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Abstract—Researchers are developing wearable air-borne 

infectious disease sensors. Since it is closer to IoT devices, the 

fog paradigm will boost real-time vital applications to fulfill 

cloud temporal limits like data throughput, response time, 

energy, etc. Real-time environments like intelligent 

healthcare monitoring suffer from inefficient load-balancing 

approaches for resource management at the fog layer, which 

reduces service quality and accelerates energy overuse. This 

paper proposes a fog-based Smart Infection Detection System 

(SIDS) architecture to control perilous infectious disease 

outbreaks before they spread and control pandemics such as 

COVID-19. An energy-efficient nature-inspired Geese 

Optimization Load Balancing Approach (GOLBA) is also 

proposed to dynamically select the closest, most active, and 

most resourceful computing machines to serve user requests 

and perform inter-cluster global and local load balancing. 

The proposed approach (GOLBA) outcomes are compared 

with the existing load balancing methods, such as the Fog 

Node Placement Algorithm (FNPA) and Round Robin (RR), 

to show its significance using the iFogSim simulator 

experimental setup. Analysis shows that GOLBA reduces 

response time by 6.6% and energy utilization by 8.9% 

compared to FNPA, 13.7%, and 15.1% compared to RR 

policy.  

 

Keywords—biosensors, load balancing, internet of things, fog 

computing, COVID-19, iFogSim 

I. INTRODUCTION 

According to Cisco’S projections, 15.14 billion current 

Internet of Things (IoT) devices are estimated to be 

connected online. By 2025, this amount is predicted to 

double to 29.42 billion and will exaggerate exponentially 

by 2030. The IoT is fast becoming a new paradigm for 

passing connections in many application fields as shown 

in Fig. 1. These applications can be enhanced by using AI 

and sensing-related capability of 6G communication 

technology. In recent years, smart wearables, intelligent 

industrial and utility components, and smartphones, have 

grown rapidly and can detect real-time environmental 

data [1]. 

 

Fig. 1. Applications of IoT. 

Heterogeneous IoT devices create massive volumes of 

data, requiring extensive processing, aggregation, and 

analysis to deploy innovative applications in real 

scenarios. Due to resource constraints, IoT devices cannot 

handle data, only utilizing their resources for outsourcing 

data processing to cloud data centers. As cloud data centers 

receive more requests, network congestion increases since 

they are centrally situated and demand more bandwidth 

from the leading network. The global dispersion of billions 

of IoT devices could exacerbate these effects for real-time 

applications, and leveraging outside cloud resources is 

unwise. 

Fog computing solves these underlying IoT-cloud 

issues by mediating between data centers and IoT devices. 

Fog computing uses network edge devices to process more 

delay-sensitive task demands, resources, and users [2, 3]. 

However, fog devices’ resource and energy utilization are 
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challenges with fog computing. Several IoT devices seek 

services from the same fog device, because of which 

overloading may occur and negatively impact service 

quality. Innovative applications like competent healthcare 

systems inadequate resource management, and inefficient 

load balancing can significantly reduce fog nodes’ service 

quality and accelerate energy overuse [4, 5]. 

Traditional fog computing systems overuse resources 

and energy due to uneven load distribution, making data 

collection and analysis difficult in large geographical 

regions. A fog-based Smart Infection Detection System 

(SIDS) architecture is proposed to solve these difficulties. 

Any air-borne infectious disease epidemic can be managed 

swiftly with this design, including COVID-19. SIDS aims 

to monitor patients’ health through a face mask containing 

biosensors using edge and fog devices microservices. As 

the intelligent healthcare system is time-sensitive [6, 7], an 

energy-efficient nature-inspired Geese Optimization Load 

Balancing Approach (GOLBA) is proposed for the fog 

paradigm to get optimal results. 

The proposed research favors low-energy processing 

with lesser response time and integrating more permanent 

elements into the system for various other potential 

applications to provide quality services to heterogeneous 

end users. The application of innovative wearable 

technology, also called synthetic biology in the Internet of 

Medical Things (IoMT), enables society to provide simple, 

precise infectious agent diagnosis services outside of 

testing laboratories. This proposed architecture can 

drastically enhance infection testing frequency without 

patient lab visits in situations like COVID-19 in a country 

such as India, the world’s most populous nation. The 

summary of this paper’s contributions is as mentioned 

below: 

The proposed Fog-based Smart Infection Detection 

System (SIDS) architecture breaks the network into 

multiple planes: cloud plane, fog plane, and Smart IoT 

plane. This can quickly manage air-borne infectious 

diseases and pandemics such as COVID-19. The Geese 

Optimization Load Balancing Approach (GOLBA), an 

energy-efficient nature-inspired load-balancing technique, 

has been proposed for the fog paradigm. By using this 

method, congestion can be avoided, and network 

performance can be enhanced. Three performance 

indicators are used to evaluate the effectiveness of the 

GOLBA for boosting the proposed Smart Infection 

Detection System (SIDS), including response time, energy 

utilization, and cost. To demonstrate the efficacy of the 

GOLBA in comparison to a Fog Node Placement 

Algorithm (FNPA) and Round Robin (RR) methods, a 

wide range of simulations are run using the iFogSim 

toolkit. When comparing GOLBA to FNPA and RR 

implementation, GOLBA experimental findings 

demonstrate a considerably balanced load distribution, a 

drop in energy utilization, and a reduced response time. 

The rest of this study is compiled as follows: A current 

literature study is explained in Section II. Section III 

explains the proposed fog-based architecture, resource 

allocation algorithm, load-balancing approach, and 

simulation setting. The findings and discussion of results 

after simulations are shown in Section IV. The conclusion 

with recommendations for further research is given in 

Section V. 

II. RELATED WORKS 

Yasmeen et al. [8] recommended a Particle Swarm 

Optimization (PSO) load balancer with simulated 

annealing for smart buildings, considering Global best 

(Gbest) underpins PSO functionality. However, the initial 

allocation of Local best (Lbest) causes an issue for the 

Simulated Annealing Algorithm. The authors concluded 

that PSO’s performance can be enhanced by picking the 

Gbest using simulated annealing after each iteration, 

which is the updated Gbest. The authors avoids discussing 

fog nodes’ response time-energy trade-off. A round-robin 

priority-based load balancer was presented by 

Pereira et al. [9]. In the proposed load balancer, network 

administrators chooses fog nodes for load balancing based 

on job priority queues and observe high-priority processes 

finish faster because low-priority jobs are queued up last. 

Beraldi et al. [10] proposed sequential forwarding, 

adaptive forwarding with self-tuning ability load balancing 

for smart cities, considering node heterogeneity and 

uneven load distribution. It limits node transmissions by 

altering a threshold using a memoryless assessment of 

their present state. The processing queue fills up after 

forwarding a task as feasible, and the job is abandoned. 

Fatima et al. [11] introduced an intelligent building 

proximity dynamic service broker policy. The method 

chooses fog because it can handle load depending on 

virtual machine allocation and decrease network latency. 

However, cost and response time are required to be 

balanced. Chekired et al. [12] proposed the intelligent 

electric car priority queuing model. The goals were to 

minimize delay and provide geo-aware services for the 

intelligent grid model while allowing electric car 

customers optimal charging and unplugging planning. 

Zahid et al. [13] proposed load balancing for intelligent 

grids using the hill-climbing approach. It finds available 

virtual machines using mathematical optimization and 

randomness. Requests are sent to the best Virtual Machine 

(VM). However, the cost-response time trade-off remains 

unresolved. Butt et al. [14] developed Binary PSO, a 

genetic algorithm for intelligent cities. The authors 

proposed that meta-heuristic techniques allows to swiftly 

reach global solutions while making trade-offs, unlike 

heuristic algorithms, which can become stuck in local 

optima. Improved PSO with levy walk was developed by 

Khan et al. [15] for intelligent grid load balancing. The 

author noticed heuristic algorithms often get stuck in local 

optima and summarized that meta heuristic algorithms 

assist in swiftly finding global answers with trade-offs. 

Hussein and Mousa [16] developed a meta-heuristic 

load balancer using Ant Colony Optimization (ACO) and 

PSO to improve end-user application Quality of Service 

(QoS). The authors suggested maintaining fog node task 

stability is crucial and observed ACO and PSO are superior 

to greedy search. The authors determined that multi-

objective improvement must include cost and power 

utilization for better results. Divya [17] suggested an 
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intelligent camera SDN, deep reinforcement (Q Learning 

Algorithm). The reinforcement learning method used 

experience and dynamic network features to pick 

intelligent behaviors. Ali et al. [18] proposed a modified 

genetic approach resource allocation method for solving 

discrete optimization issues of assigning a computational 

node that cannot be assigned using a continuous space. The 

authors did not allow independent service composition 

reconfiguration at the network edge. 

Hameed et al. [19] introduced vehicular fog for job 

execution in autonomous cars. Here, clustering may pick a 

cluster master based on the fog movement factor. Another 

method proposed was capacity-based load balancing to 

alleviate network congestion. The authors did not focus on 

sophisticated, dynamic self-learning approaches to boost 

energy utilization and service quality. Greedy techniques 

move the burden from the overloaded fog node to the one 

having the lowest load and let the underloaded computing 

nodes share the extra load. A coalition game-based 

algorithm for load balancing by Yan et al. [20] maximizes 

reward. Asghar et al. [21] proposed an improved load-

balancing method for health monitoring systems. The 

authors presented that dataflow delays for IoT devices 

include load-related computation latency and traffic load-

related communication latency. Thus, base station and fog 

node compute loads were considered during load 

balancing. The authors should have discuss the fog node 

latency, cost, and energy trade-off for optimal results. 

Wan et al. [22] projected an energy aware multi-agent 

system for an intelligent factory (Candy Packing) to 

evaluate energy utilization and equipment workload. Fog 

nodes run an innovative factory energy model. The authors 

presented load balancing optimization using a multi-agent 

system and enhanced PSO to aid work scheduling. 

Alzeyadi et al. [23] extended the PSO evolutionary 

resource allocation algorithm for intelligent factory robots 

(Drug Packing), where fog applications consider the 

threshold to help intelligent industrial robots manage their 

workload. Server overload and underutilization reduce 

network performance and increase power use. The authors 

summarised that model-based intelligent learning is 

needed to replicate bias-free findings. 

Li et al. [24] presented cloud-fog cooperation 

scheduling with task offloading. The authors showed that 

low latency frequently uses more energy. Energy 

optimization is achieved by trading off traffic load on each 

tier using NL programming. However, heterogeneous fog 

testing is required. Kaur and Aron [25] proposed an 

energy-efficient method in which end users send queries to 

the fog layer, which utilizes a load balancer to evaluate 

virtual machine capacity and performance. Overloaded 

VMs strain underloaded ones. Bala and Chishti [26] 

presented EEG Tractor Beam, a proximity and Cluster 

Algorithm (CA) for online games. The proposed approach 

places application modules on the nearest fog device to 

decrease transmission delays. CA consolidates numerous 

modules onto a single device to save network bandwidth 

utilization.  

DRAM was suggested by Xu et al. [27] and used 

dynamic service mobility and immobile resource 

allocation to balance loads. However, the authors did not 

consider the fog node load movement’s pros and cons. A 

method for locating and keeping an eye on clusters during 

the pandemic’s first, second, and third phases was offered 

by Herath et al. [28]. The framework has been built using 

technologies related to fog computing, smart sensors, and 

IoT-based approaches. The component was inefficient in 

boosting the testing frequency required to stop the spread 

of the COVID-19 pandemic. 

Goel and Chaturvedi [29, 30] showed that real-world 

services’ QoS needs are significant when fog nodes are 

less than end-user task-demanding services. Second, Fog 

Nodes (FNs) are constantly congested, which lowers 

efficiency and QoS for all FNs. The authors concluded that 

multi-objective optimization methodologies for resource 

allocation and load balancing can improve fog node 

clusters with superior service quality. Advanced hybrid 

meta-heuristic algorithms and learning-based adaptive and 

intelligent solutions are needed for optimal results in real 

applications. The existing load-balancing methods used 

for smart scenarios with key QoS parameters are listed in 

Table I. 

After a rigorous literature review, the following 

recurring gaps are identified in existing research works 

mentioned in Table I. Previous studies [8–15] need to 

optimally handle the required trade-off between response 

time and energy consumption of fog nodes. The existing 

study [16–21] does not simultaneously include multi-

objective optimization such as response time, power 

consumption, and cost. The different approaches [22–27] 

focus on something other than self-learning-based 

dynamic and intelligent techniques to improve the quality 

of service and energy consumption. Only some academics 

implemented their fog-based architecture for intelligent 

healthcare systems. Most research only assessed their 

techniques against delay or response time, ignoring trade-

offs between other performance indicators like energy, 

cost, etc. 

Looking at the recurring challenges that researchers are 

addressing across different approaches. It is observed that 

smart healthcare monitoring systems have extensive 

requirements of improved load-balancing approaches for 

effectively handling the exponential heterogeneous IoT 

load on the fog layer. There is an urge for optimal resource 

and energy utilization, and for continually providing 

quality services in the upcoming future demands. The fog-

based Smart Infection Detection System (SIDS) 

architecture is proposed along with energy-efficient Geese 

Optimization Load Balancing Approach (GOLBA). It 

covered the significant requirement of multi-objective 

optimization and effectively handled the trade-off between 

response time and energy consumption for optimal results. 
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TABLE I. SUMMARY OF EXISTING LOAD BALANCING METHODS WITH PERFORMANCE METRICS 

References Scenario Existing Approaches Tool Used RT ET DL EG RU CT 

[8] Smart Building PSO with Simulated Annealing Cloud Analyst √      

[9] Generic Scenario Priority Round Robin Load Balancer Not Mentioned √      

[10] Smart City Sequential and Adaptive Forwarding Not Mentioned √      

[11] Smart Buildings Service Broker Dynamic Service Proximity Cloud Analyst √     √ 

[12] Electric Vehicles Priority Queuing Model NS-2 √   √   

[13] Smart Grid Hill Climbing Cloud Analyst √ √    √ 

[14] Smart City Binary PSO Genetic Algorithm Cloud Analyst √ √    √ 

[15] Smart Grid Improved PSO with Levy Walk (IPSOLW) Cloud Analyst √ √    √ 

[16] Generic Scenario Ant Colony and Particle Swarm Optimization Matlab √     √ 

[17] Smart Cameras SDN, Deep Reinforcement Learning Algorithm Not Mentioned  √     

[18] Generic Scenario Non-dominated Sorting Genetic Algorithm II Matlab  √    √ 

[19] Auto Driven Vehicles Vehicular Fog Computing NS-2   √    

[20] Generic Scenario Coalition Based Greedy Algorithm NS-3   √ √   

[21] Health Monitoring Fog Node Placement Load Balancing iFogSim   √    

[22] Smart Factory Energy Aware LBS, IPSO Not Mentioned    √   

[23] Smart Factory Extended ELBS (PSO Evolutionary Algorithm) iFogSim   √ √   

[24] Generic Scenario Cloud-Fog Cooperation Scheduling Not Mentioned   √ √   

[25] Generic Scenario Energy Aware LBA iFogSim   √ √  √ 

[26] Online Games Proximity and Cluster Algorithm iFogSim    √  √ 

[27] Generic Scenario Dynamic Resource Allocation Method CloudSim     √  

 

III. EXPERIMENT & METHOD 

A. Proposed Fog Based Layered Architecture 

This section describes a three-tier fog-based Smart 

Infection Detection System (SIDS) architecture to control 

pandemics like COVID-19 and avoid further epidemics 

quickly. The proposed fog-based SIDS architecture uses 

face masks equipped with biosensors [6] to diagnose air-

borne infectious diseases such as COVID-19 using a 

smartphone and fog computing microservices. The 

recommended architecture has three tiers. The first tier of 

architecture uses biosensors on the patient’s facemask to 

detect and transmit COVID-19 vital indicators. IoT 

devices are linked to specific server stations, but their 

coverage zones may overlap, increasing compute node 

availability under heavy traffic loads [31].  

All IoT devices are connected with server stations with 

heterogeneous fog gateways at the intermediate smart 

healthcare fog layer. The first-tier IoT devices provide 

sensor-perceived data to nearby fog gateways. A second-

tier fog gateway linked with the cluster controller node 

monitors each patient’s COVID-19 status. The vital signs 

are analyzed to diagnose COVID-19 and identify 

criticality based on the patient’s history at the second tier. 

A top-layer proxy server sends observations to the third 

tier’s cloud data centers for storage. Simultaneously, fog 

gateways also send patients’ COVID-19 test results to 

patients’ smartphones. The proposed three-tier fog-based 

Smart Infection Detection System (SIDS) layered 

architecture is presented in Fig. 2. 

I Tier: Smart IoT Plane covers the perception layer, 

which comprises biosensors attached to patients via face 

masks, to sense and pass the vital signs of air-borne 

infectious diseases such as COVID-19 to fog gateways. 

The sensor-collected data stream is transmitted to the fog 

plane through an edge device like a smartphone, and 

results are displayed on actuators. Patients are notified of 

their requests during the filtering-processing phase within 

the IoT layer. The patient receives results and preventive 

measures through actuators if the fog gateway sample test 

is positive. The rapid sample testing-processing phase is 

conducted on the fog layer, avoiding visiting laboratories 

physically and supporting real-time updates and timely 

results, which in turn assist in fast spread control of air-

borne infectious diseases such as COVID-19 before it 

becomes a pandemic. Computation at the fog layer ensures 

the quality of services to even those end users with 

resource-constrained IoT devices so that this system can 

benefit the community as a whole. 

 

 

Fig. 2. Fog-based Smart Infection Detection System (SIDS) layered 
architecture. 

II Tier: The fog plane covers the intermediate layer, 

which includes a cluster of fog gateways co-located with 

the cluster master node/server station to check the COVID-

19 status of patients regularly. The fog gateway receives 

patients’ task-processing requests. It sends them to a 

cluster controller node, which allocates tasks to the closest, 
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active, and most resourceful fog gateway based on quality-

of-service parameters using the proposed multi-objective 

Optimal Nearest Fog Node Search (ONFNS) resource 

allocation algorithm. To connect, every network item 

shared a beaconing message between IoT devices, fog 

gateways, and cluster controller nodes. This message 

includes IoT devices, fog gateway and cluster controller 

node identifiers, geographical positions, and time stamps. 

Cluster controller nodes use beaconing messages to assess 

distance from fog gateways within their communication 

range and form clusters. In overloaded states, fog gateways 

can adapt their computing burden by adjusting IoT device 

affiliations between server stations and considering 

overlapping coverage zones, affecting fog gateway 

computing and traffic loads. 

III Tier: Cloud plane covers proxy servers and the 

cloud to connect with data centers for long-term data 

storage, analysis of the volume of data, and providing 

feedback on patients’ air-borne infectious diseases such as 

COVID-19 status in specific situations for future quick 

assistance. It also assists in computation during heavy 

traffic load on server stations or overloading of fog nodes 

to avoid disasters. 

B. Proposed Resource Allocation Algorithm 

Studies have shown that geese can teach people to 

command a flock in the skies. The flight range of geese in 

a perfect V formation is 71% greater than when flying 

alone. Analogously, the proposed system uses a pod of 

clusters to boost the IoT-Fog architecture’s processing 

capabilities in intelligent healthcare design. This cluster 

shares computing and storage via many fog gateways 

connected to server stations. After breaking from 

formation, a goose realizes how hard it is to fly alone and 

tries to rejoin. The configuration improves a flock’s 

visibility and power while making flying simpler for birds. 

Similarly, when a cluster controller node is 

overburdened with task requests, the proposed system 

advises transferring some of the load to the next controller 

node. This may boost the next cluster’s compute demand 

and decrease the previous cluster controller node’s traffic. 

After processing all queue requests, the prior cluster 

controller node prepares to process new task requests.  

The aim of the proposed multi-objective Optimal 

Nearest Fog Node Search (ONFNS) Resource Allocation 

Algorithm, as shown in Algorithm 1, is to find the fog 

gateway with the fewest distance using Algorithm 1, with 

adequate resources to handle the job request using 

Algorithm 2 and improve the energy efficiency with geese 

optimization Load Balancing Approach using 

Algorithm 3. The proposed approach (ONFNS) is also 

explained using the flowchart at the end of this section in 

Fig. 3. 

The fog gateway gets end device requests within its geo 

coverage zone. The distant fog node transmits the task 

request to the cluster controller node, which allocates jobs 

or forwards the task request to the appropriate gateway 

within the cluster or neighboring cluster controller node 

based on their capabilities using Algorithm 1. The 

proposed algorithm uses the Select In-range Cluster Nodes 

function using Algorithm 1 to generate a route map of IoT 

devices and fog nodes. After that, the route chart is sorted 

in ascending order to select the minimum distance fog 

gateway for computation. Besides the shortest distance, 

the algorithm verifies available resources using the 

Compute Resourceful Cluster Node function using 

Algorithm 2. In addition, the nature-inspired geese 

optimization load balancing approach, as shown in 

Algorithm 3, dynamically chooses the new cluster 

controller node while managing many task processing at a 

specific time, considering fog nodes’ average delay and 

energy utilization. Calculating fog node traffic load, 

energy loss, and communication delay helps to pick the 

efficient cluster controller node with the lowest average 

latency and minimum energy utilization. 

 

Algorithm 1: Optimal Nearest Fog Node Search (ONFNS) 

Algorithm 

Input: Group of fog gateways N, Group of end devices D 

Output: Mapping of fog node & IoT Device 

1. Optimal_Nearest_fog_node_search (Edevice[], Fnode[]) 

2. Initialize ClustHead[Fnode], ClustMap[Edevice], 

RouteLink[Edevice][Fnode], Edis[], j=0, k=0  

3. RouteLink[][] = Select_inrange_cluster_nodes 

(Edevice[], Fnode[]) 

4. for each Edevicei Ɛ Edevice do     //i=0 to Edevice.Count 

5. Edis[] = RouteLink[i][j] 

6. Sort(Edis)   //In ascending order 

7. for each Fnodej Ɛ Fnode do //j=0 to Fnode.Count 

8. if(Edis[k] == RouteLink[i][j]) then  

9. Flag = Compute_resourceful_cluster_node (i,j) 

10. if (Flag =1) then 

11. ClustMap[i] = j  //Assign fog node 

12. else 

13. k=k+1  //Check next optimal fog node 

14. Re-initialize j=0 

15. Close if 

16. else 

17. j=j+1 

18. close if 

19. close for 

20. i=i+1 

21. close for 

22. Save to stable storage (ClustMap) 

23. ClusterHead[] = Geese_optimization_load_balancing 

(Edevice[], Fnode[]) 

24. Close function 

 

Algorithm 2: Compute Resourceful Cluster Node 

Input: Group of Fog gateways N, Set of end devices D 

Output: Integer (Flag) 

1. Compute_resourceful_cluster_node (Edevice e, Fnode n) 

2. if (n.cpu >= e.cpu && n.ram >= e.ram &&n.network >= 

e.network &&n.energy >= e.energy) then 

3.  n.cpu = n.cpu-e.cpu 

4.  n.ram = n.ram – e.ram 

5.  n.network = n.network – e. network 

6.  n.energy = n.energy – e.energy  

7.  Flag = 1 

8. else 

9.  Flag = 0 

10. close if 

11. Close function 
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Fig. 3. Flowchart for Proposed Approach (ONFNS). 

The concept of Algorithm 3 is taken from the life of a 

goose. When geese fly together, lead geese in the 

formation have high “Drag”. When it tires, the lead goose 

returns to the formation and is replaced. The lead goose 

immediately feels the lifting force from the bird before it. 

Likewise, the proposed approach dynamically picks the 

new cluster controller node within a cluster, considering 

the average delay and energy utilization of fog gateways 

using Algorithm 3 while managing many task requests at 

a set time. This helps to retain QoS when the previous 

cluster controller node is congested, leading to high energy 

loss. Besides, Geese may honk to cheer each other. 

Honking is also thought to tell other geese where they are 

in the formation. 

In the same way, every network item sends a beaconing 

message to connect the fog gateways and cluster controller 

nodes. This message includes fog gateway and cluster 

controller node identifiers, geographical positions, and 

time stamps. Cluster controller nodes use beaconing 

messages to assess distance from fog gateways within their 

communication range. These linked fog nodes lead to the 

reformation of clusters. The proposed approach manages 

and improves SIDS, an intelligent healthcare monitoring 

system task distribution, resource utilization, response 

time, energy efficiency, and overall service quality. 

 

Algorithm 3: Geese Optimization Load Balancing Approach 

(GOLBA) 

Input: Set of Cluster nodes N, Set of Edge devices D 

Output: Dynamic selection of cluster master node 

1. Geese_optimization_load_balancing (Edevice[], 

Fnode[]) 

2. Initialize ClustHead, Ndelay[Fnode][Edevice], 

Nenergy[Fnode][Edevice], Navgdelay[ ], Navgenergy[] 

3. for n Ɛ N do  //n=0 to fognode.count 

4. for d Ɛ D do  //d=0 to edgedevice.count 

5. if d Ɛ cover_range(n) then 

6. Calculate Dcm(d) //Communication delay 

7. Calculate Ecm(d) //Communication energy 

8. close if 

9. Ndelay[n][d] = Dcm(d) 

10. Nenergy[n][d] = Ecm(d) 

11. close for 

12. Navgdelay[n] = Average(Ndelay) 

13. Navgenergy[n] = Average(Nenergy) 

14. close for 

15. Select ClustHeadmin(Navgdelay, Navgenergy) 

16. Return ClustHead 

 

The proposed SIDS can boost testing frequency without 

forcing patients to visit the laboratories during a pandemic. 

It meets the QoS needs of delay-sensitive IoT-based 

innovative healthcare applications by migrating huge 
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tasks. It requests data from IoT sensor nodes to fog nodes, 

which are closest, more active, and resourceful, using the 

ONFNS algorithm. When the intelligent healthcare system 

is implemented widely, the server station balances the load 

inside a cluster using a proposed algorithm with optimal 

response time and energy utilization. 

C. Experimental Setup 

1)  Simulation setup for fog-based SIDS 

Sensors that detect air-borne infectious diseases such as 

COVID-19 test parameters communicate data to fog 

gateways through smartphones. The computing fog 

gateways process and analyze data to evaluate the patient’s 

COVID-19 diagnostic status and determine if they are 

critical or normal based on the patient’s prior history. Fog 

gateways provide patient feedback to their smartphones 

and store it in the cloud. Fog gateways and cloud servers 

communicate via proxy servers. Our technique was 

simulated and evaluated using iFogSim [32], an open-

source toolbox. 

iFogSim uses Cloudsim’s API to manage its discrete 

event-based simulation in Java. This high-performance 

open-source fog computing, edge computing, and IoT 

toolkit models and simulates their networks. iFogSim 

combines resource management approaches that can be 

customized for study. The following iFogSim classes are 

needed to simulate the fog network: Fog device, Sensor, 

Actuator, Tuple, Application, Monitoring edge, and 

Resource management service for architecture layer 

specifications and virtual machine simulation setup. 

The current fog computing application simulator is 

iFogSim, which is used to construct fog models with IoT 

integration for experimental validation. iFogSim 

simulation environment is required to define CPU length, 

RAM, bandwidth, and other characteristics while 

designing fog devices. The proposed Resource Allocation 

Algorithm (ONFNS) with a Load Balancing Approach 

(GOLBA) has included cost, energy utilization, and 

response time as performance parameters.  The iFogSim 

network configuration options for the experimental setup 

is shown in Table II. 

TABLE II. NETWORK CONFIGURATION FOR FOG BASED ARCHITECTURE 

Param. / Comp. Device CPU (mips) RAM (mb) UP-BW (mbps) DW-BW (mbps) Latency (ms) Rate (Cost/Mips) 

Cloud 44,800 40,000 10,000 10,000 100 0.01 
Proxy 12,800 8,000 10,000 10,000 10 0.04 

Fog Gateway 12,800 8,000 10,000 10,000 5 0.08 

IoT Device 2,800 4,000 10,000 10,000 10 0.16 

 

Devices in a computer network, however, come in 

various configurations. At the root level, a cloud server 

acts as the parent. The fog gateways can communicate with 

the cloud server using the Level 1 proxy server. Level 2 

computing gateways are situated closer to the end user to 

offer computing and storage resources more often. The 

third tier of IoT devices is sensor and actuator-based. The 

fog computing-based solution’s evaluation architecture, 

using iFogSim, is depicted in Fig. 4. The HP laptop 

(Inteli3, 2.60 GHz processor, 256 GB SSD drive) was used 

for the simulations. 

 

Fig. 4. Fog-based smart healthcare system topology in iFogSim. 

The proposed design was simulated 500 times with 

several topologies using iFogSim. The architecture has 

been altered by adding additional IoT/End Devices (ED) 

and Fog Nodes (FN). Two fog nodes were initially linked 

to server stations, with ten IoT devices linked within the 

cluster. IoT devices and fog nodes were added afterward 

to broaden the topology (Topol). Simulation fog 

experimental setups are shown in Tables III and IV, which 

are examined based on response time, energy utilization, 

and cost, and readings are recorded for each simulation to 

evaluate the final results. 

TABLE III. SIMULATION SETUP CORRESPONDING TO VARYING IOT 

DEVICES 

Topology Cloud Proxy 
Fog 

Server 

Fog 

Node 

IoT 

Device 

Topol-1 1 1 5 4 100 

Topol-2 1 1 5 4 200 
Topol-3 1 1 5 4 400 

Topol-4 1 1 5 4 800 

Topol-5 1 1 5 4 1,000 

 

The simulation setup with different topologies 

corresponding to a fixed number of fog nodes and a 

varying number of IoT/End devices is presented in 

Table III. 

The simulation setup with different topologies 

corresponding to varying fog nodes and fixed number of 

IoT/End devices is presented in Table IV. 

TABLE IV. SIMULATION SETUP CORRESPONDING TO VARYING FOG 

NODES 

Topology Cloud Proxy 
Fog 

Server 

Fog 

Node 

IoT 

Device 

Topol-1 1 1 5 2 400 

Topol-2 1 1 5 4 400 

Topol-3 1 1 5 6 400 
Topol-4 1 1 5 8 400 

Topol-5 1 1 5 10 400 

 

2) Performance evaluation parameters 

As performance assessment factors, this paper included 

response time, energy utilization, and computing cost. 

Below is a brief explanation of each parameter: 
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Response Time: Response time represents the sum of 

all delays of any kind that occur during the processing of a 

biomedical request. Propagation and processing delays are 

included. It is computed in milli second (ms). With the use 

of Eq. (1) [16], the response times of the proposed and 

implemented techniques have been determined. 

𝑅𝑡𝑖𝑚𝑒𝑖𝑗 =  𝐷𝑒𝑙𝑎𝑦𝑖𝑗
𝑐𝑚 + 𝑃𝑡𝑖𝑚𝑒𝑖𝑗   (1) 

It’s evident from Eq. (1) that the response time is the 

total of the IoT-Fog transmission delay and processing 

duration on the fog gateways. 

Energy Utilization: The overall energy loss by the IoT 

devices and fog resources to do their assigned tasks is 

known as energy utilization. It is computed in Joules (J ). 

With the aid of Eqs. (2) and (3) [33], the energy utilization 

of the proposed techniques presented as follows: 

𝐸𝑛𝑒𝑟𝑔𝑦𝑈𝑠𝑎𝑔𝑒 =  ∑ 𝐸𝑆𝑒𝑛𝑠𝑒 (𝑖) + 𝐸𝑇𝑟𝑎𝑛𝑠 (𝑖) +  𝐸𝑃𝑟𝑜𝑐 (𝑖)
𝑛
𝑖=1  (2) 

𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙 =  𝐸𝐴𝑐𝑡𝑖𝑣𝑒 𝑁𝑜𝑑𝑒 +  𝐸𝐼𝑑𝑙𝑒 𝑁𝑜𝑑𝑒 (3) 

Eq. (2) demonstrates that the overall energy utilization 

is the sum of the energy used for each task’s sensing, 

transmission, and execution. However, Eq. (3) presents 

that the total energy utilized by active and idle fog nodes 

equals the total energy used. 

Computational Cost: The overall cost of resources 

when completing submitted tasks is known as the 

computational cost. It is computed in Dollars. Using 

Eq. (4) [33], the computational costs of proposed and 

implemented techniques have been determined. 

𝐶𝑜𝑠𝑡𝐶𝑜𝑚𝑝 =  ∑ 𝑀𝐼𝑃𝑆𝐻𝑜𝑠𝑡𝑖  𝑋 𝑃𝑇𝐻𝑜𝑠𝑡𝑖  𝑋 𝐶𝑜𝑠𝑡𝐻𝑜𝑠𝑡𝑖
𝑛
𝑖=1  (4) 

The cost of computing may be understood from Eq. 4, 

as the total of the MIPS costs for each agent, the processing 

time spent by each agent, and the computational costs of 

each agent. 

IV. RESULT AND DISCUSSION 

This section gives the results of the performance 

evaluation of the GOLBA in comparison to the FNPA and 

RR scheme. The outcomes for the performance parameters 

such as response time, energy used, and cost incurred are 

presented in Table V. Comparing GOLBA to FNPA and 

the RR scheme in terms of response time and energy usage, 

the simulation results show that GOLBA minimizes both 

the parameters and produce optimal results. 

It is observed that during simulation, when load 

distribution is uneven, some fog nodes are overwhelmed 

while others are idle, and long fog node processing times 

cause network congestion. Due to network congestion, IoT 

device response times are longer and may exceed job 

deadlines. GOLBA, an efficient load-balancing approach, 

helps distribute the load across idle fog nodes to minimize 

network congestion and improve smart healthcare 

applications’ response time and energy utilization. 

Our proposed approach in fog based implementation is 

an effective option for infection detection systems, as 

demonstrated by the experimental findings for the 

performance metrics of response time and energy usage. In 

light of these results, we can see that fog computing could 

work in settings where processing data quickly is crucial. 

The simulation results of GOLBA with fixed number of 

fog nodes and growing IoT devices are calculated using 

the ifogsim toolkit and are presented in Table V. The 

response time is 896.66 ms, the energy used is 

167345.10 J, and the cost incurred is 1014.65 dollars for 

the simulation setup Topol-1 with 100 IoT devices and 4 

fog nodes, as shown in Table III. Similarly, the response 

time is 1564.96 ms, the energy used is 169398.26 J, and 

the cost incurred is 2183.49 dollars for the Topol-2 with 

200 IoT devices and 4 fog nodes. The response time is 

2512.28 ms, the energy used is 170129.73 J, and the cost 

incurred is 3782.30 dollars for the Topol-3 with 400 IoT 

devices and 4 fog nodes. The response time is 6388.13 ms, 

the energy used is 171671.47 J, and the cost incurred is 

8260.83 dollars for the Topol-4 with 800 IoT devices and 

4 fog nodes. The response time is 11687.41 ms, the energy 

used is 171935.46 J, and the cost incurred is 9134.17 

dollars for the Topol-5 with 1000 IoT devices and 4 fog 

nodes. 

TABLE V. SIMULATION RESULTS OF GOLBA FOR VARYING IOT DEVICES 

Setup Topol-1 Topol-2 Topol-3 Topol-4 Topol-5 

RT (ms) 896.66 1,564.96 2,512.28 6,388.13 11,687.41 

EU (J) 167,345.10 169,398.26 170,129.73 171,671.47 171,935.46 

Cost ($) 1,014.65 2,183.49 3,782.30 8,260.83 9,134.17 

 

The analysis of the results in Table V suggests that the 

response time and cost incurred rise with the increase in 

the number of IoT devices for a fixed number of fog nodes 

associated with the cluster controller node because 

of increased communicational and computational latency, 

respectively. However, energy usage is increased slightly 

due to efficient load balancing of task requests among the 

fog nodes coming from IoT devices. Using the proposed 

approach, we can improve the result by increasing the 

number of fog nodes per server within a cluster with 

growing numbers of IoT/End devices. 

The results of the proposed policy are compared with 

existing policy in terms of response time are plotted in 

Fig. 5, which reflects that the proposed strategy, i.e., 

GOLBA, has 6.6% less response time as compared to the 

FNPA and has 13.7% less response time as compared to 

the RR scheme. Similarly, the results of the proposed 

policy are compared with existing policy in terms of 

energy used are plotted in Fig. 6, which reflects that the 

proposed strategy, i.e., GOLBA, consumed 8.9% less 

energy as compared to the FNPA and consumed 15.1% 

less energy as compared to the RR scheme. Besides, the 

results of the proposed policy are compared with existing 

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1290



policy in terms of cost incurred are plotted in Fig. 7, which 

reflects that the proposed strategy, i.e., GOLBA, incurred 

7.7% more cost as compared to the FNPA and incurred 

13.7% less cost as compared to the RR scheme. 

The comparative outcomes of the GOLBA method with 

FNPA and RR policy concerning response time are 

presented in Fig. 5. The GOLBA simulation findings 

indicate that the proposed approach improved by 6.6% 

response time as compared to FNPA and 13.7% response 

time as compared to RR policy for a given experimental 

setup, having four fog nodes connected to cluster 

controller node and 100 to 1,000 variable end devices. 

The comparative outcomes of the proposed approach 

with FNPA and RR policy concerning energy utilization 

are presented in Fig. 6. The GOLBA simulation findings 

indicate that the proposed approach improved by 8.9% 

energy utilization compared to FNPA and by 15.1% 

energy utilization compared to RR policy for the given 

experimental setup, having four fog nodes connected to 

cluster controller node and 100 to 1000 variable end 

devices. 

 

 

Fig. 5. Comparative results based on response time (FN-04). 

 

Fig. 6. Comparative results based on energy utilization (FN-04). 

The comparative results of the proposed approach, with 

FNPA and RR policy concerning cost are presented in 

Fig. 7. The GOLBA simulation findings indicate that the 

proposed approach costs 7.7% more than FNPA, while 

13.7% less cost compared to RR policy for a given 

experimental setup, having four fog nodes connected to 

cluster controller node and 100 to 1,000 variable end 

devices. 

 

 

Fig. 7. Comparative results based on cost (FN-04). 

The simulation results of GOLBA with growing number 

of fog nodes and fixed number of IoT devices are 

calculated using the iFogSim toolkit and are presented in 

Table VI. The response time is 2864.33 ms, the energy 

used is 172181.65 J, and the cost incurred is 3805.61 

dollars for the simulation setup Topol-1 with two fog 

nodes & 400 IoT devices, as shown in Table IV. Similarly, 

the response time is 2512.28 ms, the energy used is 

170129.73 J, and the cost incurred is 3782.30 dollars for 

the Topol-2 with four fog nodes and 400 IoT devices. The 

response time is 2025.86 ms, the energy used is 167084.83 

J, and the cost incurred is 3766.75 dollars for the Topol-3 

with six fog nodes and 400 IoT devices. The response time 

is 2395.00 ms, the energy used is 167067.94 J, and the cost 

incurred is 3785.12 dollars for the Topol-4 with eight fog 

nodes and 400 IoT devices. The response time is 

2686.05 ms, the energy used is 167062.59 J, and the cost 

incurred is 3809.01 dollars for the Topol-5 with ten fog 

nodes and 400 IoT devices.  

The analysis of the results presented in Table VI 

suggests that the response time and cost incurred drop with 

the increase in the number of fog nodes associated with 

cluster controller node up to a specific level for a fixed 

number of IoT devices. After that, both parameter values 

start rising due to increased communicational and 

computational latency. However, energy usage gradually 

decreases due to efficient load balancing of task requests 

among the fog nodes coming from IoT/End devices. 

TABLE VI. SIMULATION RESULTS OF GOLBA FOR VARYING FOG NODES 

Setup Topol-1 Topol-2 Topol-3 Topol-4 Topol-5 

RT (ms) 2,864.33 2,512.28 2,025.86 2,395.00 2,686.05 

EU (J) 172,181.65 170,129.73 167,084.83 167,067.94 167,062.59 

Cost ($) 3,805.61 3,782.30 3,766.75 3,785.12 3,809.01 

 

The results of the proposed policy are compared within 

different topologies of simulation setups. The response 

time is plotted in Fig. 8, which reflects that the response 

time decreased gradually up to a specific limit of increase 

number of fog nodes within a cluster; after that, the 

response time rises due to increased communication 

latency. Similarly, the energy used is plotted in Fig. 9, 

which reflects that energy usage decreased gradually for 
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the added number of fog nodes within a cluster, after that, 

the energy usage become stable due to the availability of 

more active fog nodes for task request allocation. The cost 

incurred is plotted in Fig. 10, which reflects that the cost 

decreased gradually up to a specific limit of increase in fog 

nodes within a cluster; after that, the cost rises due to 

increased computational latency. 

The simulation results of GOLBA concerning response 

time are presented in Fig. 8. iFogSim simulation results 

show that the response time decreased gradually up to 

Topol-3; after that, due to increased communication 

latency, the response time rises for a given experimental 

setup, having 2 to 10 variable fog nodes connected to 

cluster controller node and constant 400 end devices. 

The simulation results of GOLBA concerning energy 

utilization are presented in Fig. 9. Simulation results show 

that the energy utilization decreased gradually for the 

experimental setup, which had 2 to 10 variable fog nodes 

connected to the cluster controller node and 400 end 

devices. 

 

 

Fig. 8. Relative results based on response time (ED-400). 

 

Fig. 9. Relative results based on energy utilization (ED-400). 

 

Fig. 10. Relative results based on cost (ED-400). 

The simulation results of GOLBA concerning the cost 

presented in Fig. 10. Simulation results show that the cost 

decreased gradually up to Topol-3; after that due to 

increased computational latency, the cost rises for the 

given experimental setup, having 2 to 10 variable fog 

nodes connected to cluster controller node and constant 

400 end devices. 

In summary, it is observed during the simulation that the 

significant response time and energy savings come with a 

price cost, as the cost of computation is higher on fog 

nodes and with the proposed scheme most of the 

computation will now be possible on fog gateways 

efficiently. This paper presents two key observations; first, 

the proposed fog-based SIDS is quite favorable for the 

delay-sensitive intelligent healthcare monitoring system. 

Second, the results favor the GOLBA approach, 

considering performance compared to the FNPA and RR, 

which are existing load-balancing methods. 

V. CONCLUSION AND FUTURE WORK 

Cloud computing architecture is employed in most 

smart monitoring systems. However, the massive adoption 

of delay-sensitive apps is slowed by the inability of the 

cloud to handle high data volumes in real-time. The fog 

paradigm may help vital applications meet real-time 

temporal constraints by bringing cloud-like services closer 

to IoT devices. Real-time circumstances like smart 

healthcare suffer from fog model resource management 

and load balancing issues that lower service quality and 

accelerate energy overuse. This paper proposes a fog-

based Smart Infection Detection System (SIDS) 

architecture for quick pandemic control of air-borne 

infectious diseases such as COVID-19. This design can be 

used for particular infectious disease epidemics before the 

pandemic. The network has three planes: IoT, fog, and 

cloud. An energy-efficient, nature-inspired Geese 

Optimization Load Balancing Approach (GOLBA), which 

uses clustering to handle large user requests and select 

optimal fog gateways for the computation of task requests, 

is also proposed. Congestion can be avoided, and this 

strategy can improve system performance. iFogSim 

simulations compare the proposed approach against an 

FNPA and round-robin load-balancing methods to show 

its usefulness. The analyses show that the GOLBA 

significantly reduces response time by up to 6.6% and 

energy utilization by up to 8.9% compared to FNPA and 

response time by up to 13.7% and energy utilization by up 

to 15.1% compared to RR, respectively. 

Summing up the practical implications of the results for 

intelligent healthcare monitoring, SIDS can increase 

testing frequency without pushing patients to attend labs 

during pandemics. The ONFNS algorithm migrates 

massive tasks and requests data from IoT sensor nodes to 

fog nodes, which are closest, more active, and more 

resourceful, to suit delay-sensitive IoT-based smart 

healthcare applications’ QoS needs. When the intelligent 

healthcare system is widely adopted, the server station 

balances cluster load using a proposed method with 

optimal response time and energy use. The recommended 

method may be tested on more diverse and massive data 
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sets and confirmed for utilization in further innovative 

applications like smart cities, buildings, etc. The study can 

also focus on learning-based adaptive and intelligent 

approaches to minimize costs and enhance service quality 

in IoT-based innovative applications. 
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