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Abstract—Leaf disease classification faces significant 

challenges due to dataset imbalances, particularly within 

minority classes, leading to decreased model accuracy. This 

study addresses this problem by introducing EdgeCutMix, a 

novel image augmentation technique designed to enhance the 

representation of minority classes. EdgeCutMix integrates 

edge detection, using the Canny edge detection algorithm, 

and selective mixing strategies to generate realistic and 

informative augmented images. The Plant Pathology 2020 

dataset, consisting of 3,642 apple leaf images, was used for 

evaluation. The experimental setup involved oversampling 

and comparison against existing techniques like MixUp, 

CutOut, CutMix, and Mosaic, and training on four CNN 

architectures: MobileNetV2, EfficientNetB7, ResNet50, and 

DenseNet201. Results showed that EdgeCutMix significantly 

improved classification accuracy for minority classes, 

achieving up to 98% accuracy with the EfficientNetB7 model. 

These findings suggest that EdgeCutMix provides a 

promising solution for improving model performance in 

imbalanced datasets, with potential applications in advancing 

deep learning in agricultural pathology. 
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I. INTRODUCTION 

The detection and classification of leaf diseases are 

critical in agriculture, directly impacting crop yields and 

resource management [1–3]. Deep learning, particularly 

Convolutional Neural Networks (CNNs), has emerged as 

a formidable tool in this domain due to its ability to process 

and analyze complex image data [4–6]. However, a 

significant challenge in this field is the imbalanced nature 

of datasets, where some diseases are substantially 

underrepresented [7, 8]. This imbalance often leads to 

biased models that perform well on common diseases but 

poorly on rare ones, which can be devastating given their 

potential impact on crops [7]. This phenomenon has been 

thoroughly discussed in the literature, highlighting the 

need for strategies to manage dataset imbalances [7–9]. 

For instance, studies have shown that traditional 

machine learning models trained on imbalanced 

datasets tend to have inflated overall accuracy metrics, 

which mask poor predictive performance on minority 

classes. This situation underscores the need for 

techniques that specifically address data imbalance to 

ensure robust, accurate disease classification across all 

classes, as discussed in the literature on learning from 

imbalanced data [7, 10]. 
In response to this challenge, our study introduces 

EdgeCutMix, an innovative data augmentation technique 

that enriches the training dataset by intelligently blending 

images based on edge detection and selective mixing. 

Unlike traditional augmentation methods like rotation and 

flipping, which do not necessarily address class 

imbalances, EdgeCutMix specifically enhances the 

representation of underrepresented classes, thus mitigating 

the model’s bias towards more frequent conditions. This 

approach draws inspiration from proven techniques in the 

literature, such as CutMix and MixUp, which have been 

noted for their efficacy in model performance 

enhancement across varied scenarios [11, 12]. 

EdgeCutMix distinguishes itself from existing methods 

through its unique integration of edge detection algorithms, 

which ensure that critical features of the diseases are 

preserved during the augmentation process. This is crucial 

for maintaining the diagnostic integrity of the images. The 

technique’s novelty also lies in its ability to blend features 

from different classes strategically, enhancing the 

dataset’s diversity without compromising the quality of the 

training data. Theoretically, EdgeCutMix is grounded in 

the principles of both edge enhancement and region-based 

mixing, drawing from the strengths of methods like 

CutMix and MixUp but optimizing them to handle the 

nuances of plant disease imagery [11, 12]. 

By addressing these specific challenges and filling a 

notable gap in current augmentation methodologies, 

EdgeCutMix contributes to advancing the field of plant 

pathology through deep learning. This paper will detail the 

algorithm’s implementation, supported by a mathematical 

framework that illustrates how EdgeCutMix modifies the 

training process to achieve a more balanced and 

representative dataset, ultimately leading to improved 

model performance and reliability in real-world 

agricultural settings.   

Manuscript received April 1, 2024; revised June 6, 2024; accepted 

August 1, 2024; published November 27, 2024. 

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1295doi: 10.12720/jait.15.11.1295-1303



The remainder of this paper is organized as follows: 

Section II reviews related work highlighting the gap that 

EdgeCutMix aims to fill. Section III describes the 

EdgeCutMix algorithm, including its theoretical 

underpinnings and implementation steps. Section IV 

presents the experimental setup, datasets, and metrics used 

for evaluation. Section V offers a comparative analysis of 

EdgeCutMix against benchmark techniques. Finally, 

Section 6 concludes the paper with a summary of findings 

and potential directions for future research. 

II. LITERATURE REVIEW 

One way to overcome sample imbalance in leaf disease 

classification using CNN is through data augmentation, 

which involves image manipulation to create additional 

variation in training data, enriching the minority class [8]. 

Augmentation techniques such as translation, rotation, 

flipping, brightness adjustment, and color scale changes 

help the model recognize essential features of the minority 

class, even though the number of original samples is 

limited [10]. This not only increases accuracy for the 

minority class but also helps reduce bias towards the 

majority class, making the model more efficient in 

identifying various leaf disease conditions [13, 14]. 

Traditional augmentation techniques such as image 

scaling, translation, or rotation are generally effective in 

improving DL image classifier accuracy. However, the 

impact of certain augmentations depends on the dataset’s 

characteristics and the existing tasks [15]. 

Advanced/modern data augmentation strategies such as 

MixUp, CutOut, Mosaic, and Cutmix, which mix and 

remove different image regions, have recently gained 

popularity because the images produced by these 

approaches are still around the original data 

distribution  [11, 12]. Models trained with this new data 

generalize well to data variations, avoid overfitting, and 

achieve robustness to data corruption by focusing on the 

complete structure of the object [16]. Advanced data 

augmentations like Generative Adversarial Network 

(GAN) introduce higher complexity and more substantial 

variation by creating new images that combine existing 

features [17]. 

This research draws inspiration from various image 

augmentation techniques previously developed, yet with a 

specific focus on addressing the issue of leaf disease 

classification in minority classes. In this literature review, 

the approach, EdgeCutMix, is compared with key other 

techniques discussed in the literature, such as MixUp [12], 

CutOut [18], CutMix [11], and Mosaic [19], highlighting 

the unique contribution to the field. 

Below is an enhanced analysis of commonly used 

augmentation methods, highlighting their limitations and 

effectiveness, specifically in the context of leaf disease 

classification: 

A. MixUp 

MixUp [12] is a technique that generates new training 

samples by linearly interpolating between pairs of images 

and their labels. While it is praised for increasing model 

robustness and enhancing data diversity, MixUp often 

creates non-realistic images. This characteristic can lead to 

confusion in models, especially when distinguishing subtle 

features of leaf diseases, as the mixed images may not 

accurately represent valid disease presentations. 

Furthermore, studies have shown that while MixUp 

generally improves model generalization, it can impede 

performance in specialized tasks like leaf disease 

classification, where accurately identifying specific 

morphological features is crucial. 

MixUp creates a new training sample (x̃, ỹ) by 

combining two existing samples (xi, yi) and (xj, yj) using a 

weighted average: 

�̃� = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗  
(1) 

�̃� = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗  (2) 

where λ is a weight factor typically drawn from a Beta 

distribution Beta(α, α) for some α > 0. 

B. CutOut 

CutOut [18] is a data augmentation technique that 

enhances model robustness by randomly masking out 

sections of input images during training. However, this 

method carries certain limitations; it might inadvertently 

remove critical features of diseases, particularly in 

instances where symptoms cover only a small area of the 

leaf, potentially leading to underfitting in minority classes. 

Despite these issues, CutOut can significantly improve 

robustness against overfitting. Nevertheless, the 

technique’s inherent randomness can sometimes result in 

substantial information loss, which may negatively impact 

accuracy in specific disease classifications. 

CutOut removes a random square patch from an input 

image (x), resulting in a modified image (x̃): 

�̃� = 𝑥 ⨀ 𝑚𝑎𝑠𝑘 (3) 

Here, ⊙ denotes element-wise multiplication, and mask 

is a binary matrix the same size as x where a randomly 

chosen region is set to zero. 

C. Mosaic 

Mosaic [19] is an augmentation technique that stitches 

together four training images into a single one, thereby 

enhancing the context variability that the model 

experiences during training. Although this method 

introduces high variability, it also increases the complexity 

of the learning task, which can potentially confuse the 

model regarding which features are relevant for disease 

classification. This technique offers better detection 

capabilities in complex scenes; however, its effectiveness 

in leaf disease classification may vary. This variation often 

depends on the degree of symptom overlap between the 

combined images, which can either aid or hinder the 

model’s ability to correctly identify diseases. 

Mosaic combines four training images (x1, x2, x3, x4) into 

a single new image (x̃) by arranging them in a 2×2 grid 

pattern: 
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where h and w are the image height and width, and (r,c) 

are pixel coordinates. 

D. CutMix 

CutMix [11] is an innovative data augmentation 

technique that merges elements of MixUp and CutOut by 

cutting and pasting patches between training images. 

Although this approach enhances data robustness, its 

random nature regarding patch selection and placement 

may disrupt the spatial coherence of disease signs. This 

disruption can lead to challenges in effectively learning 

important local features, potentially weakening the 

model’s performance in specific contexts. While CutMix 

generally improves model robustness, it can be less 

effective for diseases characterized by localized symptoms. 

This is due to the technique’s potential to obscure critical 

features necessary for accurate disease identification. 

CutMix specifically cuts and pastes patches between 

training images. Given images (xa, xb), combining regions 

from both creates a new sample (x̃, ỹ). A binary mask (M) 

defines the mixing ratio and area. 

�̃� = 𝑀⨀𝑥𝐴 + (1 − 𝑀)⨀𝑥𝐵 (5) 

�̃� = 𝜆𝑦𝐴 + (1 − 𝜆)𝑦𝐵 (6) 

Here, M ∈ {0, 1}^(w x h) is the mask, λ is a mixing 

coefficient from Beta(α, α), and ya, yb are the one-hot 

encoded labels for xA and xB, respectively.  

The region selection is based on a random bounding box 

B = (rx, ry, rw, rh), where (rx, ry) is the top-left corner and 

(rw, rh) is the width and height. 

CutMix encourages models to learn from broader 

features across different image parts, potentially 

improving robustness and generalization. 

III. MATERIALS AND METHODS 

A. Dataset Preparation 

The study used the Plant Pathology 2020 dataset from 

Kaggle’s. It features 3,642 high-quality RGB apple leaf 

images (2,048×1,365 pixels) with annotations for diseases 

like scab, rust, multiple diseases, and healthy conditions, 

as detailed in Fig. 1. Most leaves show scab or rust 

symptoms, with only 5.0% displaying multiple diseases, 

indicating a significant imbalance. As found in several 

studies [20, 21], this dataset imbalance affects training, 

leading to higher accuracy for more common conditions 

over less frequent ones. 

 

Fig. 1. Dataset distribution of the Plant Pathology 2020. 

B. EdgeCutMix Augmentation Technique 

The conceptual model titled “EdgeCutMix,” depicted in 

Fig. 2, presents a workflow for processing a series of 

images, ranging from Image_1 to Image_n, to create an 

augmented image through structured steps. The process 

initiates with the random selection of ‘m’ images from the 

pool of available images. These selected images are then 

subjected to three primary stages of processing: 

 

 

Fig. 2. Conceptual Model EdgeCutMix. 

 

1) Phase 1: EDGE 

The objective of this phase is to identify and highlight 

the critical edges within images that signify disease 

symptoms. For implementation, we applied the Canny 

edge detection algorithm to extract high-contrast edges, 

which serve as markers for important features in 

subsequent phases. 

The first Phase involves applying an edge detection 

algorithm to identify image boundaries. The Canny edge 

detector, for instance, can be mathematically represented 

by the gradient of the image intensity function, where edge 

points are identified as local maxima of the gradient 

magnitude: 
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Here, I represent the image intensity function, and ∂I/∂x 

and ∂I/∂y are its partial derivatives along the x and y axes, 

respectively. The detected edges serve as a mask, 

highlighting the essential features for further processing. 

2) Phase 2: CUT  

The objective of this phase is to segment the images 

based on the detected edges, isolating important features 

for further augmentation. For implementation, we use the 

edge maps as masks to crop out Regions of Interest (ROI), 

preparing them for mixing. These ROIs focus on disease-

specific features, ensuring their prominence in the 

augmented images. 

Utilizing the mask Me from the EDGE phase, the CUT 

phase focuses on cropping the regions of interest. The 

cropping is guided by a bounding box B calculated from 

Me, which encapsulates the detected features. The 

operation can be visualized as applying the mask Me to the 

original image I, then cropping to the bounding box: 

               

𝐼𝑐 = 𝐼⨀𝑀𝑒|𝐵   (8) 

where Ic is the cropped image, and ⊙ denotes element-

wise multiplication applied within the bounds of B. 

3) Phase 3: MIX 

The objective of this phase is to synthesize new images 

by intelligently blending cropped regions from multiple 

images. For implementation, cropped ROIs from different 

images are combined based on a set of predefined rules 

that maintain the natural appearance and variability of the 

diseases, resulting in a balanced and enriched dataset. 

In the MIX phase, cropped images from different 

sources are combined into a single augmented image. This 

process involves creating a composite mask Mc that 

outlines how each cropped image Ic should be placed 

within the new image layout. Let Ia1, Ia2, ..., Ian represent 

the combined augmented images, and Mc1, Mc2, ..., and Mcn 

their corresponding masks. The final augmented image Ia 

can be represented as:  

𝐼𝑎 = ∑ 𝐼𝑎𝑖  ⨀𝑀𝑐𝑖
𝑛
𝑖=0   (9) 

Each Iai ⊙ Mci represents a cropped image placed 

according to its mask within the larger composite image. 

The EdgeCutMix process can be seen in Fig. 2. 

C. Augmented Target Dataset 

The dataset of apple leaf diseases from Kaggle Plant 

Pathology 2020 consists of four classes: “Healthy”, 

“Multiple_diseases”, “Rust”, and “Scab”. The “Healthy” 

class has 516 images, while the “Multiple_diseases” class 

has the fewest samples, only 91 samples. The Rust and 

Scab classes have more samples, with 622 and 592 images, 

respectively. “Multiple_diseases” as the minority class 

poses a problem due to the lack of data samples. This leads 

to less accurate classification, especially because it shares 

characteristics with two other diseases, making it easily 

confused with other classes. To address this issue, data 

augmentation is performed on the “Multiple_diseases” 

class by adding 509 images, bringing the total to 600. This 

augmentation aims to balance the number of samples in 

each class and improve classification accuracy. Two 

randomly selected images from the ‘Rust’ and ‘Scab’ 

classes, each with dimensions of 512×512 pixels, are 

arranged in a 2×2 grid. Each grid cell represents an image 

of the same size, 512×512 pixels. The images from the 

“Multiple_diseases” class that have been augmented to 

reach 509 images are then resized to fit the grid size 

(512×512 pixels). 

D. Experimental Setup 

The implementation was carried out using Python, 

incorporating the OpenCV library for image processing 

and TensorFlow for model training. The selection and 

tuning of hyperparameters were pivotal in optimizing the 

performance of the model. Guided by preliminary tests that 

evaluated sensitivity to various settings, specific 

parameters such as the learning rate, number of epochs, 

and batch size were meticulously optimized. Initially, a 

learning rate of 1e−4 was chosen, which was adjusted 

based on the plateauing of validation loss observed during 

initial trials. The number of epochs was set at 25 after it 

was noted that prolonged training did not significantly 

enhance performance and instead increased the risk of 

overfitting. The batch size was established at 32 to strike a 

balance between computational efficiency and the stability 

of gradient updates. 

E. Validation of Augmented Data 

EdgeCutMix augmented data was validated using a 

feature distribution analysis approach. This entailed 

employing statistical methods to analyze and compare the 

feature distributions between the original and augmented 

datasets, focusing on measures such as mean, median, 

mode, skewness, and kurtosis of critical features. The goal 

was to verify that the augmentation process preserved the 

essential characteristics of the data while introducing 

desirable diversity. This analysis ensures that any changes 

in the statistical distribution of features do not compromise 

the data’s integrity [22]. 

F. Model Training and Evaluation 

EdgeCutMix was implemented in Python using 

OpenCV and TensorFlow libraries. Four CNN 

architectures were used to evaluate the effectiveness of 

EdgeCutMix: MobileNetV2, EfficientNetB7, ResNet50, 

and DenseNet201. Each model was initialized with 

weights pre-trained on the ImageNet dataset. Training was 

conducted using a split of 80% of the images for training 

and 20% for validation. The Adam optimizer, with a 

learning rate 1e−4, was utilized, and models were trained 

for 25 epochs. The training process incorporated standard 

data augmentation techniques (rotation, zoom, and 

horizontal flipping) alongside EdgeCutMix to investigate 

the synergistic effect on model performance. During the 

training process, fine-tuning was performed by adjusting 

the learning rate to monitor overfitting. 
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G. Performance Evaluation 

The performance evaluation was conducted based on 

accuracy derived from the confusion matrix to assess the 

model’s effectiveness across all classes comprehensively. 

Additionally, loss was continuously monitored to detect 

any signs of overfitting.  

IV. RESULT AND DISCUSSION 

A. Augmented Data 

The following figure presents a comparative view of 

innovative data augmentation methods to enhance model 

robustness and improve learning efficiency. Fig. 3 

illustrates examples of five distinct data augmentation 

techniques. The CutOut technique is demonstrated by a 

randomly placed black box on a leaf, eliminating some 

visual information as a form of regularization. MixUp 

depicts two leaf images superimposed on each other with 

transparency, amalgamating the visual features and labels 

from both images to generate a more diverse input for the 

model. CutMix appears as a segment from one leaf placed 

on another, creating a hybrid image with parts from both 

sources. 

Meanwhile, Mosaic combines four leaf images into one 

by dividing the image area into four segments, each 

displaying a portion of a different image. This allows the 

model to learn from a more complex context within a 

single image. Lastly, Cutegdmix presents multiple leaves 

with cuts that appear smoother and more integrated, 

indicating that this technique prioritizes precision in 

cutting and more natural integration of the mixed images. 

Mosaic and Cutegdmix offer more significant variation 

within a single image than the other techniques. 

 

 

Fig. 3. Visualize a sample image of mixing augmentation. 

B. Validation of Augmented Data 

Validating augmentation in this way helps ensure that 

augmented data maintains the quality and essential 

characteristics of the original data while adding to its 

diversity. This is crucial for building robust deep-learning 

models that generalize well to new data. 

The validation of data resulting from augmentation The 

statistical analysis employed to validate the augmented 

data focuses on metrics such as mean, median, and 

standard deviation, which are crucial for assessing the 

preservation of essential characteristics in augmented 

images. These metrics help ensure that the augmented data 

maintains a distribution similar to the original dataset, thus 

preserving the critical disease indicators necessary for 

accurate classification. This process reassures us that the 

augmentation has not introduced any bias or distortion that 

could mislead the training of the model. 

The validation of data resulting from augmentation is 

conducted using statistical analysis. This statistical 

analysis employs minimum, maximum, average, median, 

and range metrics to identify disease patterns in leaves for 

each disease class. Visualization uses a histogram of RGB 

color distribution complemented by a Boxplot diagram. 

Fig. 4 shows that for the category of multiple diseases, 

the intensity of color tends to be higher in the green 

channel than in the red and blue channels. The variability 

of pixel intensity (as indicated by the standard deviation) 

is highest in the green channel. The pixel intensity 

distribution in the red and blue channels tends to be more 

symmetrical around the median, considering that the 

median and mean are very close. 

The Red Box Plot: With a median value of 95 and a 

range from 47 to 127, it is observed that the median in the 

red box plot is precisely positioned in the middle of the box, 

and the whiskers encompass the range from 47 to 127. This 

is consistent with the previous interpretation of the red box 

plot. The Green Box Plot: With a median value of 129 and 

a range from 85 to 165, this should also be reflected in the 

green box plot, with the median situated in the middle and 

the whiskers encompassing the range above, by the 

previous description of the green box plot. The Blue Box 

Plot: With a median value of 67 and a range from 28 to 

106, it is observed that the median in the blue box plot is 

closer to the lower quartile of the box. The whiskers extend 

from 28 to 106, consistent with the previous description of 

the blue box plot. 

Based on the statistical results of the augmented data 

from EdgeCutMix Table I, the values within the table 

remain within the range of values on the box plot in Fig. 4. 

Table I shows the statistical results of the augmented data 

from EdgeCutMix. The values within the table remain 

within the range of values on the box plot in Fig. 4, 

indicating that the augmentation process preserves the 

essential characteristics of the data while introducing 

desirable diversity. This validation is crucial for ensuring 

that any changes in the statistical distribution of features 

do not compromise the data’s integrity. 
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Fig. 4. The values of Red, Green, and Blue (RGB) channels are associated with multiple diseases. 

TABLE I. THE EDGECUTMIX STATISTICS OF RGB CHANNELS 

Channel MIN MAX MEAN MEDIAN RANGE STDDEV 

RED 47 127 95.1 95 80 10.417939 

GREEN 85 165 128.7 129 80 10.168322 

BLUE 28 106 67.3 67 78 10.163791 

 

C. Training the Classification Model 

The CNN model is trained using the training data to 

recognize patterns and features associated with each type 

of apple leaf disease. The dataset is divided into two parts, 

namely training data (80%) and validation data (20%) to 

train and test the model. The CNN model with 

MobileNetV2, EfficientNetB7, ResNet50, and 

DenseNet201 architectures is used to identify apple leaf 

diseases based on the provided images. 

Fig. 5 compares the performance of four different deep 

learning model architectures using the EdgeCutMix data 

augmentation technique. There are four models: 

MobileNetV2, EfficientNetB7, ResNet50, and 

DenseNet201. Based on Fig. 5, the EfficientNetB7 model 

with EdgeCutMix obtained the best results regarding 

accuracy and validation loss, indicating that this 

architecture is more suitable for this type of data and 

classifying apple leaf diseases than other architectures in 

this experiment. 

The EdgeCutMix technique on the EfficientNetB7 

model performance showed a perfect training accuracy of 

100% with a high validation accuracy of 98 %. 

Training our classification model provided several 

insights and also presented challenges. For instance, we 

encountered convergence issues in early training phases, 

which were mitigated by adjusting learning rates and 

optimizing batch sizes. Furthermore, the selection and 

tuning of hyperparameters, particularly in balancing the 

trade-off between model complexity and performance, 

were challenging. These experiences underscore the 

delicate balance required in deep learning setups and 

highlight the importance of robust experimental design. 

 

 

Fig. 5. Validation accuracy of EdgeCutMix. 

D. Fine-Tuning 

During the training process of the CNN model, it is 

crucial to monitor overfitting by examining the Training 

Loss vs Validation Loss graph. If the Training Loss 

continues to decrease while the Validation Loss begins to 

increase, this indicates overfitting. To overcome 

overfitting, fine-tuning can be done by adjusting the 

learning rate. The CNN model can become more 

generalized and effectively classify apple leaf diseases by 

fine-tuning. 

The fine-tuning performed on classifying apple leaf 

diseases involves using a learning rate strategy. This 

strategy aims to take advantage of the initial Phase of 

training where the model can learn quickly (ramp-up), then 

allow the model to consolidate what it has learned at a 

higher learning rate (sustain), and finally minimize the 

90%
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learning rate to allow the model to make fine adjustments 

to its weights. The implementation of the “learning rate 

warm-up” strategy where the learning rate gradually 

increases at the beginning of training to aid model 

convergence, then is kept constant to give the model time 

to find a good local minimum, and finally reduced to allow 

the model to refine adjustments at that minimum. The 

learning rate increases significantly at the beginning of 

training (around epoch 0 to 20). Then, the learning rate is 

kept constant from epoch 20 to around 80. Finally, the 

learning rate decreases sharply to approach 0 at epoch 80. 

Based on the training results of the CNN model with 

fine-tuning, the model accuracy graph and model loss 

graph in Fig. 6 can be analyzed as follows: 

1. Initial Training Phase: Both graphs show a significant 

increase in accuracy and a decrease in loss for the training 

and testing sets in the initial training phase. This indicates 

that the initial increasing learning rate strategy (ramp-up) 

has been successful in helping the model to learn quickly. 

2. Sustain Phase: After the ramp-up phase, the learning 

rate remains constant for several epochs (sustain Phase). 

During this period, the model’s accuracy increases slowly, 

and loss decreases, indicating that the model has achieved 

a balance between learning new patterns and reinforcing 

previously learned patterns without significant overfitting. 

3. After the Sustain Phase: After the ramp-up and 

sustain phases, the learning rate should decrease, but based 

on the graphs, no performance decline indicates the need 

for a significant decrease in the learning rate. Thus, 

maintaining a low learning rate (after ramp-up and sustain) 

has been adequate to maintain model convergence. 

 

 
(a) 

 
(b) 

Fig. 6. Training results (a) accuracy (b) loss. 

The accuracy of the testing set remains stable above 

90%, and the loss remains stable below 0.4, indicating 

excellent performance from the model. There are no 

apparent signs of overfitting, as the testing accuracy does 

not decrease, and the testing loss does not show a 

consistent increase. 

The learning rate strategy has successfully achieved 

high performance without causing significant overfitting. 

The ramp-up phase accelerates initial learning, the sustain 

phase allows for learning consolidation, and the 

subsequent learning rate adjustments successfully 

maintain good performance. 

Overall, the results obtained from the effective learning 

rate strategy are in line with the trends shown in the graph. 

The model experiences a steady increase in accuracy and 

a consistent decrease in loss throughout the training 

process, indicating that the learning rate strategy 

contributes positively to the model’s convergence and 

generalization. 

Table II compares the performance of the CNN model 

using the “EdgeCutMix” augmentation technique with 

models using the “MixUp,” “CutOut,” “CutMix,” and 

“Mosaic” augmentation techniques. The results highlight 

that EdgeCutMix combined with base augmentation 

methods provides a good balance between training and 

validation accuracy, reducing overfitting while 

maintaining high accuracy. This comparison demonstrates 

the effectiveness of EdgeCutMix in managing minority 

classes and improving overall model performance. 

TABLE II. COMPARISON OF TRAINING AND VALIDATION VALUES 

No Method 
Training 

Accuracy 

Training 

Loss 

Validation 

Accuracy 

Validation 

Loss 

1 MixUp 1.0000 0.0004 0.9506 0.2867 

2 
MixUp+A

ugBase 
0.9705 0.0756 0.9464 0.2770 

3 CutOut 1.0000 0.0004 0.9356 0.5045 

4 
CutOut+

AugBase 
0.9898 0.0330 0.9700 0.1513 

5 CutMix 1.0000 0.0003 0.9506 0.3856 

6 
CutMix+

AugBase 
0.9775 0.0761 0.9506 0.1655 

7 
EdgeCut

Mix 
1.0000 0.0001 0.9700 0.1704 

8 

EdgeCut

Mix+Aug

Base 

0.9855 0.0494 0.9678 0.1194 

9 Mosaic 0.9989 0.0026 0.9657 0.2051 

10 
Mosaic+

AugBase 
0.9871 0.0427 0.9528 0.2024 

 

From Table II, several points can be derived the 

“MixUp,” “CutOut,” and “CutMix” methods, when used 

alone without base augmentation, provide perfect accuracy 

on training data but not on validation data. This indicates 

overfitting, where the model fits too well with the training 

data and is less generalizable to new data. 

When base augmentation is combined with other 

methods, there is a slight decrease in training accuracy but 

an increase in validation accuracy, indicating a more 

general model and better generalization on unseen data. 

In general, the loss values for the training data are 

shallow, which indicates that the model learns well from 
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the training data. However, the higher loss values in the 

validation data indicate that there is room for improvement 

in terms of model generalization. 

The “CutMix+AugBase” and “EdgeCutMix +AugBase” 

methods provide a good balance between training and 

validation accuracy compared to other methods; this 

shows that these two methods combined with base 

augmentation can reduce overfitting while still 

maintaining high accuracy. 

A significant discrepancy between training and 

validation accuracy, or between training loss and 

validation loss, may indicate issues such as overfitting. 

Perfect training accuracy coupled with lower validation 

accuracy suggests the potential for overfitting. 

The analysis of experimental results provided 

significant insights into the comparative performance of 

different augmentation techniques. Notably, EdgeCutMix 

demonstrated superior efficacy over traditional methods 

like MixUp and CutOut, especially in managing minority 

classes. The selective mixing strategy employed by 

EdgeCutMix, which focuses on preserving critical features 

within images, was instrumental in its enhanced 

performance. These findings highlight the potential 

importance of edge detection in refining augmentation 

techniques for image-based classifications. Looking 

forward, there is a promising avenue for future research to 

integrate more complex edge detection algorithms or to 

combine EdgeCutMix with other advanced data 

augmentation forms to further bolster model robustness. 

 

 

Fig. 7. Comparison of accuracy value based on the confusion matrix. 

Fig. 7 shows the accuracy values of various image 

augmentation techniques calculated based on the 

confusion matrix for an apple leaf disease classification 

model. The accuracy value here represents the total 

proportion of correct predictions to the total number of 

predictions made by the model. These techniques produce 

relatively high accuracy, with EdgeCutMix showing the 

best performance at 98%. From the experiments, it was 

found that basic augmentation sometimes increases and 

sometimes decreases accuracy, depending on the 

augmentation technique used. This indicates that 

augmentation techniques should be used carefully to 

achieve the best results on a specific dataset. 

E. Discussion  

The augmentation method of blending operates by 

randomly selecting two or more images from the training 

data. Cutegdmix is a mixed augmentation method 

encompassing digital image processing, bounding box 

information storage, and creating puzzles from these 

images.  

Table III compares the Cutegdmix method with four 

existing methods based on five criteria. The comparison 

highlights that Cutegdmix excels in cropping precision, 

which is crucial for retaining disease-specific features. 

This table helps in understanding the strengths and 

limitations of different augmentation techniques, guiding 

the selection of appropriate methods based on specific 

dataset characteristics and desired outcomes.  

MixUp, CutMix, Mosaic, and Cutegdmix utilize the 

entire image region and blend images and labels. However, 

only Cutegdmix has high cropping precision, indicating 

more accurate and appropriate cropping in line with the 

essential features in the image. CutOut does not blend 

images or labels and only removes a specific part of the 

image. In terms of the number of image mixings, MixUp 

and CutMix blend two images, while Mosaic and 

Cutegdmix blend four images, suggesting that the latter 

two techniques provide richer data variation for training 

machine learning models. 

TABLE III. COMPARISON AMONG MIXING AUGMENTATION METHODS 

Comparison MixUp CutOut Cutmix Mosaic EdgeCutmix 

Usage of the 

full image 

region 

√ × √ √ √ 

Regional 

dropout 
× √ √ √ √ 

Mixed image 

and label 
√ × √ √ √ 

Precision of 

Cropping 
× × × × √ 

Number of 

image 
mixings 

2 1 2 4 4 

 

In Table III, while Cutegdmix shows promise, its 

qualitative comparison with methods like MixUp and 

Mosaic highlights that no single method is universally 

superior. Cutegdmix excels in precision of cropping, 

which is crucial for retaining disease-specific features. 

However, it may fall short in scenarios requiring broader 

contextual understanding where methods like Mosaic 

might perform better. Understanding these nuances helps 

in selecting the appropriate augmentation technique based 

on specific dataset characteristics and desired outcomes. 

V. CONCLUSION 

In this study, we introduced EdgeCutMix, an innovative 

image augmentation technique specifically designed to 

address class imbalances in leaf disease classification. 

Through the integration of edge detection and selective 

mixing, EdgeCutMix has demonstrated significant 

92%

93%

94%

95%

96%

97%

98%

99%
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improvements in classification accuracy, particularly for 

minority classes which are often underrepresented in 

training datasets. This approach involves generating 

additional samples for minority classes, ensuring a more 

balanced representation within the training dataset. 

EdgeCutMix contributes significantly to the 

advancement of data augmentation techniques by offering 

a method that not only enhances the diversity and balance 

of training datasets but also preserves critical information 

essential for accurate classification. This approach 

addresses one of the key challenges in deep learning, 

promoting more robust and generalizable models. By 

pushing the boundaries of traditional augmentation 

methods, EdgeCutMix sets a new standard for how we can 

creatively leverage image processing techniques to 

improve deep learning outcomes. 

Based on the experiment, EdgeCutMix significantly 

improves classification accuracy for minority classes, 

achieving up to 98% accuracy. EdgeCutMix represents a 

substantial step forward in tackling the prevalent issue of 

class imbalance in image classification. Its development 

underscores the potential of thoughtful, targeted 

interventions in data processing to yield significant 

improvements in model performance across various 

domains. This study not only enhances our understanding 

of augmentation techniques but also opens up new 

pathways for leveraging these strategies to solve real-

world problems effectively. 

EdgeCutMix’s utility extends beyond the realm of 

agricultural pathology. Its application could revolutionize 

image-based classification in fields such as surveillance or 

autonomous driving, which might involve addressing 

specific challenges like varying lighting conditions, 

motion blur, or occlusions. Future research could explore 

several avenues to enhance the effectiveness and 

applicability of EdgeCutMix. One promising direction is 

the integration with advanced deep learning strategies, 

such as transfer learning or Generative Adversarial 

Networks (GANs), to further improve model performance. 

Another potential area of exploration is optimizing 

EdgeCutMix for real-time applications, like in-field 

disease detection using mobile devices, making the 

technology more practical and accessible. 
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