOES ABI 11 μm 

and 12 μm channels, Band 14 and Band 15, for training, 

testing, and validation purposes. Contrails have a complex 

impact on climate change, with a net warming effect due 

to their influence on longwave radiation. The efficiency of 

the U-Net model was demonstrated by its study findings, 

which included a detection probability of 0.51, a false 

alarm ratio of 0.46, and an F1-Score of 0.52. Further 

research can incorporate atmospheric conditions and flight 

path data to improve contrail detection accuracy, 

especially in regions conducive to contrail formation. 

Agung et al. [19] explores the significance of band 

selection in identifying possible geothermal prospect 

locations within Songgoriti Batu and its surrounding areas 

using Landsat 8 satellite images. Employing an array of 

precise methodologies, including using Landsat 8 Bands 4, 

5, 7, and 11, the researchers meticulously mapped surface 

structures, temperatures, and rock formations. Through 

extensive corrections and conversions, they produced 

comprehensive maps that could serve as pivotal data for 

identifying geothermal prospects. The findings were 

compelling, revealing dominant fault lines, heightened 

temperature anomalies, and altered rocks near volcanic 

activity and hot spring occurrences in Songgoriti. The 

research, poised for further development, proposes 

refining geophysical measurement techniques to enhance 

the identification of potential geothermal sites in the area. 

Crucially, the researchers underscored the critical impact 

of band selection, emphasizing its role in accurately 

extracting lithological, structural, and thermal information 

from the satellite imagery, thereby highlighting its pivotal 

importance in this investigative process.  

Zheng et al. [20] investigated the effectiveness of band 

selection methods for hyperspectral images. The study 

used an attention mechanism-based convolutional network 

to select the most effective bands and compared the results 

with traditional band selection methods such as Successive 

Projection Algorithm (SPA), Genetic Algorithm (GA), and 

the latest Two-Branch Convolutional Neural Network 

(2B-CNN) algorithm. The research found that the effective 

bands selected by the proposed attention-based model 

achieved higher regression R2 values and classification 

accuracies compared to the full-spectrum data and the 

comparative band selection methods. Based on this study, 

choosing representative and effective spectral bands is 

crucial to remove unnecessary data and lighten the 
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computational load for prospective real-time hyperspectral 

imaging applications. 

Siddiqui [21] conducted a study that examined the 

application of deep learning algorithms for the detection of 

contrails in the atmosphere. This study used a 

Convolutional Neural Network (CNN) to classify pixels as 

contrail or non-contrail from images collected by the Total 

Sky Imager (TSI) from March 2017. The CNN was trained 

with 1600 images and validated with 400 images. The 

results show that the CNN achieved 97.5% accuracy on the 

training set and 98.5% on the validation set. This study 

also suggested some possible improvements and 

extensions to this research, such as increasing the size and 

diversity of the dataset, applying different CNN 

architectures and hyperparameters, and evaluating the 

impact of contrails on climate change.  

Zhang et al. [22] proposed a new approach for contrail 

detection using a Convolutional Neural Network (CNN) 

model, ContrailMod, which classifies contrails from 

Himawari-8 satellite images and outperforms the 

conventional Contrails Detection Algorithm (CDA). This 

study also estimated Precipitated Calcium Carbonate 

(PCC) using specific temperature and humidity from 

ECMWF reanalysis data in South China. The CNN model 

achieved an accuracy of 0.97 and an F1-Score value of 

0.94 on the test set. Future research can be done by 

applying the CNN model to other regions and satellites, 

incorporating more features and channels into the CNN 

model, and studying the contrail’s radiation effect and 

climate impact. 

Table I summarizes the research gaps based on the 

objectives and literature support. 

TABLE I. RESEARCH GAP MATRIX 

Research 
Contrail 

Detection 

Band 

Selection 

Model 

Comparison 
Model Used Dataset Used 

Bhandari et al. [17] ✓ ✕ ✓ 
U-Net, PSPNet, DeepLabV3, 

DeepLabV3+ 
Landsat-8 Contrails Dataset 

Hoffman et al. [18] ✓ ✕ ✕ U-Net Satellite Images (Specifics not given) 

Agung et al. [19] ✕ ✓ ✕ N/A Landsat-8 

Zheng et al. [20] ✕ ✓ ✓ 
Attention-based CNN, SPA, GA, 2B-

CNN 
Hyperspectral Images 

Siddiqui [21] ✓ ✕ ✕ CNN Total Sky Imager Images 

Zhang et al. [22] ✓ ✕ ✕ ContrailMod (CNN) Himawari-8 Satellite Images 

Current Research ✓ ✓ ✓ 
DeepLabV3, U-Net, FCN, PSPNET2, 

Ensemble Deep Learning 

Landsat-8 Contrails Dataset sourced from 

GOES-16 Advanced Baseline Imager 

 

III. RESEARCH METHODS 

In this study, a model will be trained to detect contrails 

using several deep learning methods and distinct ash band 

schemes, serving as a comparative analysis. The use of 

different bands aims to use various infrared channels at 

different wavelengths to detect contrails. These bands play 

an important role in capturing and representing different 

aspects of the atmosphere. The “ash” color scheme, 

consisting of bands 11, 14, and 15, initially designed to 

observe volcanic ash, proved very useful in identifying 

contrails in GOES imagery. The unique characteristics of 

each band, determined by its specific wavelength and 

calibrated brightness temperature, allow for 

comprehensive analysis. Therefore, adding other bands to 

make it more optimal was investigated in addition to using 

the ash color scheme. 

 

Fig. 1. Research methodology. 

The stages in this research include data collection, 

model and band selection, model training and evaluation, 

model optimization, model testing, and analysis of model 

comparison results. The research methodology diagram 

can be seen in Fig. 1. 

A. Dataset 

The dataset used in this study consists of a collection of 

satellite images with aircraft contrails or condensation 

trails created by Joe Ng et al. [23, 24]. The authors state 

that they have built their dataset using GOES-16 ABI 

satellite imagery, which provides high spatial-temporal 

coverage and high-quality contrail labels by ensuring 

annotation consistency and with the same format [24]. 

Therefore, the dataset-cleaning stage was not performed in 

this study. This dataset uses geostationary satellite images 

to identify aircraft condensation trails. The original 

satellite images were obtained from the GOES-16 

Advanced Baseline Imager (ABI) [14, 25], which is 

publicly available on Google Cloud Storage. The dataset 

contains data for training, testing, and validating the 

detection method. Since condensation traces are easier to 

identify with temporal context, this dataset provides image 

sequences at 10-minute intervals [24]. Each example 

(record_id) contains exactly one labeled frame. The 

training and validation sets contain folders representing the 

record_id and data such as band {08−16}.npy, 

human_individual_masks.npy, and human_pixel_ 

masks.npy. The training set is used to train the deep 

learning model, while the validation set is used to validate 

the model. The test set contains data copies of the first two 
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records of the validation data (unlabeled) that are used to 

test the trained deep learning model. The GOES-16 

Advanced Baseline Imager (ABI) dataset consists of 

20,529 data for training, 1956 data for validation, and 2 

data for testing.  

The dataset comprises nine bands, each representing 

multiple images captured at different wavelengths of light. 

Only a partial composition will be considered as a sample 

for training, validation, and testing. A subset of the data 

will chose, which includes approximately 5% of the 

training data, 15% of the validation data, and all the testing 

data. This decision was mainly driven by research 

limitations and the need to balance computational 

resources and training time. It also ensures that the selected 

samples represent the underlying data distribution.  

Fig. 2 is a visualization of the record 

1000603527582775543; it can be seen in the image from 

left to right that various spectral bands (08−16) are visible, 

and from top to bottom, it is a contrail image taken with an 

interval of 10 min. 

 

 

Fig. 2. Visualization of record 100060352758277554. 

B. Model and Band Selection 

Several deep learning models, such as DeepLabV3, U-

Net, FCN, PSPNET2, and Ensemble Deep Learning 

(DeepLabV3, PSPNET, and U-Net), are selected and 

implemented in this step. These models were designed to 

learn the input data and make predictions. In addition, 

optimal bands were explored using the Ash color scheme, 

which included Bands 11, 14, and 15 and the addition of 

band 08. This step aims to understand and select the 

appropriate spectral bands to improve the accuracy of 

segmenting the condensation traces in the image by 

comparing them with the rest of the image. 
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This approach is based on deep learning and spectral 

analysis [26]. Using multiple models and optimal band 

exploration shows a comprehensive approach to improve 

image segmentation accuracy [27]. 

C. Model Training and Evaluation 

The models used in this study were trained on the 

training set and evaluated on the validation set. The 

evaluation is done by comparing the performance of the 

models using a metric known as “dice loss” on two 

different tests, where both tests have different Ash color 

bands. The dice loss metric is used to measure the extent 

to which the models can produce results that match the 

target [28, 29] or ground truth, and the comparison is done 

to understand the extent to which the use of different Ash 

color bands and different models can affect the quality of 

contrails identification by the models. 

The investigation is grounded on the configuration 

depicted in Table II. The seed parameter was set to a 

commonly used random value of 42 to ensure consistent 

reproducibility of the results. In addition, in model training, 

the batch size of data processed in each training iteration 

was set as 16 to streamline computation and memory usage 

without overloading the available resources. The images 

used for analysis were set at 256256 pixels to ensure 

dimensional consistency across analyses. The number of 

data samples used was 1,000 for training 

(NUM_TRAIN_SAMPLES), 300 for validation 

(NUM_VAL_SAMPLES), and 2 for testing 

(NUM_TEST_SAMPLES). This number was selected due 

to limitations in this research and its computations. CUDA 

(GPU) devices are used in this research to maximize 

performance to speed up the training process. 

TABLE II. MODEL CONFIGURATION 

Configuration Value 

Seed 42 

Batch Size 16 

Image Size 256256 

Number Train Samples 1,000 

Number Validation Samples 300 

Number Test Samples 2 

Device CUDA (GPU) 

 

D. Model Optimization 

In the model optimization stage, this research involves 

fine-tuning the model’s hyperparameters and optimizing 

them to improve model performance [30]. 

Hyperparameters are parameters determined before the 

learning process begins and affect the speed and quality of 

the learning process itself [31]. The fine-tuning of 

hyperparameters in the research includes learning rate, 

epochs, batch size, and loss to ensure that the models 

operate optimally. 

Table III presents the detailed architecture and 

hyperparameters of the various models involved in this 

study. The models include DeepLabV3, PSPNET, U-Net, 

FCN, and an ensemble combining DeepLabV3, PSPNET, 

and U-Net. Each model is optimized using Stochastic 

Gradient Descent (SGD) and was trained for 45 epochs, 

with a learning rate of 0.001, except FCN, which was 

assigned a learning rate of 0.8. Input band refers to the 

number of input channels, with experiments conducted for 

three and four bands. The trainable parameters for each 

input band configuration varied across models. 

DeepLabV3 has 45,669,713 trainable parameters for three 

band inputs and 45,672,849 trainable parameters for four 

band inputs, PSPNET has 2,237,889 trainable parameters 

for three band inputs and 2,241,025 trainable parameters 

for four band inputs, U-Net has 51,513,233 trainable 

parameters for three band input and has 51,516,369 

trainable parameters for four band input, and FCN has 

64,673 trainable parameters for three band input and has 

64,961 trainable parameters for four band input. The 

ensemble model consists of DeepLabV3, PSPNET, and U-

Net, has 99,420,839 trainable parameters for three band 

inputs and 99,430,247 trainable parameters for four band 

inputs. 

TABLE III. MODEL ARCHITECTURE 

Model Optimizer 
Learning 

Rate 
Epochs 

Band 

Input 

No. of 

Parameter 

Trained 

DeepLabV3 SGD 0.001 45 
3 45, 669, 713 

4 45, 672, 849 

PSPNET SGD 0.001 45 
3 2, 237, 889 

4 2, 241, 025 

U-Net SGD 0.001 45 
3 51, 513, 233 

4 51, 516, 369 

FCN SGD 0.08 45 
3 64, 673 

4 64, 961 

Ensemble 

(DeepLabV3, 

PSPNET,  

U-Net) 

SGD 0.001 45 

3 99, 420, 839 

4 99, 430, 247 

 

E. Analysis of Model Comparison Results 

At the stage of analyzing model comparison results, the 

performance of deep learning models trained using the 

same metrics is compared. The comparison results are 

expected to be used for recommendations in determining 

the most optimal model for contrail detection. 

IV. RESULT AND DISCUSSION 

A. Optimal Band Exploration 

The band selection for the input channel is taken from 

the band with a low correlation in the ash color scheme. 

The correlation matrix provides insights into how strongly 

pairs of bands are related. Understanding the correlation 

between bands in remote sensing is crucial for feature 

selection, as highly correlated bands may contain 

redundant information. The correlation matrix aids in 

identifying and justifying the choice of optimal bands by 

ensuring that selected bands are diverse and offer unique 

information, avoiding multicollinearity issues in 

subsequent analyses.  

Fig. 3 is the correlation matrix with the ash color scheme. 

The matrix shows that Band 08 has less correlation with 

the Ash colors but is quite well-correlated with the 

contrails, indicating that it could provide new and valuable 

information.  
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Fig. 3. Correlation matrix of Ash color scheme. 

TABLE IV. BAND TESTING 

Experiment Band08 Band11 Band14 Band15 

1 ✕ ✓ ✓ ✓ 

2 ✓ ✓ ✓ ✓ 

 

Therefore, Table IV represents a categorization of 

experiments. Experiment 1 uses Ash false color images 

with Bands 15, 14, and 11. In Experiment 2, Band 08 is 

added as an input channel to use four channels: Bands 08, 

11, 14, and 15. 

Figs. 4 and 5 are the visualization results of the loaded 

and augmented training images. Fig. 4 shows the 

utilization of input Bands 11, 14, and 15, whereas Fig. 5 

depicts the utilization of input Bands 08, 11, 14, and 15. 

 

 

 

Fig. 4. Visualization of random samples Bands 11, 14, 15. 
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Fig. 5. Visualization of random samples Bands 08, 11, 14, 15.  

B. Comparison Results 

After the training and validation process, the 

performance of each model is visualized in three graphs or 

charts related to the machine learning model’s 

performance over time. These graphs represent the average 

training loss, batch loss, and validation loss over time 

(epochs). These graphs can provide insight into how well 

the model learns and improves over time. 

Fig. 6 illustrates the performance metrics of DeepLabv3 

using 4-band and 3-band inputs that are similar. The first 

graph tracks the average training loss of the model across 

epochs, illustrating its learning curve. A sharp drop in the 

loss rate early indicates that the model converges to a 

satisfactory solution. Meanwhile, the second graph 

displays batch loss fluctuations in mini-batches, indicating 

the model’s sensitivity to the varying data in these batches. 

Finally, the third graph shows the model’s validation loss 

across epochs, reflecting its ability to generalize to unseen 

data; initially decreasing, the loss eventually shows a slight 

increase, indicating a potential risk of overfitting, 

especially in models with the addition of Band 08. 

Fig. 7 is a graphical comparison of the PSPNET model 

performance on the two forms of testing. The model using 

Bands 11, 14, and 15 emerges as the best-performing 

model, showing the lowest training and validation losses, 

indicating superior performance. However, it is interesting 

that the model incorporating the additional Bands 08, 11, 

14, and 15 showed higher validation losses, indicating 

potential overfitting on the training data. This issue 

highlights the necessary balance between learning from the 

data and avoiding over-reliance on certain patterns that 

may not generalize well. 

 

 
(a) 

 
(b)  

Fig. 6. Model DeepLabv3 (a) with Band 11, 14, 15; (b) with Band 08, 11, 14, 15. 
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(a) 

  
(b) 

Fig. 7. Model PSPNET (a) with Band 11, 14, 15; (b) with Band 08, 11, 14, 15.  

Fig. 8 illustrates the average training and validation 

losses across batches of U-Net model test results, which do 

not appear to have significant differences. The U-Net 

model with Bands 11, 14, and 15 or with the addition of 

Band 08 has similar performance results. 

 

 
(a) 

  
(b) 

Fig. 8. Model U-Net (a) with Band 11, 14, 15; (b) with Band 08, 11, 14, 15. 
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Fig. 9 displays the performance of the FCN model with 

various test bands. Models using Bands 11, 14, and 15 

show low training and validation losses, indicating strong 

data fit and generalization. While in FCN, with the 

addition of Band 08, the training loss decreased, the 

validation loss remained relatively high and in some 

epochs, there were significant fluctuations. However, the 

last epoch had a lower loss than the first test. 

 

 
(a)  

  
(b)  

Fig. 9. Model FCN (a) with Band 11, 14, 15; (b) with Band 08, 11, 14, 15.  

 
(a) 

  
(b) 

Fig. 10. Model Ensemble (DeepLabV3, PSPNET, U-Net) deep learning (a) with Band 11, 14, 15; (b) with Band 08, 11, 14, 15.  
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Based on Fig. 10, the graph of the average training loss 

of the model and the average validation loss against the 

epoch of the Ensemble model of both tests shows that the 

loss decreases steadily as the number of epochs increases. 

However, the Ensemble model showed the first decrease 

in the first test with Bands 11, 14, and 15. The test 

comparison results can be seen in Table V. 

TABLE V. COMPARISON RESULTS 

Model Backbone 
Input 

Band 

Train 

Avg Loss 

Val Avg 

Loss 

DeepLabV3 Resnet101 
3 0.987700 0.996298 

4 0.987538 0.996168 

PSPNET Resnet101 
3 0.944208 0.983661 

4 0.959346 0.988406 

U-Net Resnet101 
3 0.713500 0.713250 

4 0.716402 0.716033 

FCN Resnet101 
3 0.034756 0.014825 

4 0.032591 0.013321 

Ensemble 

(DeepLabV3, 

PSPNET, U-Net) 

Resnet101 
3 0.693173 0.69313 

4 0.693234 0.693248 

 

Based on Table V and Figs. 6−10, the FCNN Model 

demonstrates superior performance among all models, 

exhibiting the lowest average loss for training and 

validation, irrespective of the number of input channels. 

This indicates that it is highly efficient in fitting the data 

effectively and generalizing well to new instances. In 

contrast, the DeepLabV3 and PSPNET models display the 

poorest performance, with the highest average loss for 

training and validation. This suggests they tend to overfit 

and cannot adapt to new data. 

The U-Net model performs moderately, showing a 

lower average loss than DeepLabV3 and PSPNET but a 

higher average loss than FCN for training and validation 

implying a degree of overfitting that is less severe than 

observed in DeepLabV3 and PSPNET. The Ensemble 

Deep Learning model, which integrates DeepLabV3, 

PSPNET, and U-Net, performs similarly to U-Net, with a 

slightly lower average loss for training but a slightly higher 

average loss for validation, indicating a moderate level of 

overfitting compared to DeepLabV3 and PSPNET. 

Considering the information in Table V, the number of 

input channels does not significantly impact the 

performance of any model, as the average loss values 

remain very close for both three (Band 11, 14, 15) and four 

input channels (Band 08, 11, 14, 15). Adding Band 08 as 

extra channels does not substantially enhance or degrade 

the model’s capacity to learn from the data. 

When evaluating these differences, it is important to 

consider various factors outlined in Table II, such as model 

architecture, optimization techniques, learning rates, 

epochs, and neural network structure. The variation in 

these elements contributes to the observed performance 

differences among the models. Notably, the number of 

parameters trained in each model also plays a crucial role, 

with FCN efficiently utilizing fewer parameters while 

achieving superior performance. Examining training 

comparison results in Table V further highlights the 

consistent superiority of FCN, emphasizing its robust 

ability to fit data, and generalize effectively. Conversely, 

the higher average losses of DeepLabV3 and PSPNET 

underscore their challenges in overcoming overfitting and 

adapting to new data. 

The moderate performance of U-Net and the Ensemble 

model’s similarities to U-Net suggest a balance between 

fitting the data and avoiding overfitting. Lastly, the impact 

of learning rates and optimizer choices on training 

dynamics is crucial, with the higher learning rate of 0.08 

for FCN potentially contributing to its ability to escape 

local minima and converge to optimal solutions, in contrast 

to the shared usage of Stochastic Gradient Descent (SGD) 

optimizer with a learning rate of 0.001 for DeepLabV3, 

PSPNET, and U-Net, which may contribute to their 

tendencies towards overfitting. 

Interesting future research could delve deeper into 

aspects such as model selection, model configuration, and 

selection of other bands used in the image, testing on 

diverse data sets, and applying advanced techniques to 

reduce overfitting. 

V. CONCLUSION 

Based on the results of this study, it was found that the 

selection of the deep learning model proved to have a 

significant impact on the contrail detection performance in 

satellite images. However, the addition of the input 

channel, band 08 in ash color, did not significantly impact 

the model performance. The comparison results show that 

the FCNN model emerged as the best model with the 

lowest average loss in training and validation in both input 

channel tests. On the other hand, models like DeepLabV3 

and PSPNET suffered from overfitting, which negatively 

impacted their ability to process unseen data. The U-Net 

model also showed good results with little overfitting. As 

a suggestion, this study highlights the importance of 

further exploration regarding model selection, 

configuration, and the choice of bands used in the imagery. 

It is also possible to explore additional factors that affect 

image segmentation, test on more diverse datasets, and 

apply techniques such as cross-validation or others to 

models that tend to overfit. The results of this study are 

expected to provide insight for policymakers and 

researchers in developing strategies to minimize climate 

impacts associated with aviation. 
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