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Abstract—Automated surface defect detection systems have 

received much attention for quality control in industrial 

production. Deep learning techniques are proving their 

capability in these systems, due to the complexity of defects 

and inspection requirements. However, in fact, the 

availability of defective data is a major challenge. It is thus 

difficult to build an efficient model for a high-accuracy 

inspection system. In this paper, we present a method to deal 

with this lack of defective data by using self-contrastive 

learning to enhance image representations and the margin 

loss to improve the discriminativeness of defect features. 

Experiments were performed on the NEU dataset and 

MixedWWM38 dataset for several data size settings and for 

the few-shot learning task. The obtained results demonstrate 

the effectiveness of our proposed method. Particularly, the 

method achieves an accuracy of 98.83% and 92.27% on NEU 

dataset and MixedWM38 dataset, respectively, with only 20 

training samples per class. 
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I. INTRODUCTION 

Surface defect detection plays a crucial role for quality 

control in many industries such as manufacturing [1, 2], 

electronics [3], and fabric productions [4, 5]. Traditionally, 

this task is carried out manually, which is time-consuming 

and requires a lot of human effort. Additionally, the human 

eye has limitations in detecting complex defects. To 

overcome this difficulty, many companies now use 

automated defect inspection systems. These systems 

typically consist of a camera module to acquire and 

highlight surface defects, if present, and software to detect 

and identify the defects. 

Defect inspection based on visual perception can be 

mainly classified into two approaches, including 

traditional image processing-based and machine learning-

based methods. The former approach applies image 

processing techniques to transform and characterize defect 

features for a given defect detection problem. This is only 

useful when defect classes are clearly differentiated. 

Furthermore, defect characteristics within the same class 

remain consistent. It is strongly dependent on the imaging 

environment and therefore has poor adaptability. Whereas, 

in the latter, learning models provide a more flexible 

approach for the complex defects. In particular, deep 

learning techniques have recently been proposed in this 

field. These methods can extract deep features of images 

via convolution, pooling operators and the attention 

mechanism. They are capable to generalize important 

features for class discrimination without requiring feature 

extraction rules provided by human, which can be 

designed as an end-to-end framework to integrate into 

automated inspection systems. However, training deep 

neural networks requires large amount of labeled training 

data to tune their parameters and avoid over-fitting. 

Unfortunately, in industrial scenarios, there are only a few 

or dozens of defective images that can be provided, posing 

the challenge of small data. 

To solve this problem of deep learning approach, there 

are currently different solutions [6]: data augmentation, 

transfer learning, and unsupervised or semi-supervised 

methods. Data augmentation methods [7–9] consist of 

applying image processing operators on original images to 

obtain more samples and fusing individual defects to form 

defective samples. Transfer learning from pre-trained 

networks [10–12] is one of the most commonly used 

methods to boost performance and reduce over-fitting on 

small datasets. Finally, unsupervised and semi-supervised 

methods [13–16] can utilize a large number of unlabeled 

data to train the models. 

In this paper, we present a method to improve image 

representations for surface defect recognition with small 

data. We choose representation learning approach to 

address the small sample problem, since its capability to 

learn better feature representations for class discrimination. 

Consequently, it performs the defect classification task 

more effectively with less training data. Our main 

contributions are listed as follows: 

• We propose an end-to-end architecture that 

enhances feature embeddings of an extraction 

backbone for surface defect recognition task 

through data intensive and supervision of a self-

contrastive loss and an angular margin loss. We 
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integrate two modules into one pipeline for 

optimizing these loss functions effectively; 

• We design multiple experiments with reduced 

training set on classification and few-shot learning 

task to have a comprehensive analysis on the 

efficiency of combining the loss functions for 

training; 

• We evaluate the method on two surface defect 

benchmark datasets, NEU [17] and MixedWM38 

[18], and achieve better accuracy than current 

methods in full-data training settings. The 

experimental results of small-data settings show 

that the model focus on discriminative features of 

defect regions and significantly outperform the 

backbone model for classification. 

The rest of the paper is organized as follows: Section II 

reviews related works. The proposed method is given in 

Section III. Then, Section IV presents the experiments. 

Finally, Section V is the conclusion. 

II. LITERATURE REVIEW 

In this section, we comprehensively review current 

approaches of surface defect recognition in visual 

inspection and several representation learning methods in 

computer vision. 

A. Surface Defect Recognition 

With the excellent achievement of deep learning 

methods in computer vision, many pre-trained 

convolution-based networks on ImageNet [19–22] became 

the backbone or feature extraction blocks used for image 

classification task, including industrial defect recognition 

problems. In 2020, Konovalenko et al. [23] used the pre-

trained ResNet50 [20] as a classifier for recognizing three 

classes of flat surface defects in rolled metal. They applied 

the binary focal loss function to overcome the problem of 

data sample imbalance and obtained the best accuracy of 

96.91%. In 2021, Feng et al. [24] proposed a hot rolled 

steel strip defect dataset called Xsteel Surface Defect 

Dataset (X-SDD) with 1360 images of seven typical defect 

types. For defect recognition, they combined the RepVGG 

algorithm [25] with spatial attention mechanism to achieve 

promising results of 95.10% on this dataset. However, the 

performance of the algorithm was not very well on some 

categories, because the number of samples was not 

sufficient. In 2022, Li et al. [26] introduced a lightweight 

network based on Coordinate Attention and Self-

Interaction (CASI-Net) mechanism to extract image 

features and locate defect regions for better recognition of 

steel surface defects in NEU dataset [17]. Despite reducing 

parameters and computation, it seems to be difficult for 

this architecture to distinguish some defects with a high 

degree of “inter class similarity and intra class 

diversity”  [26]. 

In Defect Pattern Recognition (DPR) of wafer maps, 

Wang et al. [18] published the MixedWM38 dataset, 

additionally designed a Deformable Convolutional 

Network (DC-Net) and a multi-label output layer for 

mixed-type defect classification with average accuracy of 

93.2%. By testing on the same data, Nag et al. [27] 

presented an encoder-decoder network called 

WaferSegClassNet (WSCN) for both classification and 

segmentation tasks. They achieved an average 

classification accuracy of 98.2% on all 38 classes. These 

supervised methods require the training on a substantially 

large sample size to alleviate over-fitting problem and 

reach a stable recognition performance. However, this is 

also the main challenge in the real industrial environment 

where the number of defect-labeled images is limited. 

There are several works applying weakly supervised 

and few-shot learning method to overcome the key issue 

of small defective data. In 2019, Liu et al. [28] introduced 

a One-Class Classification (OCC) method based on 

Generative Adversarial Network (GAN) [29] for steel strip 

defect detection, which could only detect abnormal 

samples and cannot recognize defect types. He et al. [15] 

solved this data issue by a semi-supervised learning 

method based on multi-training of GAN and 

ResNet18  [20] networks. In particular, GAN was utilized 

to generate unlabeled samples, then the algorithm 

integrated both labeled and unlabeled into a multi-training 

process to acquire higher accuracy of 99.56%. In 2020, 

Deshpande et al. [30] approached the task through 

applying Siamese neural network to perform one-shot 

recognition on NEU dataset and achieved 83.22% true 

predictions without training on new defect categories. 

B. Representation Learning 

Advanced representation learning techniques 

introduced various useful loss functions to extract 

meaningful patterns of images for better recognition. 

Contrastive Learning (CL) emerged as an effective self-

supervised learning method that could reduce the cost of 

annotating large-scale datasets, by learning embeddings 

from augmented versions of images. There are several 

works introduced based on this idea, such as Swapping 

Assignments between multiple Views of the same images 

(SwAV) [31], Momentum Contrast (MoCo) [32] and 

Simple Framework for Contrastive Learning of Visual 

Representations (SimCLR) [33]. The SimCLR is a typical 

framework of contrastive learning for image self-

representation. SimCLR combines data augmentation 

operators and provide an efficient contrastive loss to 

enhance image features for multiple downstream tasks. 

In the field of face recognition, researchers recently 

concentrated loss functions to improve image 

discrimination. The key idea of these functions is to 

provide a guidance to the extraction model so that it can 

minimize the intra-class distance, while maximizing the 

inter-class distance. Schroff et al. [34] introduced the 

Triplet loss that enforces a margin between positive and 

negative face pairs via an anchor and Euclidean distance. 

This thus helps to reinforce the discriminability to other 

identities. Based on the idea of angular margin [35], 

ArcFace [36] leveraged the SoftMax loss via adding an 

angular margin penalty into the geometric interpretation of 

the function. It then could optimize face class separability 

and lead to outperforming the state-of-the-art of face 

recognition. These innovative approaches have played an 

important role in the field of image representation learning. 
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They become efficient methods to improve the model 

capacity of learning discriminative features. 

In this work, we propose a learning strategy that 

combines multiple modified loss functions to improve 

discriminative feature representation of extraction model, 

which could lead to solving the challenge of small defect 

data in the real industrial context. In the next section, we 

elaborate on the details of our proposed methodology 

using limited training size for surface defect recognition in 

visual inspection. 

III. MATERIALS AND METHODS 

We propose an end-to-end framework for surface defect 

recognition with small data through improving image 

representations. We apply a self-supervised representation 

learning paradigm to solve the classification task, 

combining the Contrastive loss and Margin loss functions 

to enhance discriminative features for defect type 

separability. 

Fig. 1 illustrates the overview of our network 

architecture with two main modules. The first branch, Self-

Contrastive Learning (SCL) module is designed based on 

the Siamese neural network with the aim of maximizing 

agreement between two augmented versions of images by 

using the Contrastive learning technique. The second 

branch, Angular Margin Penalty (AMP) module utilizes 

the Margin loss mechanism, which is to force the model 

learning discriminative features of inter-classes. ResNet-

50 [20] is used as the backbone for feature extraction. 
 

 

Fig. 1. Our proposed architecture. In SCL, each training image is augmented into two positive views for optimizing the contrastive prediction. In AMP, 

the feature embedding is interpreted in geometric space and is added a margin by the Arc Margin Penalty block to calculate the Arc loss. We train the 

Backbone and the Projection supervised by the total loss of both 𝐿𝐶𝑜𝑛 and 𝐿𝐴𝑟𝑐 to improve features for classification task. 

A. Self-Contrastive Learning (SCL) Module 

Due to the real-life problem of small defect-labeled data, 

we aim to increase the amount of available data for training 

the classification model by using augmentation techniques. 

To this end, the twin Siamese network for Contrastive 

learning of visual representation that introduced in 

SimCLR [33] is used. The key idea is to learn good 

representations of different augmented versions of the 

same images. The module enhances the similarity degree 

of features between these two augmented views by 

optimizing the self-contrastive loss, with their pseudo 

labels “positive” or “negative”. In particular, this module 

consists of three components: 

• Data augmentation 𝑇: Each image 𝑥𝑛 in a training 

mini-batch of 𝑁 samples is transformed into two 

views 𝑥𝑖  and 𝑥𝑗  by different augmentation 

operators 𝑡 and 𝑡′. These operators are randomly 

selected from a set 𝑇 of augmentation methods that 

we use for manufacturing defective images; 

• Base backbone 𝐸: In this work, we use the ResNet-

50 as the backbone for feature extraction in all 

experiments. The outputs of the average pooling 

layer are high dimensional encoded vectors. They 

are then fed forward to a linear projection head 

Multi-Layer Perceptron (MLP) to reduce the 

dimension for calculating Contrastive loss. For 

every single image, it creates a positive pair 𝑥𝑖 and 

𝑥𝑗  and then extract two feature embeddings 𝑧𝑖 

and 𝑧𝑗, respectively; 

• Contrastive loss 𝐿𝐶𝑜𝑛: A mini-batch with the size 

of 𝑁 samples are stochastically transformed to 2𝑁 

augmented views. The Contrastive loss function 

applies the cosine similarity metric on these 

feature vectors 𝑠𝑖𝑚(𝑧𝑖 , 𝑧𝑗) = 𝑧𝑖
⊤𝑧𝑗/(‖𝑧𝑖‖‖𝑧𝑗‖)  to 

calculate the SoftMax loss of all image pairs by 

Eq.  (1). 

 𝑙(𝑥𝑖 , 𝑥𝑗) = −𝑙𝑜𝑔
𝑒

𝑠𝑖𝑚(𝑧𝑖,𝑧𝑗)/𝜏

∑ 𝕀[𝑘≠𝑖]𝑒𝑠𝑖𝑚(𝑧𝑖,𝑧𝑘)/𝜏
2𝑁

𝑘=1

 (1) 

where 𝜏 ∈ [0,1] is a temperature parameter used to 

help the model learn from the negatives and 

𝕀[𝑘≠𝑖] ∈ {0,1} represents a function that is set to 1 

iff 𝑘 ≠ 𝑖. The contrastive loss of a training mini-
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batch is defined to be the average of three losses 

between the original image 𝑥𝑛  and its two 

views,  𝑙(𝑥𝑛, 𝑥𝑖) , 𝑙(𝑥𝑛, 𝑥𝑗)  and 𝑙(𝑥𝑖 , 𝑥𝑗) , 

respectively, as given in Eq. (2). 

 𝐿𝐶𝑜𝑛 =
1

3𝑁
∑ (

𝑁

𝑛=1
𝑙(𝑥𝑛, 𝑥𝑖) + 𝑙(𝑥𝑛, 𝑥𝑗) + 𝑙(𝑥𝑖 , 𝑥𝑗)) (2) 

B. Angular Margin Penalty (AMP) Module 

The challenge of surface defect recognition is not only 

small sample issue, but also the specific characteristics of 

these kinds of images in the real industrial environment. 

The objects, which mean the defective regions, are often 

very small, compared to the whole image. Moreover, there 

is high variance of these defect images in intra classes, 

while inter classes also have some similar features, 

especially when multiple defect types appear together on 

the same surface. This leads to the misclassification of 

deep learning models. 

In this work, we add a module to instruct the backbone 

model to learn feature representation effectively, by 

applying the Margin Loss strategy of ArcFace [36]. 

Normally, a mini-batch of 𝑁  images in the process of 

training a 𝑛-class classifier updates the model by using the 

categorical softmax loss, as given in Eq. (3): 

 𝐿 = −
1

𝑁
∑ 𝑙𝑜𝑔

𝑒
𝑊𝑦𝑖

𝑇 𝑥𝑖+𝑏𝑦𝑖

∑ 𝑒
𝑊𝑗

𝑇𝑥𝑖+𝑏𝑗

𝑛

𝑗=1

𝑁

𝑖=1

 (3) 

where 𝑥𝑖 ∈ ℝ𝑑  denotes the feature of the 𝑖 -th sample, 

belonging to the 𝑦𝑖 -th class. 𝑑  is the embedding feature 

dimension, 𝑊 ∈ ℝ𝑑×𝑛  is the weights and 𝑏𝑗 ∈ ℝ𝑛  is the 

bias. The logit 𝑊𝑗
𝑇𝑥𝑖 + 𝑏𝑗  can be formulated in cosine 

geometric space. The bias 𝑏𝑗 is set to 0, then the logit of 

the weight and the feature is transformed to dot 

product 𝑊𝑗
𝑇𝑥𝑖 = ‖𝑊𝑗‖‖𝑥𝑖‖𝑐𝑜𝑠𝜃𝑗 . Normalized by 𝑙2 , 

‖𝑊𝑗‖ = 1  and scale ‖𝑥𝑖‖ = 𝑠 , then the logit is only 

dependent on the angle 𝜃𝑗 between the normalized weight 

and the feature. This angle is added by an angular margin 

penalty 𝑚 for improving discriminative features of intra-

class and inter-class samples, as shown in Eq. (4). We 

apply 𝐿𝐴𝑟𝑐 by implementing an Arc Margin Penalty block 

that gets dense embeddings from the MLP projection and 

re-calculates the logits for the softmax function, as 

illustrated in Fig. 1. 

𝐿𝐴𝑟𝑐 = −
1

𝑁
∑ 𝑙𝑜𝑔

𝑒
𝑠(cos(𝜃𝑦𝑖

+𝑚))

𝑒
𝑠(cos(𝜃𝑦𝑖

+𝑚))
+∑ 𝑒

𝑠·𝑐𝑜𝑠𝜃𝑗
𝑛

𝑗=1,𝑗≠𝑦𝑖

𝑁

𝑖=1

 (4) 

C. Network Optimization 

The training loss of our end-to-end network consists of 

two loss functions that are Contrastive loss 𝐿𝐶𝑜𝑛 and Arc 

loss 𝐿𝐴𝑟𝑐 . The first term is supervised by self-defined 

pseudo labels of augmented images, while the second term 

modified from softmax loss is supervised by class labels 

for defect recognition. The total loss should be defined as  

 𝐿𝑇𝑜𝑡𝑎𝑙 = 𝛼 ⋅ 𝐿𝐶𝑜𝑛 + 𝛽 ⋅ 𝐿𝐴𝑟𝑐 (5) 

where 𝛼 and 𝛽 are hyper-parameters used to balance the 

two losses, 𝐿𝐶𝑜𝑛 and 𝐿𝐴𝑟𝑐 . Due to the difference in their 

loss values, we set 𝛼 = 3𝛽 = 0.75  during the training 

phase of all experiments. This joint loss function guides 

both the base backbone and the projection head to learn 

good representations. It aims to not only maximize the 

similarity between augmented versions of an image, but 

also increase the feature gap between different classes. 

IV. RESULT AND DISCUSSION 

In this section, we evaluate the proposed method on two 

benchmark datasets, NEU [17] and MixedWM38 [18], to 

assess how effective the model recognizes defect types in 

comparison with several current frameworks. The output 

feature representations are then used for supervised 

classification task and few-shot learning recognition task. 

A. Implementation Details 

In the training phase, to overcome the problem of 

limited defective images in the industry and facilitate the 

contrastive prediction task mentioned in Section III, we 

perform a data augmentation task. We augment surface 

defect data with simple random cropping (with resizing) to 

create adjacent, local and global views from the images. 

To make the contrastive prediction task become harder, we 

additionally use affine transformations, such as random 

rotation (with different degrees), horizontal and vertical 

flip operators. The angle of the rotation is selected 

stochastically from a set of angles {0, π/2, π, 3π/2} (in 

radian). This augmentation composition has been proved 

to improve the quality of image representation [33]. As 

mentioned, ResNet-50 is used as the backbone for feature 

representation. Table I presents the hyper-parameter 

settings. 

TABLE I. HYPER-PARAMETERS USED TO TRAIN OUR NETWORK 

Parameter Value 

Batch Size 32 

Number of epochs 100 

Learning Rate 510−4 

Optimizer Adam [37] 

Temperature 𝜏 in 𝐿𝐶𝑜𝑛 0.5 

Margin 𝑚 in 𝐿𝐴𝑟𝑐 0.5 

Embedding Size 𝑑 128 

 

In the testing phase, we build a reference database to 

inference the testing set. The reference images are chosen 

randomly from the training set, and then extracted to 

feature vectors for creating the database. For every testing 

image, we utilize the cosine similarity metric to compare 

its feature vector to 𝑘 -shot images of each class. The 

prediction result is decided via the highest average value. 

B. Experiments on NEU 

The NEU dataset [17] is a defect dataset that captures 

the defect images from the surface of hot-rolled steel plates. 
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This dataset contains 6 typical defect types of steel strip, 

i.e., Rolled-in Scale (RS), Patches (Pa), Crazing (Cr), 

Pitted Surface (PS), Inclusion (In), and Scratches (Sc). 

There are 1,800 images (200200 dimension), with an 

equal number of 300 for each class. Fig. 2 shows the 

patterns of all 6 defect types. It can be observed that PS, 

RS and Cr classes do not clearly have defective regions in 

the images, meaning that it is not easy for model to extract 

discriminative features. 

 

 

Fig. 2. Gradient-based visualization of feature maps generated by 

ResNet-50 and our method (both are trained with only 10 images per class) 

on the samples of 6 defect patterns in NEU. 

1) Classification task 

Firstly, we compare our accuracy scores with current 

deep learning models on steel surface defect classification 

task to evaluate our method. Fig. 2 illustrates the heat-

maps of 6 defect images generated by the last layer of the 

backbone ResNet-50 and our model, based on Gradient-

weighted Class Activation Mapping (Grad-CAM) [38]. 

Both models are trained on the same small-scale data with 

only 10 images per class. The maps highlight important 

regions in the image for predicting the class. We can see 

that our model focus on key features of defect regions for 

discrimination and reduce noise features from the 

background. This shows the efficiency of the Contrastive 

loss and the Arc loss, compared to the conventional Cross-

Entropy loss. 

For a fair comparison in the number of labeled samples 

per class used in the training phase, we randomly divide 

the NEU dataset into training and testing sets with 

proportions of 80%, 70% and 60% data for training, 

corresponding to the proportions used in Siamese Neural 

Network [30], CASI-Net [26] and Secure Sockets Layer, 

(SSL) [15]. The experimental results in Table II show that 

within the context of the same training samples, our 

representation learning strategy can outperform another 

contrastive learning approach [30], an attention 

mechanism [26] and a semi-supervised method [15], with 

the average accuracy of 100%, 99.81%, and 99.58%, 

respectively. 

TABLE II. COMPARISON OF CLASSIFICATION ACCURACY ON NEU 

Method Training Data (%) Accuracy (%) 

Siamese Neural Network [30] 80 92.55 

CASI-Net [26] 70 95.98 

SSL [15] 60 99.56 

Proposed (60%) 60 99.58 

Proposed (70%) 70 99.81 

Proposed (80%) 80 100.00 

As mentioned above, due to the limited quantity of 

defective samples existing in the industry, we conduct 

several experiments with very small amounts of training 

data. Numbers of 10, 20, and 50 samples per each class are 

chosen randomly from the original NEU training set. We 

aim to show the efficiency of combining Contrastive loss 

and Arc loss to optimize the backbone for feature 

extraction, compared to only using the backbone alone. For 

each small-data setting, we keep the same training hyper-

parameters as the ResNet-50 baseline, and then average the 

accuracy of 10 different experiments. As showed in 

Table  III, our method has better results than ResNet-50 

when all being trained by 20 and 50 samples. However, in 

case that defective images of a type are as scarce as 10 

samples, the method strongly obtains 98.39% of true 

predictions on the test set. While the original 

Convolutional Neural Network (CNN) baseline requires a 

large number of labeled training data to avoid over-fitting, 

our method overcomes this challenge by utilizing 

contrastive self-supervised learning algorithm with 

composition of data augmentations, additionally 

reinforcing discriminative features with the margin penalty 

module. 

TABLE III. RESULTS OF SMALL-DATA SETTINGS ON NEU 

Train Dataset  

(images/class) 

ResNet-50  

(Backbone) 
Proposed  

10 93.89 98.39 

20 97.72 98.83 

50 99.06 99.72 

 

2) Few-shot learning task 

In order to show further the effectiveness of the 

proposed method, we conduct few-shot learning 

experiments. In this experiment, it allows the model to 

learn from all existing samples and then predict unseen 

defect types with a few representative images called 𝑘-shot 

of each new class. We train our method on full 900 images 

of 3 classes, including patches, inclusion and rolled-in 

scales. In the testing phase, 900 images of the remaining 

classes, consisting of crazing, scratches and pitted-surface, 

are shown to the model for few-shot recognition. 

In Table IV, with only 𝑘 samples of each new category, 

for 𝑘 = 1, 3, and 5, we achieve the accuracy of 82.16%, 

84.53%, and 86.29%, respectively. This result is 

competitive with the testing accuracy 83.22% of the one-

shot recognition baseline introduced in [30] for steel 

surface defects. 
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TABLE IV. RESULTS OF FEW-SHOT LEARNING TASK ON NEU 

𝒌-shot Accuracy (%) 

𝑘 = 1 82.16 

𝑘 = 3 84.53 

𝑘 = 5 86.29 

 

C. Experiments on MixedWM38 

In order to show further the performance of our 

proposed network, we conduct this experiment to test the 

classification task on a much more complicated dataset, i.e., 

MixedWM38 [18]. The dataset has totally 38 defect 

patterns of semiconductor wafer surfaces, including 

38,015 images (5252 dimension) with single and multiple 

defect types appearing on a map. The 8 single defect types 

are listed as follows: Center (C), Donut (D), Edge-Loc 

(EL), Edge-Ring (ER), Local type (L), Nearful (NF), 

Scratch (S) and Random (R). The remaining 29 mix-type 

patterns have several single defect types presenting 

together a piece of wafer, which makes the recognition 

task more complex. Particularly, there are 1 defect-free 

pattern (C1) and 4 defect groups: 8 different single defects 

(C2-C9), 13 two mixed-type defects (C10-C22), 12 three 

mixed-type defects (C23-C34), and 4 four mixed-type 

defects (C35-C38). Fig. 3 shows some examples of our 

results. Obtained heat-maps indicate that the proposed 

method precisely gives representative features for the 

classification task. 

 

 

Fig. 3. Gradient-based visualization of feature maps generated by our 

model (trained with 50 images for each of all 38 classes) on some samples 

of 4 defect groups in MixedWM38. 

As showed in Table V, we compare our classification 

results with DC-Net [18] and WaferSegClassNet 

(WSCN)  [27] in the same setting of using 80% dataset for 

training the networks and 20% for validation. We obtain 

the average classification accuracy of 98.22% on all 38 

classes, which is superior to DC-Net (93.2%). The score is 

also higher than that of the multi-task learning framework 

WSCN (98.2%) which also used the Contrastive loss. 

Although our method is only slightly lower than WSCN in 

some single defects, around 0.14% in average, its 

recognition accuracy for two mixed-type, three mixed-

type and four mixed-type patterns are 98.69%, 97.69%, 

and 96.88%, respectively, and are better in all multi-defect 

clusters. This could indicate the effectiveness of learning 

features in classify complex compositions of wafer defects 

which are difficult to recognize, even for human eyes. 

TABLE V. COMPARISON OF CLASSIFICATION ACCURACY ON EACH OF 

ALL 38 CLASSES OF MIXEDWM38 (WITH 80\% TRAINING DATA) 

Class DC-Net [18] WSCN [27] Proposed 

C1 (Normal) 99.70 100.00 100.00 

C2 (C) 97.80 100.00 100.00 

C3 (D) 96.50 100.00 99.00 

C4 (EL) 94.40 97.00 99.00 

C5 (ER) 99.80 99.00 100.00 

C6 (L) 93.80 99.00 100.00 

C7 (NF) 95.80 100.00 96.60 

C8 (S) 93.40 99.00 99.00 

C9 (R) 100.00 98.00 96.10 

Avg (1 defect classes) 96.80 99.00 98.86 

C10 (C+EL) 99.20 98.00 98.00 

C11 (C+ER) 97.90 100.00 100.00 

C12 (C+L) 98.50 99.00 100.00 

C13 (C+S) 96.70 99.00 100.00 

C14 (D+EL) 99.30 94.00 98.00 

C15 (D+ER) 96.10 99.00 99.50 

C16 (D+L) 98.30 95.00 97.50 

C17 (D+S) 92.80 100.00 99.00 

C18 (EL+L) 93.90 99.00 99.00 

C19 (EL+S) 92.30 97.00 96.50 

C20 (ER+L) 94.60 96.00 98.00 

C21 (ER+S) 90.70 100.00 99.00 

C22 (L+S) 90.30 97.00 98.50 

Avg (2 defect classes) 95.43 97.92 98.69 

C23 (C+EL+L) 88.90 97.00 99.00 

C24 (C+EL+S) 89.40 99.00 97.80 

C25 (C+ER+L) 91.40 97.00 99.00 

C26 (C+ER+S) 92.50 100.00 99.50 

C27 (C+L+S) 90.50 97.00 98.00 

C28 (D+EL+L) 88.30 97.00 98.50 

C29 (D+EL+S) 90.50 96.00 94.00 

C30 (D+ER+L) 92.30 100.00 99.00 

C31 (D+ER+S) 91.50 98.00 99.00 

C32 (D+L+S) 88.30 97.00 97.50 

C33 (EL+L+S) 86.20 96.00 96.00 

C34 (ER+L+S) 89.00 97.00 95.00 

Avg (3 defect classes) 89.90 97.58 97.69 

C35 (C+L+EL+S) 87.00 94.00 93.50 

C36 (C+L+ER+S) 90.60 97.00 98.00 

C37 (D+L+EL+S) 86.40 95.00 96.50 

C38 (D+L+ER+S) 88.20 95.00 99.50 

Avg (4 defect classes) 88.05 95.25 96.88 

Avg (all 38 classes) 93.20 98.20 98.22 

 

We further investigate the classification performance of 

our network with several small-data settings on 

MixedWM38. Table VI summarizes the comparison 

results of the ResNet-50 backbone and our model. Both 

models are only trained with 20, 50, and 100 samples of 

each defect pattern. The accuracy in overall are much 

superior to those of the backbone. Especially, we obtain 

the accuracy of 92.27% for all 7603 testing images (20% 

of MixedWM38) of 38 classes through training the model 

with only 20 images per class. Once again, it shows that 

the Contrastive loss and Arc loss make a significant 

contribution to the backbone encoder to generalize 

discriminative features of different classes with very 

small-scale data, but still avoid the over-fitting issue. 

577

Journal of Advances in Information Technology, Vol. 15, No. 5, 2024



TABLE VI. RESULTS OF SMALL-DATA SETTINGS ON MIXEDWM38 

Train Dataset 

(images/class) 

ResNet-50 

(Backbone) 
Proposed 

20 55.36 92.27 

50 86.72 96.88 

100 89.73 97.83 

 

D. Discussion 

We set up the small data experiments to compare our 

method with the backbone alone optimized by the 

categorical cross-entropy loss. However, large parameters 

of the deep learning-based model ResNet-50 make it 

difficult to converge at an optimal parameter set with a 

limited training data size. The phenomenon of over-fitting 

or under-fitting occurs when training the model with a 

scarce quantity of images, for example, the backbone gets 

the accuracy of 55.36% on the MixedWM38 test set with 

only 20 training samples per class. Furthermore, some 

small defects in the industry appear as regions of low 

contrast, non-uniform brightness, or irregular shape, which 

make it hard to generalize features for classification. As 

shown in Figs. 2 and 3, our model with a joint loss function 

pays close attention to defective regions, which 

significantly contributes to the classification performance. 

Based on the results from few-shot learning experiments, 

our model has the potential but not optimal for one-shot 

recognition task. However, it is easy to adapt this approach 

with the minimal requirement of labeled data for 

classifying images of new defect types appearing in the 

manufacturing environment. With small labeled data, one 

of directions for future work can be applying the 

supervised contrastive learning [39] to avoid mis-

recognition of the same-class images in a training mini-

batch. The network optimization also can combine with a 

segmentation target for better recognizing and localizing 

fine-grained defects. In addition, to become better 

deployed to the actual production line, we will reduce the 

number of model parameters to improve recognition speed 

while maintaining accuracy. 

V. CONCLUSION 

In this paper, we introduced a potential approach to 

enhance image representation for surface defect 

recognition task with small data. We address the challenge 

of limited training data size by designing a training 

framework for the feature extractor with the supervision of 

data intensive, self-contrastive loss and an angular margin 

loss. By conducting extensive experiments, we achieve 

better accuracy performance compared to several current 

methods on two benchmark datasets. With few-shot 

learning and small data settings, this method also shows 

high capability to capture discriminative regions on the 

defect images and obtain the accuracy of 98.83% and 

92.27% on NEU and MixedWM38, respectively, with only 

20 training samples per class. These experimentations 

indicate that the method can reduce annotation costs and 

increase the defect recognition performance with 

representation learning approach. Future research will 

focus on applying the supervised contrastive learning and 

combining the segmentation target to further improve 

image representation. 
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