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Abstract—The use of 1-bit representation for network 

weights, as opposed to the conventional 32-bit, has been 

investigated to save on the required power and memory 

footprint. Squeeze-and-Excitation (SE) based channel 

attention techniques aim to further reduce the number of 

parameters by eliminating redundant channels. However, 

this approach leads to a significant drawback of an unstable 

and slow learning curve, especially when compared to fitting 

parameters in SE networks. To address this issue, this paper 

presents the first attempt to accelerate the learning curve, 

even with a 1-bit representation for weights across the entire 

Squeeze-and-Excitation Residual Network (SEResNet14). 

The proposed technique within the SE module significantly 

speeds up channel attention, yielding a steeper learning curve 

for the network. We also extensively investigate the impact of 

activation functions within the SE module, aiming to 

understand their performance-enhancing attributes when 

applied with the proposed technique. Experimental results 

demonstrate that even under stringent compression, an 

appropriate choice of activation function can still ensure the 

efficacy of our technique in the SE module. We found that the 

proposed technique results in: (1) a 60% reduction in the 

required number of epochs to achieve an error rate of 0.3; 

and (2) a decrease in the error rate by approximately 44% at 

the 10th epoch, compared to a baseline method that does not 

use the proposed scheme. 
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Squeeze-and-Excitation (SE) attention mechanism, 1-bit 
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I. INTRODUCTION 

Deep learning has revolutionized various applications 

within the realm of computer vision, with Convolutional 

Neural Networks (CNNs) emerging as a predominant 

architecture. Modern high-performance CNNs often 

consist of recurring blocks with identical structures [1–7], 

leveraging principles from residual learning [8–10], and 

utilizing depthwise separable convolutions [11]. While 

these networks have demonstrated an impressive 

performance with 32-bit representation for the weight and 

the activation, it poses significant challenges to deploy 

them in real-world scenarios, especially on stringent power 

and memory-footprint constrained devices. 

 One approach to address this issue is to use the 

binarized (using 1 bit) representations for the model 

parameters, aiming to reduce the required power and 

memory footprint without any significantly sacrificing 

performances. Since the power consumption in the 

network is almost governed by the accesses to external 

memory (i.e., DRAM), which are placed far away from the 

AI chip, eliminating the need for the Dynamic Random-

Access Memory (DRAM) accesses is the most essential 

attempt. It could only be done by reducing the required 

number of parameters to 1/100 so that the almost 

parameters can be stored in the AI chip and the accesses to 

the DRAM can be eliminated, as shown in Fig. 1. Since an 

external DRAM access cause a 100 larger power 

consumption than the internal one, it can reduce the power 

consumption to 1/100. 

 

 

Fig. 1. Concept of how to reduce the energy consumption to 1/100. This 

can only be done by reducing the number of parameters to 1/00. 

Residual Networks (ResNets) were introduced by 

He  et  al. [12] to solve the issues of loss in accuracy 

caused by the gradient vanishing problem. We noticed that 

this invention of the ResNets cause to return to rise of 

exponentially increased number of parameters in deeper 

networks and the increased pressure to introduce the 

stringent reduction of the parameters. The Squeeze-and-

Excitation (SE) attention technique [13–16], introduced by 

Hu et al., offers a channel-wise recalibration to enhance 
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model accuracy without significant computational 

overhead. 

Li et al. [17] integrated Squeeze-and-Excitation (SE) 

blocks into the High-Resolution Network (HRNet), 

leveraging the interdependencies among channels. They 

employed the Squeeze-and-Excitation (SE) attention 

mechanism to enhance and suppress features based on 

these dependencies. The proposed SE-HRNet improves 

the distinction of scene categories by utilizing rich features. 

Zhang et al. [18] used the Squeeze-and-Excitation (SE) 

attention mechanism to improve the network’s ability to 

identify key features for segmentation tasks. Their 

approach focuses on analyzing feature relationships 

without adding complexity or new spatial dimensions to 

the model. This approach improved the predictive 

accuracy of MRSE-Net in global remote sensing image 

water extraction tasks. 

We also noticed that this SE network can be used for 

reducing the number of parameters by eliminating 

redundant channels.  

Thus, key techniques for reducing the number of 

parameters are: (1) compact binarized SE-based ResNets 

(e.g., ResNet14 in this work); and (2) some technologies 

to prevent intolerable side effects caused by using the 

binarization (1-bit quantization) techniques. 

Among the popular compression strategies, 

quantization, especially 1-bit quantization, has shown 

promise in drastically reducing model size. As shown in 

Fig. 2, we can reduce the number of parameters to 1/32 of 

the original size by using the binarization technique. 

However, the size reduction by only relying on 1-bit 

quantization is not enough to store the almost parameters 

in the AI chip when considering in the deployment of 

miniaturized AI. Thus, we noticed that the channel and 

spatial attention techniques will be needed for further 

reduction to 1/4. In this paper, only channel attention by 

SE module will be discussed due to the space limitation. If 

we could reduce the number of model parameters to 1/100 

of the original size, which is current our research goal, then 

almost data accesses between the AI chip and the external 

memory (i.e., DRAM), will not be needed anymore, as 

shown in Fig. 1. 

 

 

Fig. 2. Conceptual diagram of how to squeeze the model parameter size 

to less than 1/100 (i.e., 1/128=1/321/4). 

Thus, we expect to apply the SE attention mechanism 

even under the 1-bit quantization condition to eliminate the 

redundant parameters in the channel direction.  

However, 1-bit SE mechanism and side effects has not 

been discussed in the previous papers. Thus, this paper is 

the first paper to propose and discuss on this topic. 

Activation functions play a crucial role within the SE 

module, as they significantly influence the recalibration 

process. Through the SE module decision, lower weights 

to certain channels are assigned, which means that these 

channels can contribute less to the output. In practical 

applications, further pruning of these channels can 

contribute to reduce the number of parameters. 

Based on the experiment results of SE attention, we 

have noticed that 1/2 of the channel can be pruned and the 

1/2 of the parameters can be removed. 

We have also noticed that the spatial attention can be 

applied to further eliminate the parameters in the spatial 

direction, making it possible to reduce the model 

parameter quantity by over 100 times, as shown in Fig. 2. 

Convolutional Block Attention Module (CBAM) [19] 

integrates both channel and spatial attention mechanisms, 

and it might be the direction we choose for our next 

experiment. 

In this study, we explore the accuracy and speed impacts 

of the novel integration of the SE attention with 1-bit 

quantization in the context of ResNet14 trained on the 

CIFAR-10 dataset. The CIFAR-10 dataset [20], consisting 

of 60,000 3232 color images in 10 classes, has become a 

benchmark for evaluating the performance of various deep 

learning models.  

Our primary goal is to investigate how extreme 

compression (1-bit quantization) affects the efficacy of the 

SE attention modules, providing the insights for further 

optimizations in ultra-compact AI deployments. 

We have proposed a method to channel Feature Maps 

Binarization (FMB), in which some intermediate values in 

the channel attention during the early stages of training are 

forcibly binarized to investigate its impact on the model 

accuracy. This study compared the learning curves to 

investigate how much the proposed technique can 

contribute to reduce the error rate and required number of 

epochs to reach a certain error rate among the cases for 

using the different precisions: (1) float32bit as a baseline; 

(2) 1bit without using the proposed FMB technique; and 

(3) 1bit with using the FMB. We also examined the impact 

of the activation function of the SE module.  

The main contributions of this article can be 

summarized as follows. 

(1) We have investigated the impact of the activation 

functions in the SE module under 1-bit quantization on the 

model accuracy and speed of the learning curve. We 

compared those between the two cases for using the Tanh 

and Sigmoid activation functions. 

(2) We have proposed the FMB technique and 

demonstrated that even under 1-bit quantization conditions, 

binarizing the output channel feature maps in the SE 

module is effective for enhancing model accuracy. 

(3) Based on the binarization of channel feature maps, 

we also conducted additional discussions on the choice of 

activation functions. 
The rest of this article is organized as follows. 

Section  II elucidates the issues encountered with 
SEResNet14 under 1bit binarization. In Section III, we 
provide a detailed introduction to our proposed technique. 
We discussed the results in Section IV. In Section V, we 
conclude this article. 
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II. PROBLEM STATEMENT 

A. Accuracy Loss Caused by Low Bits 

When the parameters in deep learning models are 

quantized with 1-bit, one primary concern is unstable 

bang-bang behaviors in the learning curves, resulting in the 

loss in accuracy and error reduction speed. 1-bit 

quantization (i.e., binarization) is a method to represent the 

numerical values for the weights and activation in the 

neural network instead of the full bit (32 bits) 

representation. This process is particularly critical for 

deploying the models on the resource-constrained devices 

where memory footprint and computational power are 

limited. 

Abdolrashidi et al. [21] achieve state-of-the-art results 

on ImageNet for 4-bit ResNet-50 with quantization-aware 

training, obtaining a top-1 eval accuracy of 77.09%. They 

concluded that 4-bit quantization is the optimal choice for 

balancing accuracy and parameter quantity, but in this 

article, extreme binarization is our goal of effort. 

However, the shift from a 32-bit floating-point precision 

to a binarized one inherently causes approximating error 

(i.e., quantization error). For instance, in floating-point 

representation, there’s a wide range of values that can be 

captured, ensuring that the minute differences between 

weights can be distinguished. But when we move to the 1-

bit representations, many different weights may get 

rounded off to the same value (e.g., +1/−1) due to the lack 

of granularity, leading to a significant loss of precision. 

In particular, big quantization errors in 1-bit 

representation can lead to an unstable bang-bang behavior 

in the learning curves, resulting in a slow-down of the error 

reduction speed. This effect becomes particularly 

noticeable in the networks with delicate architectures or 

those handling complex tasks. The balance between the 

number of bits used for quantization and the accuracy of 

the network becomes a critical design consideration. 

When directly quantizing the 32-bit SEResNet14 to  

1-bit, there is the significant losses in an accuracy and the 

speed of error reduction, as shown in Fig. 3. 
 

 

Fig. 3. Learning curve comparisons between the two cases for using 

Float32 and 1 bit for SEResNet14 model. 

In some cases, post-quantization fine-tuning might be 

employed to recover some of the lost accuracy. This 

involves retraining the quantized model for a few epochs 

to adjust to its new, approximated weight values. However, 

even with fine-tuning, there might still be a noticeable drop 

in performance, especially when extremely low bit-widths 

(i.e., 1-bit) are chosen. 

That is to say that, while low-bit quantization offers 

advantages in memory savings and computational 

efficiency, it comes at the cost of accuracy due to the 

inherent approximation involved. The challenge is to find 

the sweet spot where the benefits of quantization outweigh 

the potential decrease in model performance. 

B. Completion Degree of Channel Feature Map 

Based on our research, we found that the channel 

attention for the shallow compact networks (ResNet14) 

cannot be well achieved in the early stages of training, and 

it usually takes a few more EPOCHs to achieve a complete 

channel feature map. The following figure shows the 

channel attention map outputs in the first round of EPOCH 

from the SE module 1, located in the first block of 

SEResNet14. It shows that most of the attention outputs 

are perfectly classified as 0 and 1, but there are still a few 

intermediate values, as shown in Fig. 4. The existence of 

these intermediate values may affect the convergence 

speed of the whole model. 
 

 

Fig 4. The channel feature map outputs from SE1 at the first round of 

training. 

We found that those intermediate values are almost 

completely classified as 0 and 1 at the round of 10 

(EPOCHs = 10), as shown in Fig. 5. 
 

 

Fig. 5. The channel feature map outputs from SE1 at the 10th round of 

training. 
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III. PROPOSED TECHNIQUES 

This section introduces our two proposed methods: (A) 

replacing the activation function in the SE module; and (B) 

the method to channel Feature Maps Binarization (FMB). 

A. Activation Function of SE Module 

In order to clarify how much of each feature map is 

useless and useful in the channel direction in practical use, 

we saved the number of the required feature maps in the 

channels at different depths of the network and attempted 

to find which connections can be pruned from them. 

We found through many trials that the selection between 

the tanh and sigmoid functions in the SE module can affect 

the overall model accuracy. In recent years, various studies 

have highlighted that, under low-bit quantization scenarios, 

the Tanh activation function outperforms many of its 

counterparts [22]. In this experiment, we tested the model 

accuracy using the tanh and sigmoid functions separately, 

while combining with another proposed channel Feature 

Maps Binarization (FMB) method. 

B. Channel Feature Map Binarization (FMB) 

We found that the channel Feature Maps Binarization 

(FMB) enforces binary classification on certain 

intermediate values during the initial phase of model 

training. For the Sigmoid function, whose outputs are 

widely distributed in the range from 0 to 1, it takes more 

EPOCHs to finalize the decision. To solve this issue, we 

newly introduce the threshold to accelerate the decision. 

For example, the threshold for Sigmoid function is 0.5, 

output values greater than 0.5 are classified as 1, while 

values less than 0.5 are classified as 0. 

In Eq. (1), 𝐹 denotes the input feature map, which is a 

three-dimensional array with dimensions C×H×W, where 

C, H, and W represent the number of channels, the height, 

and the width, respectively. 

 𝐹 ∈ 𝑅𝐶×𝐻×𝑊  (1) 

In Eq. (2), 𝑀𝑐 represents the channel weights output by 

the SE module, which is also a three-dimensional array, 

but each channel (of the 𝐶  channels) has only one unit 

(1×1), meaning that each channel has a specific weight. 

 𝑀𝑐 ∈ 𝑅𝐶×1×1 (2) 

In Eq. (3), these two formulas define two weight 

matrices 𝑊0 and 𝑊1, which are used in the fully connected 

layers of the SE module. Here, 𝑟 is a reduction ratio, used 

to adjust the complexity and the number of parameters of 

the model. 𝑊0 reduces the number of channels from 𝐶 to 

𝐶/𝑟 , while 𝑊1  increases it back from 𝐶/𝑟  to 𝐶 . In this 

study, the reduction ratio is set to 1. 

 𝑊0 ∈ 𝑅𝐶/𝑟×𝐶  𝑎𝑛𝑑 𝑊1 ∈ 𝑅𝐶×𝐶/𝑟 (3) 

In Eq. (4), first, global average pooling is applied to the 

input feature map 𝐹 to obtain the global feature of each 

channel. Then, two fully connected layers, 𝑊0 and 𝑊1, are 

used to learn the relationships between channels, with an 

activation function 𝑅𝑒𝐿𝑈  between these two fully 

connected layers. Finally, either 𝑆𝑖𝑔𝑚𝑜𝑖𝑑  or 𝑇𝑎𝑛ℎ 

function is applied to output the weights 𝑀𝑐  for each 

channel. 

             𝑀𝑐(𝐹) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) 

 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊1 (𝑅𝑒𝐿𝑈 (𝑊0(𝐹𝑎𝑣𝑔
𝑐 )))) (4) 

In contrast, for the 𝑆𝑖𝑔𝑚𝑜𝑖𝑑  function, whose outputs 

values are distributed between 0 and 1, we use 0.5 as a 

threshold. Values greater than 0.5 are set to 1, and those 

less than 0.5 are set to 0, as shown in Eq. (5).  

 𝑀𝑐
′(𝑀𝑐(𝐹)) = {

1, 𝑀𝑐(𝐹) ≥ 0.5

0, 𝑀𝑐(𝐹) < 0.5
 (5) 

For the Tanh function, whose outputs values are 

distributed between −1 and 1, we use 0 as the threshold. 

Values greater than 0 are set to 1, and those less than 0 are 

set to −1, as shown in Eq. (6).  

 𝑀𝑐
′(𝑀𝑐(𝐹)) = {

1, 𝑀𝑐(𝐹) ≥ 0

−1, 𝑀𝑐(𝐹) < 0
  (6) 

In Eq. (7), the final output 𝐹′ of the SE Module is given 

by the product of the original feature map 𝐹  with the 

adjusted channel weights 𝑀𝑐
′  obtained above.  

 𝐹′ = 𝑀𝑐
′(𝑀𝑐(𝐹)) ⊙ 𝐹 (7) 

In Fig. 6, to more intuitively demonstrate the effect of 

the proposed FMB, we have plotted the frequency 

histograms of the channel feature maps output from the 

SE1 module before and after binarization. 

 

 
(a) w/o using FMB 

  
(b) w/ using FMB 

Fig. 6. Comparison of output feature map value distributions between 

the cases of (a) w/o and (b) w/ using FMB technique. 
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In PyTorch, the “torch.where” function is an extremely 

useful tool that allows for selecting elements from two 

tensors based on a condition. The functionality of Eq. (1) 

and Eq. (2) can be effectively implemented using 

“torch.where”. 

IV. RESULTS AND DISCUSSION 

A. Impacts of Activation Function of SE Module 

In the Squeeze and Excitation (SE) module, the choice 

of activation function depends on the required nonlinear 

conversion effect, and the Rectified Linear Unit (ReLU) 

function is usually used to introduce nonlinearity in the 

Squeezed operation. Sigmoid can convert values between 

0 and 1 to generate attention weights, typically during the 

SE module’s citation process. 

However, we have found that using the sigmoid 

activation function for the SEResNet14 under the stringent 

condition of using 1-bit quantization does not necessarily 

bring a good result. 

Fig. 7 shows the comparisons of the learning curves for 

1bit quantized SEResNet14 between the two cases for 

using Sigmoid and Tanh activation functions in SE 

modules (The error rate mentioned in this study refers to 

the TOP1 error rate). As can be seen in Fig. 7, the case for 

using the Tanh for the activation function is slightly better 

than the case for using the Sigmoid function under the 

stringent conditions of 1-bit quantization environment. 

This can be due to the advantages from the Tanh, which 

the 0 inputs will be mapped near zero and differentiable 

and negative and positive inputs will be mapped more 

strongly toward −1 and 1, i.e., strong splitting manner 

compared with the cases for the Sigmoid. It can be said 

that using Tanh provides a better matching with 1-bit 

quantization technique without using the FMB as the 

activation function, resulting in larger contribution for 

better learning curves. This will be discussed in the 

following sub-section more in detail. 
 

 

Fig. 7. Comparisons of the learning curves between the two cases 

between using Sigmoid and Tanh for the activation functions in 1bit 

quantized SE module for SEResNet14. 

B. Impacts of FMB Technique 

In Table I, we picked up the value from Fig. 8 to 

compare how much each technique combination 

contribute to reduce the error rate for the four cases in the 

SE processes using: (1) Sigmoid with FMB; (2) Tanh with 

FMB; (3) Tanh only w/o using FMB; and (4) Sigmoid only 

w/o using FMB as baseline. Based on Table I, it is found 

that the combination of using the Sigmoid and the FMB 

can provide the best reduction of the error rate and its 

speed. 

TABLE I. ERROR RATE REDUCTION PERCENTAGES BROUGHT BY USING 

THE COMBINATIONS OF FMB AND ACTIVATION FUNCTIONS FOR 1-BIT 

AFTER TRAINING 9 EPOCHS 

Activation Functions w/ using FMB w/o using FMB 

Sigmoid 44.64% 0% (baseline) 

Tanh 40.72% 19.95% 

 

In Table II, we compare the error rate for the 1-bit 

quantized model at the 6th epoch. Here, we introduce the 

results for the conventionally usual used Float32 case for 

comparison. We found that even under 1-bit quantization 

conditions, thanks to using the Sigmoid/Tanh active 

functions combined with the FMB method in the SE 

module can outperform the error rate for the case of using 

the Float32 in the early stages of training. This highlights 

the efficacy of the FMB method in enhancing error rate 

and its reduction speed.  

TABLE II. ERROR RATE COMPARISONS AT 6TH EPOCH BETWEEN THE 

THREE CASES OF (1) SIGMOID WITH FMB IN 1-BIT, (2) TANH WITH FMB 

IN 1-BIT, AND (3) SIGMOID W/O USING FMB IN 32-BIT 

Evaluation 

Metrics 

Sigmoid 

w/ using FMB 

Tanh 

w/ using FMB 

Float32  

w/o using FMB 

Precision 1-bit 1-bit 32bit FP 

Activation Sigmoid Tanh Sigmoid 

Error Rate 36.27% 46.54% 50.29% 

 

We also presented detailed learning curves in Fig. 8 to 

illustrate the extent of improvement when using FMB 

compared to not using it. It is most worthy of notice that 

the relationship of the degree of enhancement between 

Sigmoid and Tanh is completely reversed depending on 

the cases for w/ and w/o using FMB. It is clearly shown 

that Sigmoid and Tanh provide a better error reduction, 

respectively, as shown in Fig. 8. 

 

 

Fig. 8. When employing various activation functions with FMB, the 

model’s error rate decline curve is presented as follows in 1bit 

SEResNet14. 
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It is evident from for the early stages of training, such 

as the first 50 epochs, that the model with the Sigmoid 

activation function combined with the FMB technique in 

the SE module provides the fastest decline in the error rate. 

This is contrary to the phenomenon observed when the 

cases without using FMB, where Tanh outperforms the 

Sigmoid function, as shown in Fig. 7. 

If we set a fixed target error rate of 30%, using the 

Sigmoid function combined with the FMB technique 

provides to meet the target within 9 epochs. In contrast, 

when only using the Sigmoid function, it takes 23 epochs. 

This means a 60% speed-up of the learning curve, which 

the required EPOCHs are reduced from 23 to 9, is provided 

by using the proposed FMB with Sigmoid active function 

in the SE module, as shown in Table III.  

TABLE III. COMPARISON OF THE REQUIRED EPCHS TO REACH AT 30% 

ERROR RATE 

Evaluation 

Metrics 
w/ using FMB w/o using FMB 

Epochs 9 23 

Error rate 30% 30% 

Precision 1-bit 1-bit 

 

Fig. 9 shows the acceleration of the learning curve with 

using the FMB. It is due to the speed up of the channel 

attention provided by the FBM mechanism.  
 

 

Fig. 9. Comparisons of the learning curves between w/ and w/o using 

FMB for using Sigmoid activation for 1-bit precision model. 

C. Discussions 

The technique proposed in this study, including the 

binarization of SE channel feature maps and the 

replacement of activation functions, can significantly 

mitigate the error rate degradation caused by 1-bit 

quantization. This ensures that the faster learning curve for 

the 1-bit quantized model can be realized even if compared 

with the FP precision in the initial training phases. As 

shown in Fig. 10, after 100 training epochs, the differences 

in the error rate seem to be smaller. This is because more 

other factors can be involved and highlighted around the 

error rate of 12% for the TOP1 accuracy. To make the 

effectiveness of the proposed technique more highlighted, 

we focused on the steep error rate reduction phases in this 

paper. 
 

  

Fig. 10. Comparisons of the learning curves across the whole EPCHs 

until 100. 

V. CONCLUSION 

This paper proposed the channel Feature Maps 

Binarization (FMB) technique and investigates the optimal 

pairing with activation functions to lower the error rate and 

increase the speed of error reduction during phases of steep 

learning curves. 

Based on the results, the proposed FMB technique for 

speed up the channel attention can significantly contribute 

to realize the reductions in the error rate and the required 

number of the training iterations to achieve the target error 

rate.  

According to the summaries in Tables I–III, the 

following reductions compared with the baseline are 

provided by the proposed techniques: 

1) About 45% error rate reduction with the 

combination of the FMB and Sigmoid activation 

functions (Table I). 

2) Even compared with the 32bit FP precision (50.3%), 

smaller error rate of 36.3% can be realized 

(Table  II). 

3) The required number of epochs can be reduced 

from 23 to 9 to reach the error rate of 30% 

(Table  III). 
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