
Fog-Based Smart Infection Detection System

(SIDS) Architecture Using Energy-Efficient

Geese Optimization Load Balancing Approach

(GOLBA)

Gaurav Goel * and Amit Kr Chaturvedi

Department of Computer Application, Government Engineering College, Ajmer, BTU, Bikaner, India

Email: gaurav.itindia@gmail.com (G.G.); amit0581@gmail.com (A.K.C.)

*Corresponding author

Abstract—Researchers are developing wearable air-borne

infectious disease sensors. Since it is closer to IoT devices, the

fog paradigm will boost real-time vital applications to fulfill

cloud temporal limits like data throughput, response time,

energy, etc. Real-time environments like intelligent

healthcare monitoring suffer from inefficient load-balancing

approaches for resource management at the fog layer, which

reduces service quality and accelerates energy overuse. This

paper proposes a fog-based Smart Infection Detection System

(SIDS) architecture to control perilous infectious disease

outbreaks before they spread and control pandemics such as

COVID-19. An energy-efficient nature-inspired Geese

Optimization Load Balancing Approach (GOLBA) is also

proposed to dynamically select the closest, most active, and

most resourceful computing machines to serve user requests

and perform inter-cluster global and local load balancing.

The proposed approach (GOLBA) outcomes are compared

with the existing load balancing methods, such as the Fog

Node Placement Algorithm (FNPA) and Round Robin (RR),

to show its significance using the iFogSim simulator

experimental setup. Analysis shows that GOLBA reduces

response time by 6.6% and energy utilization by 8.9%

compared to FNPA, 13.7%, and 15.1% compared to RR

policy.

Keywords—biosensors, load balancing, internet of things, fog

computing, COVID-19, iFogSim

I. INTRODUCTION

According to Cisco’S projections, 15.14 billion current

Internet of Things (IoT) devices are estimated to be

connected online. By 2025, this amount is predicted to

double to 29.42 billion and will exaggerate exponentially

by 2030. The IoT is fast becoming a new paradigm for

passing connections in many application fields as shown

in Fig. 1. These applications can be enhanced by using AI

and sensing-related capability of 6G communication

technology. In recent years, smart wearables, intelligent

industrial and utility components, and smartphones, have

grown rapidly and can detect real-time environmental

data [1].

Fig. 1. Applications of IoT.

Heterogeneous IoT devices create massive volumes of

data, requiring extensive processing, aggregation, and

analysis to deploy innovative applications in real

scenarios. Due to resource constraints, IoT devices cannot

handle data, only utilizing their resources for outsourcing

data processing to cloud data centers. As cloud data centers

receive more requests, network congestion increases since

they are centrally situated and demand more bandwidth

from the leading network. The global dispersion of billions

of IoT devices could exacerbate these effects for real-time

applications, and leveraging outside cloud resources is

unwise.

Fog computing solves these underlying IoT-cloud

issues by mediating between data centers and IoT devices.

Fog computing uses network edge devices to process more

delay-sensitive task demands, resources, and users [2, 3].

However, fog devices’ resource and energy utilization are

Manuscript received January 15, 2024; revised March 11, 2024; accepted
April 22, 2024; published November 27, 2024.

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1283doi: 10.12720/jait.15.11.1283-1294

mailto:gaurav.itindia@gmail.com
mailto:amit0581@gmail.com

challenges with fog computing. Several IoT devices seek

services from the same fog device, because of which

overloading may occur and negatively impact service

quality. Innovative applications like competent healthcare

systems inadequate resource management, and inefficient

load balancing can significantly reduce fog nodes’ service

quality and accelerate energy overuse [4, 5].

Traditional fog computing systems overuse resources

and energy due to uneven load distribution, making data

collection and analysis difficult in large geographical

regions. A fog-based Smart Infection Detection System

(SIDS) architecture is proposed to solve these difficulties.

Any air-borne infectious disease epidemic can be managed

swiftly with this design, including COVID-19. SIDS aims

to monitor patients’ health through a face mask containing

biosensors using edge and fog devices microservices. As

the intelligent healthcare system is time-sensitive [6, 7], an

energy-efficient nature-inspired Geese Optimization Load

Balancing Approach (GOLBA) is proposed for the fog

paradigm to get optimal results.

The proposed research favors low-energy processing

with lesser response time and integrating more permanent

elements into the system for various other potential

applications to provide quality services to heterogeneous

end users. The application of innovative wearable

technology, also called synthetic biology in the Internet of

Medical Things (IoMT), enables society to provide simple,

precise infectious agent diagnosis services outside of

testing laboratories. This proposed architecture can

drastically enhance infection testing frequency without

patient lab visits in situations like COVID-19 in a country

such as India, the world’s most populous nation. The

summary of this paper’s contributions is as mentioned

below:

The proposed Fog-based Smart Infection Detection

System (SIDS) architecture breaks the network into

multiple planes: cloud plane, fog plane, and Smart IoT

plane. This can quickly manage air-borne infectious

diseases and pandemics such as COVID-19. The Geese

Optimization Load Balancing Approach (GOLBA), an

energy-efficient nature-inspired load-balancing technique,

has been proposed for the fog paradigm. By using this

method, congestion can be avoided, and network

performance can be enhanced. Three performance

indicators are used to evaluate the effectiveness of the

GOLBA for boosting the proposed Smart Infection

Detection System (SIDS), including response time, energy

utilization, and cost. To demonstrate the efficacy of the

GOLBA in comparison to a Fog Node Placement

Algorithm (FNPA) and Round Robin (RR) methods, a

wide range of simulations are run using the iFogSim

toolkit. When comparing GOLBA to FNPA and RR

implementation, GOLBA experimental findings

demonstrate a considerably balanced load distribution, a

drop in energy utilization, and a reduced response time.

The rest of this study is compiled as follows: A current

literature study is explained in Section II. Section III

explains the proposed fog-based architecture, resource

allocation algorithm, load-balancing approach, and

simulation setting. The findings and discussion of results

after simulations are shown in Section IV. The conclusion

with recommendations for further research is given in

Section V.

II. RELATED WORKS

Yasmeen et al. [8] recommended a Particle Swarm

Optimization (PSO) load balancer with simulated

annealing for smart buildings, considering Global best

(Gbest) underpins PSO functionality. However, the initial

allocation of Local best (Lbest) causes an issue for the

Simulated Annealing Algorithm. The authors concluded

that PSO’s performance can be enhanced by picking the

Gbest using simulated annealing after each iteration,

which is the updated Gbest. The authors avoids discussing

fog nodes’ response time-energy trade-off. A round-robin

priority-based load balancer was presented by

Pereira et al. [9]. In the proposed load balancer, network

administrators chooses fog nodes for load balancing based

on job priority queues and observe high-priority processes

finish faster because low-priority jobs are queued up last.

Beraldi et al. [10] proposed sequential forwarding,

adaptive forwarding with self-tuning ability load balancing

for smart cities, considering node heterogeneity and

uneven load distribution. It limits node transmissions by

altering a threshold using a memoryless assessment of

their present state. The processing queue fills up after

forwarding a task as feasible, and the job is abandoned.

Fatima et al. [11] introduced an intelligent building

proximity dynamic service broker policy. The method

chooses fog because it can handle load depending on

virtual machine allocation and decrease network latency.

However, cost and response time are required to be

balanced. Chekired et al. [12] proposed the intelligent

electric car priority queuing model. The goals were to

minimize delay and provide geo-aware services for the

intelligent grid model while allowing electric car

customers optimal charging and unplugging planning.

Zahid et al. [13] proposed load balancing for intelligent

grids using the hill-climbing approach. It finds available

virtual machines using mathematical optimization and

randomness. Requests are sent to the best Virtual Machine

(VM). However, the cost-response time trade-off remains

unresolved. Butt et al. [14] developed Binary PSO, a

genetic algorithm for intelligent cities. The authors

proposed that meta-heuristic techniques allows to swiftly

reach global solutions while making trade-offs, unlike

heuristic algorithms, which can become stuck in local

optima. Improved PSO with levy walk was developed by

Khan et al. [15] for intelligent grid load balancing. The

author noticed heuristic algorithms often get stuck in local

optima and summarized that meta heuristic algorithms

assist in swiftly finding global answers with trade-offs.

Hussein and Mousa [16] developed a meta-heuristic

load balancer using Ant Colony Optimization (ACO) and

PSO to improve end-user application Quality of Service

(QoS). The authors suggested maintaining fog node task

stability is crucial and observed ACO and PSO are superior

to greedy search. The authors determined that multi-

objective improvement must include cost and power

utilization for better results. Divya [17] suggested an

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1284

intelligent camera SDN, deep reinforcement (Q Learning

Algorithm). The reinforcement learning method used

experience and dynamic network features to pick

intelligent behaviors. Ali et al. [18] proposed a modified

genetic approach resource allocation method for solving

discrete optimization issues of assigning a computational

node that cannot be assigned using a continuous space. The

authors did not allow independent service composition

reconfiguration at the network edge.

Hameed et al. [19] introduced vehicular fog for job

execution in autonomous cars. Here, clustering may pick a

cluster master based on the fog movement factor. Another

method proposed was capacity-based load balancing to

alleviate network congestion. The authors did not focus on

sophisticated, dynamic self-learning approaches to boost

energy utilization and service quality. Greedy techniques

move the burden from the overloaded fog node to the one

having the lowest load and let the underloaded computing

nodes share the extra load. A coalition game-based

algorithm for load balancing by Yan et al. [20] maximizes

reward. Asghar et al. [21] proposed an improved load-

balancing method for health monitoring systems. The

authors presented that dataflow delays for IoT devices

include load-related computation latency and traffic load-

related communication latency. Thus, base station and fog

node compute loads were considered during load

balancing. The authors should have discuss the fog node

latency, cost, and energy trade-off for optimal results.

Wan et al. [22] projected an energy aware multi-agent

system for an intelligent factory (Candy Packing) to

evaluate energy utilization and equipment workload. Fog

nodes run an innovative factory energy model. The authors

presented load balancing optimization using a multi-agent

system and enhanced PSO to aid work scheduling.

Alzeyadi et al. [23] extended the PSO evolutionary

resource allocation algorithm for intelligent factory robots

(Drug Packing), where fog applications consider the

threshold to help intelligent industrial robots manage their

workload. Server overload and underutilization reduce

network performance and increase power use. The authors

summarised that model-based intelligent learning is

needed to replicate bias-free findings.

Li et al. [24] presented cloud-fog cooperation

scheduling with task offloading. The authors showed that

low latency frequently uses more energy. Energy

optimization is achieved by trading off traffic load on each

tier using NL programming. However, heterogeneous fog

testing is required. Kaur and Aron [25] proposed an

energy-efficient method in which end users send queries to

the fog layer, which utilizes a load balancer to evaluate

virtual machine capacity and performance. Overloaded

VMs strain underloaded ones. Bala and Chishti [26]

presented EEG Tractor Beam, a proximity and Cluster

Algorithm (CA) for online games. The proposed approach

places application modules on the nearest fog device to

decrease transmission delays. CA consolidates numerous

modules onto a single device to save network bandwidth

utilization.

DRAM was suggested by Xu et al. [27] and used

dynamic service mobility and immobile resource

allocation to balance loads. However, the authors did not

consider the fog node load movement’s pros and cons. A

method for locating and keeping an eye on clusters during

the pandemic’s first, second, and third phases was offered

by Herath et al. [28]. The framework has been built using

technologies related to fog computing, smart sensors, and

IoT-based approaches. The component was inefficient in

boosting the testing frequency required to stop the spread

of the COVID-19 pandemic.

Goel and Chaturvedi [29, 30] showed that real-world

services’ QoS needs are significant when fog nodes are

less than end-user task-demanding services. Second, Fog

Nodes (FNs) are constantly congested, which lowers

efficiency and QoS for all FNs. The authors concluded that

multi-objective optimization methodologies for resource

allocation and load balancing can improve fog node

clusters with superior service quality. Advanced hybrid

meta-heuristic algorithms and learning-based adaptive and

intelligent solutions are needed for optimal results in real

applications. The existing load-balancing methods used

for smart scenarios with key QoS parameters are listed in

Table I.

After a rigorous literature review, the following

recurring gaps are identified in existing research works

mentioned in Table I. Previous studies [8–15] need to

optimally handle the required trade-off between response

time and energy consumption of fog nodes. The existing

study [16–21] does not simultaneously include multi-

objective optimization such as response time, power

consumption, and cost. The different approaches [22–27]

focus on something other than self-learning-based

dynamic and intelligent techniques to improve the quality

of service and energy consumption. Only some academics

implemented their fog-based architecture for intelligent

healthcare systems. Most research only assessed their

techniques against delay or response time, ignoring trade-

offs between other performance indicators like energy,

cost, etc.

Looking at the recurring challenges that researchers are

addressing across different approaches. It is observed that

smart healthcare monitoring systems have extensive

requirements of improved load-balancing approaches for

effectively handling the exponential heterogeneous IoT

load on the fog layer. There is an urge for optimal resource

and energy utilization, and for continually providing

quality services in the upcoming future demands. The fog-

based Smart Infection Detection System (SIDS)

architecture is proposed along with energy-efficient Geese

Optimization Load Balancing Approach (GOLBA). It

covered the significant requirement of multi-objective

optimization and effectively handled the trade-off between

response time and energy consumption for optimal results.

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1285

TABLE I. SUMMARY OF EXISTING LOAD BALANCING METHODS WITH PERFORMANCE METRICS

References Scenario Existing Approaches Tool Used RT ET DL EG RU CT

[8] Smart Building PSO with Simulated Annealing Cloud Analyst √

[9] Generic Scenario Priority Round Robin Load Balancer Not Mentioned √

[10] Smart City Sequential and Adaptive Forwarding Not Mentioned √

[11] Smart Buildings Service Broker Dynamic Service Proximity Cloud Analyst √ √

[12] Electric Vehicles Priority Queuing Model NS-2 √ √

[13] Smart Grid Hill Climbing Cloud Analyst √ √ √

[14] Smart City Binary PSO Genetic Algorithm Cloud Analyst √ √ √

[15] Smart Grid Improved PSO with Levy Walk (IPSOLW) Cloud Analyst √ √ √

[16] Generic Scenario Ant Colony and Particle Swarm Optimization Matlab √ √

[17] Smart Cameras SDN, Deep Reinforcement Learning Algorithm Not Mentioned √

[18] Generic Scenario Non-dominated Sorting Genetic Algorithm II Matlab √ √

[19] Auto Driven Vehicles Vehicular Fog Computing NS-2 √

[20] Generic Scenario Coalition Based Greedy Algorithm NS-3 √ √

[21] Health Monitoring Fog Node Placement Load Balancing iFogSim √

[22] Smart Factory Energy Aware LBS, IPSO Not Mentioned √

[23] Smart Factory Extended ELBS (PSO Evolutionary Algorithm) iFogSim √ √

[24] Generic Scenario Cloud-Fog Cooperation Scheduling Not Mentioned √ √

[25] Generic Scenario Energy Aware LBA iFogSim √ √ √

[26] Online Games Proximity and Cluster Algorithm iFogSim √ √

[27] Generic Scenario Dynamic Resource Allocation Method CloudSim √

III. EXPERIMENT & METHOD

A. Proposed Fog Based Layered Architecture

This section describes a three-tier fog-based Smart

Infection Detection System (SIDS) architecture to control

pandemics like COVID-19 and avoid further epidemics

quickly. The proposed fog-based SIDS architecture uses

face masks equipped with biosensors [6] to diagnose air-

borne infectious diseases such as COVID-19 using a

smartphone and fog computing microservices. The

recommended architecture has three tiers. The first tier of

architecture uses biosensors on the patient’s facemask to

detect and transmit COVID-19 vital indicators. IoT

devices are linked to specific server stations, but their

coverage zones may overlap, increasing compute node

availability under heavy traffic loads [31].

All IoT devices are connected with server stations with

heterogeneous fog gateways at the intermediate smart

healthcare fog layer. The first-tier IoT devices provide

sensor-perceived data to nearby fog gateways. A second-

tier fog gateway linked with the cluster controller node

monitors each patient’s COVID-19 status. The vital signs

are analyzed to diagnose COVID-19 and identify

criticality based on the patient’s history at the second tier.

A top-layer proxy server sends observations to the third

tier’s cloud data centers for storage. Simultaneously, fog

gateways also send patients’ COVID-19 test results to

patients’ smartphones. The proposed three-tier fog-based

Smart Infection Detection System (SIDS) layered

architecture is presented in Fig. 2.

I Tier: Smart IoT Plane covers the perception layer,

which comprises biosensors attached to patients via face

masks, to sense and pass the vital signs of air-borne

infectious diseases such as COVID-19 to fog gateways.

The sensor-collected data stream is transmitted to the fog

plane through an edge device like a smartphone, and

results are displayed on actuators. Patients are notified of

their requests during the filtering-processing phase within

the IoT layer. The patient receives results and preventive

measures through actuators if the fog gateway sample test

is positive. The rapid sample testing-processing phase is

conducted on the fog layer, avoiding visiting laboratories

physically and supporting real-time updates and timely

results, which in turn assist in fast spread control of air-

borne infectious diseases such as COVID-19 before it

becomes a pandemic. Computation at the fog layer ensures

the quality of services to even those end users with

resource-constrained IoT devices so that this system can

benefit the community as a whole.

Fig. 2. Fog-based Smart Infection Detection System (SIDS) layered
architecture.

II Tier: The fog plane covers the intermediate layer,

which includes a cluster of fog gateways co-located with

the cluster master node/server station to check the COVID-

19 status of patients regularly. The fog gateway receives

patients’ task-processing requests. It sends them to a

cluster controller node, which allocates tasks to the closest,

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1286

active, and most resourceful fog gateway based on quality-

of-service parameters using the proposed multi-objective

Optimal Nearest Fog Node Search (ONFNS) resource

allocation algorithm. To connect, every network item

shared a beaconing message between IoT devices, fog

gateways, and cluster controller nodes. This message

includes IoT devices, fog gateway and cluster controller

node identifiers, geographical positions, and time stamps.

Cluster controller nodes use beaconing messages to assess

distance from fog gateways within their communication

range and form clusters. In overloaded states, fog gateways

can adapt their computing burden by adjusting IoT device

affiliations between server stations and considering

overlapping coverage zones, affecting fog gateway

computing and traffic loads.

III Tier: Cloud plane covers proxy servers and the

cloud to connect with data centers for long-term data

storage, analysis of the volume of data, and providing

feedback on patients’ air-borne infectious diseases such as

COVID-19 status in specific situations for future quick

assistance. It also assists in computation during heavy

traffic load on server stations or overloading of fog nodes

to avoid disasters.

B. Proposed Resource Allocation Algorithm

Studies have shown that geese can teach people to

command a flock in the skies. The flight range of geese in

a perfect V formation is 71% greater than when flying

alone. Analogously, the proposed system uses a pod of

clusters to boost the IoT-Fog architecture’s processing

capabilities in intelligent healthcare design. This cluster

shares computing and storage via many fog gateways

connected to server stations. After breaking from

formation, a goose realizes how hard it is to fly alone and

tries to rejoin. The configuration improves a flock’s

visibility and power while making flying simpler for birds.

Similarly, when a cluster controller node is

overburdened with task requests, the proposed system

advises transferring some of the load to the next controller

node. This may boost the next cluster’s compute demand

and decrease the previous cluster controller node’s traffic.

After processing all queue requests, the prior cluster

controller node prepares to process new task requests.

The aim of the proposed multi-objective Optimal

Nearest Fog Node Search (ONFNS) Resource Allocation

Algorithm, as shown in Algorithm 1, is to find the fog

gateway with the fewest distance using Algorithm 1, with

adequate resources to handle the job request using

Algorithm 2 and improve the energy efficiency with geese

optimization Load Balancing Approach using

Algorithm 3. The proposed approach (ONFNS) is also

explained using the flowchart at the end of this section in

Fig. 3.

The fog gateway gets end device requests within its geo

coverage zone. The distant fog node transmits the task

request to the cluster controller node, which allocates jobs

or forwards the task request to the appropriate gateway

within the cluster or neighboring cluster controller node

based on their capabilities using Algorithm 1. The

proposed algorithm uses the Select In-range Cluster Nodes

function using Algorithm 1 to generate a route map of IoT

devices and fog nodes. After that, the route chart is sorted

in ascending order to select the minimum distance fog

gateway for computation. Besides the shortest distance,

the algorithm verifies available resources using the

Compute Resourceful Cluster Node function using

Algorithm 2. In addition, the nature-inspired geese

optimization load balancing approach, as shown in

Algorithm 3, dynamically chooses the new cluster

controller node while managing many task processing at a

specific time, considering fog nodes’ average delay and

energy utilization. Calculating fog node traffic load,

energy loss, and communication delay helps to pick the

efficient cluster controller node with the lowest average

latency and minimum energy utilization.

Algorithm 1: Optimal Nearest Fog Node Search (ONFNS)

Algorithm

Input: Group of fog gateways N, Group of end devices D

Output: Mapping of fog node & IoT Device

1. Optimal_Nearest_fog_node_search (Edevice[], Fnode[])

2. Initialize ClustHead[Fnode], ClustMap[Edevice],

RouteLink[Edevice][Fnode], Edis[], j=0, k=0

3. RouteLink[][] = Select_inrange_cluster_nodes

(Edevice[], Fnode[])

4. for each Edevicei Ɛ Edevice do //i=0 to Edevice.Count

5. Edis[] = RouteLink[i][j]

6. Sort(Edis) //In ascending order

7. for each Fnodej Ɛ Fnode do //j=0 to Fnode.Count

8. if(Edis[k] == RouteLink[i][j]) then

9. Flag = Compute_resourceful_cluster_node (i,j)

10. if (Flag =1) then

11. ClustMap[i] = j //Assign fog node

12. else

13. k=k+1 //Check next optimal fog node

14. Re-initialize j=0

15. Close if

16. else

17. j=j+1

18. close if

19. close for

20. i=i+1

21. close for

22. Save to stable storage (ClustMap)

23. ClusterHead[] = Geese_optimization_load_balancing

(Edevice[], Fnode[])

24. Close function

Algorithm 2: Compute Resourceful Cluster Node

Input: Group of Fog gateways N, Set of end devices D

Output: Integer (Flag)

1. Compute_resourceful_cluster_node (Edevice e, Fnode n)

2. if (n.cpu >= e.cpu && n.ram >= e.ram &&n.network >=

e.network &&n.energy >= e.energy) then

3. n.cpu = n.cpu-e.cpu

4. n.ram = n.ram – e.ram

5. n.network = n.network – e. network

6. n.energy = n.energy – e.energy

7. Flag = 1

8. else

9. Flag = 0

10. close if

11. Close function

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1287

Fig. 3. Flowchart for Proposed Approach (ONFNS).

The concept of Algorithm 3 is taken from the life of a

goose. When geese fly together, lead geese in the

formation have high “Drag”. When it tires, the lead goose

returns to the formation and is replaced. The lead goose

immediately feels the lifting force from the bird before it.

Likewise, the proposed approach dynamically picks the

new cluster controller node within a cluster, considering

the average delay and energy utilization of fog gateways

using Algorithm 3 while managing many task requests at

a set time. This helps to retain QoS when the previous

cluster controller node is congested, leading to high energy

loss. Besides, Geese may honk to cheer each other.

Honking is also thought to tell other geese where they are

in the formation.

In the same way, every network item sends a beaconing

message to connect the fog gateways and cluster controller

nodes. This message includes fog gateway and cluster

controller node identifiers, geographical positions, and

time stamps. Cluster controller nodes use beaconing

messages to assess distance from fog gateways within their

communication range. These linked fog nodes lead to the

reformation of clusters. The proposed approach manages

and improves SIDS, an intelligent healthcare monitoring

system task distribution, resource utilization, response

time, energy efficiency, and overall service quality.

Algorithm 3: Geese Optimization Load Balancing Approach

(GOLBA)

Input: Set of Cluster nodes N, Set of Edge devices D

Output: Dynamic selection of cluster master node

1. Geese_optimization_load_balancing (Edevice[],

Fnode[])

2. Initialize ClustHead, Ndelay[Fnode][Edevice],

Nenergy[Fnode][Edevice], Navgdelay[], Navgenergy[]

3. for n Ɛ N do //n=0 to fognode.count

4. for d Ɛ D do //d=0 to edgedevice.count

5. if d Ɛ cover_range(n) then

6. Calculate Dcm(d) //Communication delay

7. Calculate Ecm(d) //Communication energy

8. close if

9. Ndelay[n][d] = Dcm(d)

10. Nenergy[n][d] = Ecm(d)

11. close for

12. Navgdelay[n] = Average(Ndelay)

13. Navgenergy[n] = Average(Nenergy)

14. close for

15. Select ClustHeadmin(Navgdelay, Navgenergy)

16. Return ClustHead

The proposed SIDS can boost testing frequency without

forcing patients to visit the laboratories during a pandemic.

It meets the QoS needs of delay-sensitive IoT-based

innovative healthcare applications by migrating huge

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1288

tasks. It requests data from IoT sensor nodes to fog nodes,

which are closest, more active, and resourceful, using the

ONFNS algorithm. When the intelligent healthcare system

is implemented widely, the server station balances the load

inside a cluster using a proposed algorithm with optimal

response time and energy utilization.

C. Experimental Setup

1) Simulation setup for fog-based SIDS

Sensors that detect air-borne infectious diseases such as

COVID-19 test parameters communicate data to fog

gateways through smartphones. The computing fog

gateways process and analyze data to evaluate the patient’s

COVID-19 diagnostic status and determine if they are

critical or normal based on the patient’s prior history. Fog

gateways provide patient feedback to their smartphones

and store it in the cloud. Fog gateways and cloud servers

communicate via proxy servers. Our technique was

simulated and evaluated using iFogSim [32], an open-

source toolbox.

iFogSim uses Cloudsim’s API to manage its discrete

event-based simulation in Java. This high-performance

open-source fog computing, edge computing, and IoT

toolkit models and simulates their networks. iFogSim

combines resource management approaches that can be

customized for study. The following iFogSim classes are

needed to simulate the fog network: Fog device, Sensor,

Actuator, Tuple, Application, Monitoring edge, and

Resource management service for architecture layer

specifications and virtual machine simulation setup.

The current fog computing application simulator is

iFogSim, which is used to construct fog models with IoT

integration for experimental validation. iFogSim

simulation environment is required to define CPU length,

RAM, bandwidth, and other characteristics while

designing fog devices. The proposed Resource Allocation

Algorithm (ONFNS) with a Load Balancing Approach

(GOLBA) has included cost, energy utilization, and

response time as performance parameters. The iFogSim

network configuration options for the experimental setup

is shown in Table II.

TABLE II. NETWORK CONFIGURATION FOR FOG BASED ARCHITECTURE

Param. / Comp. Device CPU (mips) RAM (mb) UP-BW (mbps) DW-BW (mbps) Latency (ms) Rate (Cost/Mips)

Cloud 44,800 40,000 10,000 10,000 100 0.01
Proxy 12,800 8,000 10,000 10,000 10 0.04

Fog Gateway 12,800 8,000 10,000 10,000 5 0.08

IoT Device 2,800 4,000 10,000 10,000 10 0.16

Devices in a computer network, however, come in

various configurations. At the root level, a cloud server

acts as the parent. The fog gateways can communicate with

the cloud server using the Level 1 proxy server. Level 2

computing gateways are situated closer to the end user to

offer computing and storage resources more often. The

third tier of IoT devices is sensor and actuator-based. The

fog computing-based solution’s evaluation architecture,

using iFogSim, is depicted in Fig. 4. The HP laptop

(Inteli3, 2.60 GHz processor, 256 GB SSD drive) was used

for the simulations.

Fig. 4. Fog-based smart healthcare system topology in iFogSim.

The proposed design was simulated 500 times with

several topologies using iFogSim. The architecture has

been altered by adding additional IoT/End Devices (ED)

and Fog Nodes (FN). Two fog nodes were initially linked

to server stations, with ten IoT devices linked within the

cluster. IoT devices and fog nodes were added afterward

to broaden the topology (Topol). Simulation fog

experimental setups are shown in Tables III and IV, which

are examined based on response time, energy utilization,

and cost, and readings are recorded for each simulation to

evaluate the final results.

TABLE III. SIMULATION SETUP CORRESPONDING TO VARYING IOT

DEVICES

Topology Cloud Proxy
Fog

Server

Fog

Node

IoT

Device

Topol-1 1 1 5 4 100

Topol-2 1 1 5 4 200
Topol-3 1 1 5 4 400

Topol-4 1 1 5 4 800

Topol-5 1 1 5 4 1,000

The simulation setup with different topologies

corresponding to a fixed number of fog nodes and a

varying number of IoT/End devices is presented in

Table III.

The simulation setup with different topologies

corresponding to varying fog nodes and fixed number of

IoT/End devices is presented in Table IV.

TABLE IV. SIMULATION SETUP CORRESPONDING TO VARYING FOG

NODES

Topology Cloud Proxy
Fog

Server

Fog

Node

IoT

Device

Topol-1 1 1 5 2 400

Topol-2 1 1 5 4 400

Topol-3 1 1 5 6 400
Topol-4 1 1 5 8 400

Topol-5 1 1 5 10 400

2) Performance evaluation parameters

As performance assessment factors, this paper included

response time, energy utilization, and computing cost.

Below is a brief explanation of each parameter:

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1289

Response Time: Response time represents the sum of

all delays of any kind that occur during the processing of a

biomedical request. Propagation and processing delays are

included. It is computed in milli second (ms). With the use

of Eq. (1) [16], the response times of the proposed and

implemented techniques have been determined.

𝑅𝑡𝑖𝑚𝑒𝑖𝑗 = 𝐷𝑒𝑙𝑎𝑦𝑖𝑗
𝑐𝑚 + 𝑃𝑡𝑖𝑚𝑒𝑖𝑗 (1)

It’s evident from Eq. (1) that the response time is the

total of the IoT-Fog transmission delay and processing

duration on the fog gateways.

Energy Utilization: The overall energy loss by the IoT

devices and fog resources to do their assigned tasks is

known as energy utilization. It is computed in Joules (J).

With the aid of Eqs. (2) and (3) [33], the energy utilization

of the proposed techniques presented as follows:

𝐸𝑛𝑒𝑟𝑔𝑦𝑈𝑠𝑎𝑔𝑒 = ∑ 𝐸𝑆𝑒𝑛𝑠𝑒 (𝑖) + 𝐸𝑇𝑟𝑎𝑛𝑠 (𝑖) + 𝐸𝑃𝑟𝑜𝑐 (𝑖)
𝑛
𝑖=1 (2)

𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙 = 𝐸𝐴𝑐𝑡𝑖𝑣𝑒 𝑁𝑜𝑑𝑒 + 𝐸𝐼𝑑𝑙𝑒 𝑁𝑜𝑑𝑒 (3)

Eq. (2) demonstrates that the overall energy utilization

is the sum of the energy used for each task’s sensing,

transmission, and execution. However, Eq. (3) presents

that the total energy utilized by active and idle fog nodes

equals the total energy used.

Computational Cost: The overall cost of resources

when completing submitted tasks is known as the

computational cost. It is computed in Dollars. Using

Eq. (4) [33], the computational costs of proposed and

implemented techniques have been determined.

𝐶𝑜𝑠𝑡𝐶𝑜𝑚𝑝 = ∑ 𝑀𝐼𝑃𝑆𝐻𝑜𝑠𝑡𝑖 𝑋 𝑃𝑇𝐻𝑜𝑠𝑡𝑖 𝑋 𝐶𝑜𝑠𝑡𝐻𝑜𝑠𝑡𝑖
𝑛
𝑖=1 (4)

The cost of computing may be understood from Eq. 4,

as the total of the MIPS costs for each agent, the processing

time spent by each agent, and the computational costs of

each agent.

IV. RESULT AND DISCUSSION

This section gives the results of the performance

evaluation of the GOLBA in comparison to the FNPA and

RR scheme. The outcomes for the performance parameters

such as response time, energy used, and cost incurred are

presented in Table V. Comparing GOLBA to FNPA and

the RR scheme in terms of response time and energy usage,

the simulation results show that GOLBA minimizes both

the parameters and produce optimal results.

It is observed that during simulation, when load

distribution is uneven, some fog nodes are overwhelmed

while others are idle, and long fog node processing times

cause network congestion. Due to network congestion, IoT

device response times are longer and may exceed job

deadlines. GOLBA, an efficient load-balancing approach,

helps distribute the load across idle fog nodes to minimize

network congestion and improve smart healthcare

applications’ response time and energy utilization.

Our proposed approach in fog based implementation is

an effective option for infection detection systems, as

demonstrated by the experimental findings for the

performance metrics of response time and energy usage. In

light of these results, we can see that fog computing could

work in settings where processing data quickly is crucial.

The simulation results of GOLBA with fixed number of

fog nodes and growing IoT devices are calculated using

the ifogsim toolkit and are presented in Table V. The

response time is 896.66 ms, the energy used is

167345.10 J, and the cost incurred is 1014.65 dollars for

the simulation setup Topol-1 with 100 IoT devices and 4

fog nodes, as shown in Table III. Similarly, the response

time is 1564.96 ms, the energy used is 169398.26 J, and

the cost incurred is 2183.49 dollars for the Topol-2 with

200 IoT devices and 4 fog nodes. The response time is

2512.28 ms, the energy used is 170129.73 J, and the cost

incurred is 3782.30 dollars for the Topol-3 with 400 IoT

devices and 4 fog nodes. The response time is 6388.13 ms,

the energy used is 171671.47 J, and the cost incurred is

8260.83 dollars for the Topol-4 with 800 IoT devices and

4 fog nodes. The response time is 11687.41 ms, the energy

used is 171935.46 J, and the cost incurred is 9134.17

dollars for the Topol-5 with 1000 IoT devices and 4 fog

nodes.

TABLE V. SIMULATION RESULTS OF GOLBA FOR VARYING IOT DEVICES

Setup Topol-1 Topol-2 Topol-3 Topol-4 Topol-5

RT (ms) 896.66 1,564.96 2,512.28 6,388.13 11,687.41

EU (J) 167,345.10 169,398.26 170,129.73 171,671.47 171,935.46

Cost ($) 1,014.65 2,183.49 3,782.30 8,260.83 9,134.17

The analysis of the results in Table V suggests that the

response time and cost incurred rise with the increase in

the number of IoT devices for a fixed number of fog nodes

associated with the cluster controller node because

of increased communicational and computational latency,

respectively. However, energy usage is increased slightly

due to efficient load balancing of task requests among the

fog nodes coming from IoT devices. Using the proposed

approach, we can improve the result by increasing the

number of fog nodes per server within a cluster with

growing numbers of IoT/End devices.

The results of the proposed policy are compared with

existing policy in terms of response time are plotted in

Fig. 5, which reflects that the proposed strategy, i.e.,

GOLBA, has 6.6% less response time as compared to the

FNPA and has 13.7% less response time as compared to

the RR scheme. Similarly, the results of the proposed

policy are compared with existing policy in terms of

energy used are plotted in Fig. 6, which reflects that the

proposed strategy, i.e., GOLBA, consumed 8.9% less

energy as compared to the FNPA and consumed 15.1%

less energy as compared to the RR scheme. Besides, the

results of the proposed policy are compared with existing

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1290

policy in terms of cost incurred are plotted in Fig. 7, which

reflects that the proposed strategy, i.e., GOLBA, incurred

7.7% more cost as compared to the FNPA and incurred

13.7% less cost as compared to the RR scheme.

The comparative outcomes of the GOLBA method with

FNPA and RR policy concerning response time are

presented in Fig. 5. The GOLBA simulation findings

indicate that the proposed approach improved by 6.6%

response time as compared to FNPA and 13.7% response

time as compared to RR policy for a given experimental

setup, having four fog nodes connected to cluster

controller node and 100 to 1,000 variable end devices.

The comparative outcomes of the proposed approach

with FNPA and RR policy concerning energy utilization

are presented in Fig. 6. The GOLBA simulation findings

indicate that the proposed approach improved by 8.9%

energy utilization compared to FNPA and by 15.1%

energy utilization compared to RR policy for the given

experimental setup, having four fog nodes connected to

cluster controller node and 100 to 1000 variable end

devices.

Fig. 5. Comparative results based on response time (FN-04).

Fig. 6. Comparative results based on energy utilization (FN-04).

The comparative results of the proposed approach, with

FNPA and RR policy concerning cost are presented in

Fig. 7. The GOLBA simulation findings indicate that the

proposed approach costs 7.7% more than FNPA, while

13.7% less cost compared to RR policy for a given

experimental setup, having four fog nodes connected to

cluster controller node and 100 to 1,000 variable end

devices.

Fig. 7. Comparative results based on cost (FN-04).

The simulation results of GOLBA with growing number

of fog nodes and fixed number of IoT devices are

calculated using the iFogSim toolkit and are presented in

Table VI. The response time is 2864.33 ms, the energy

used is 172181.65 J, and the cost incurred is 3805.61

dollars for the simulation setup Topol-1 with two fog

nodes & 400 IoT devices, as shown in Table IV. Similarly,

the response time is 2512.28 ms, the energy used is

170129.73 J, and the cost incurred is 3782.30 dollars for

the Topol-2 with four fog nodes and 400 IoT devices. The

response time is 2025.86 ms, the energy used is 167084.83

J, and the cost incurred is 3766.75 dollars for the Topol-3

with six fog nodes and 400 IoT devices. The response time

is 2395.00 ms, the energy used is 167067.94 J, and the cost

incurred is 3785.12 dollars for the Topol-4 with eight fog

nodes and 400 IoT devices. The response time is

2686.05 ms, the energy used is 167062.59 J, and the cost

incurred is 3809.01 dollars for the Topol-5 with ten fog

nodes and 400 IoT devices.

The analysis of the results presented in Table VI

suggests that the response time and cost incurred drop with

the increase in the number of fog nodes associated with

cluster controller node up to a specific level for a fixed

number of IoT devices. After that, both parameter values

start rising due to increased communicational and

computational latency. However, energy usage gradually

decreases due to efficient load balancing of task requests

among the fog nodes coming from IoT/End devices.

TABLE VI. SIMULATION RESULTS OF GOLBA FOR VARYING FOG NODES

Setup Topol-1 Topol-2 Topol-3 Topol-4 Topol-5

RT (ms) 2,864.33 2,512.28 2,025.86 2,395.00 2,686.05

EU (J) 172,181.65 170,129.73 167,084.83 167,067.94 167,062.59

Cost ($) 3,805.61 3,782.30 3,766.75 3,785.12 3,809.01

The results of the proposed policy are compared within

different topologies of simulation setups. The response

time is plotted in Fig. 8, which reflects that the response

time decreased gradually up to a specific limit of increase

number of fog nodes within a cluster; after that, the

response time rises due to increased communication

latency. Similarly, the energy used is plotted in Fig. 9,

which reflects that energy usage decreased gradually for

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1291

the added number of fog nodes within a cluster, after that,

the energy usage become stable due to the availability of

more active fog nodes for task request allocation. The cost

incurred is plotted in Fig. 10, which reflects that the cost

decreased gradually up to a specific limit of increase in fog

nodes within a cluster; after that, the cost rises due to

increased computational latency.

The simulation results of GOLBA concerning response

time are presented in Fig. 8. iFogSim simulation results

show that the response time decreased gradually up to

Topol-3; after that, due to increased communication

latency, the response time rises for a given experimental

setup, having 2 to 10 variable fog nodes connected to

cluster controller node and constant 400 end devices.

The simulation results of GOLBA concerning energy

utilization are presented in Fig. 9. Simulation results show

that the energy utilization decreased gradually for the

experimental setup, which had 2 to 10 variable fog nodes

connected to the cluster controller node and 400 end

devices.

Fig. 8. Relative results based on response time (ED-400).

Fig. 9. Relative results based on energy utilization (ED-400).

Fig. 10. Relative results based on cost (ED-400).

The simulation results of GOLBA concerning the cost

presented in Fig. 10. Simulation results show that the cost

decreased gradually up to Topol-3; after that due to

increased computational latency, the cost rises for the

given experimental setup, having 2 to 10 variable fog

nodes connected to cluster controller node and constant

400 end devices.

In summary, it is observed during the simulation that the

significant response time and energy savings come with a

price cost, as the cost of computation is higher on fog

nodes and with the proposed scheme most of the

computation will now be possible on fog gateways

efficiently. This paper presents two key observations; first,

the proposed fog-based SIDS is quite favorable for the

delay-sensitive intelligent healthcare monitoring system.

Second, the results favor the GOLBA approach,

considering performance compared to the FNPA and RR,

which are existing load-balancing methods.

V. CONCLUSION AND FUTURE WORK

Cloud computing architecture is employed in most

smart monitoring systems. However, the massive adoption

of delay-sensitive apps is slowed by the inability of the

cloud to handle high data volumes in real-time. The fog

paradigm may help vital applications meet real-time

temporal constraints by bringing cloud-like services closer

to IoT devices. Real-time circumstances like smart

healthcare suffer from fog model resource management

and load balancing issues that lower service quality and

accelerate energy overuse. This paper proposes a fog-

based Smart Infection Detection System (SIDS)

architecture for quick pandemic control of air-borne

infectious diseases such as COVID-19. This design can be

used for particular infectious disease epidemics before the

pandemic. The network has three planes: IoT, fog, and

cloud. An energy-efficient, nature-inspired Geese

Optimization Load Balancing Approach (GOLBA), which

uses clustering to handle large user requests and select

optimal fog gateways for the computation of task requests,

is also proposed. Congestion can be avoided, and this

strategy can improve system performance. iFogSim

simulations compare the proposed approach against an

FNPA and round-robin load-balancing methods to show

its usefulness. The analyses show that the GOLBA

significantly reduces response time by up to 6.6% and

energy utilization by up to 8.9% compared to FNPA and

response time by up to 13.7% and energy utilization by up

to 15.1% compared to RR, respectively.

Summing up the practical implications of the results for

intelligent healthcare monitoring, SIDS can increase

testing frequency without pushing patients to attend labs

during pandemics. The ONFNS algorithm migrates

massive tasks and requests data from IoT sensor nodes to

fog nodes, which are closest, more active, and more

resourceful, to suit delay-sensitive IoT-based smart

healthcare applications’ QoS needs. When the intelligent

healthcare system is widely adopted, the server station

balances cluster load using a proposed method with

optimal response time and energy use. The recommended

method may be tested on more diverse and massive data

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1292

sets and confirmed for utilization in further innovative

applications like smart cities, buildings, etc. The study can

also focus on learning-based adaptive and intelligent

approaches to minimize costs and enhance service quality

in IoT-based innovative applications.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Author A.K.C., proposed idea, and G.G., conduct the

research, developed methodology & wrote paper. A.K.C.

and G.G. perform data analysis & interpretations of results

after simulations. G.G. work on writing review & editing

and A.K.C., provide supervision. All authors have

thoroughly reviewed the manuscript for publication and

have approved the final version.

ACKNOWLEDGMENT

I also wish to thank the Meerut Institute of Engineering

and Technology for their intellectual support during the

study endeavour.

REFERENCES

[1] D. Mala, A. Anand, and N. K. Trivedi, “A system for monitoring of

COVID-19 patients at home based on internet of things and fog

computing,” ECS Transactions, vol. 107, no. 1, 11039, 2022.

[2] N. Mostafa, “Cooperative fog communications using a multi-level

load balancing,” in Proc. 2019 Fourth International Conference on
Fog and Mobile Edge Computing (FMEC), 2019, pp. 45–51.

[3] M. Al-Razgan, M. M. Hassan, and T. Alfakih, “A computational

offloading method for edge server computing and resource
allocation management,” Journal of Mathematics, pp. 1–11, 2021.

[4] Q. Fan and N. Ansari, “Towards workload balancing in fog

computing empowered IoT,” IEEE Transactions on Network
Science and Engineering, vol. 7, no. 1, pp. 253–262, 2018.

[5] K. N. Tun and A. M. M. Paing, “Resource aware placement of IoT
devices in fog computing,” in Proc. 2020 International Conference

on Advanced Information Technologies (ICAIT), 2020, pp. 176–181.

[6] J. S. Kshatri, D. Bhattacharya, S. Giri, I. Praharaj, S. K. Palo, S.
Kanungo, J. Turuk, J. Ghosal, T. Bhoi, M. Pattnaik, and H. Singh,

“Analysis of the COVID-19 testing parameters and progression of

the pandemic at the district level: Findings from the ICMR Hundred
Million Test (HMT) database during the first wave in India,”

International Journal of Infectious Diseases, vol. 122, pp. 497–505,

2022.
[7] H. A. Khattak, G. Ahmed, H. Arshad, A. M. Sharif, S. Jabbar, and

S. Khalid, “Utilization and load balancing in fog servers for health

applications,” EURASIP Journal on Wireless Communications and
Networking, vol. 2019, no. 1, pp.1–12, 2019.

[8] A. Yasmeen, N. Javaid, O. U. Rehman, H. Iftikhar, M. F. Malik,

and F. J. Muhammad, “Efficient resource provisioning for smart
buildings utilizing fog and cloud-based environment,” in Proc.

2018 14th International Wireless Communications & Mobile

Computing Conference (IWCMC), 2018, pp. 811–816.
[9] E. P. Pereira, E. L. Padoin, R. D. Medina, and J. F. Méhaut,

“Increasing the efficiency of fog nodes through of priority-based

load balancing,” in Proc. 2020 IEEE Symposium on Computers and
Communications (ISCC), 2020, pp. 1–6.

[10] R. Beraldi, C. Canali, R. Lancellotti, and G. P. Mattia, “Distributed

load balancing for heterogeneous fog computing infrastructures in
smart cities,” Pervasive and Mobile Computing, vol. 67, 101221,

2020.

[11] I. Fatima, N. Javaid, M. N. Iqbal, I. Shafi, A. Anjum, and U. U.
Memon, “Integration of cloud and fog based environment for

effective resource distribution in smart buildings,” in Proc. 2018

14th International Wireless Communications & Mobile Computing

Conference (IWCMC), 2018. pp. 60–64.

[12] D. A. Chekired, L. Khoukhi, and H. T. Mouftah, “Queuing model
for evs energy management: Load balancing algorithms based on

decentralized fog architecture,” in Proc. 2018 IEEE International

Conference on Communications (ICC), 2018, pp. 1–6.
[13] M. Zahid, N. Javaid, K. Ansar, K. Hassan, M. K. U. Khan, and M.

Waqas, “Hill climbing load balancing algorithm on fog computing,”

in Proc. the 13th International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing (3PGCIC-2018), 2018, pp. 238–251.

[14] A. A. Butt, S. Khan, T. Ashfaq, S. Javaid, N. A. Sattar, and N.

Javaid, “A cloud and fog-based architecture for energy management
of smart city by using meta-heuristic techniques,” in Proc. 2019

15th International Wireless Communications & Mobile Computing

Conference (IWCMC), 2019, pp. 1588–1593.
[15] Z. A. Khan, A. A. Butt, T. A. Alghamdi, A. Fatima, M. Akbar, M.

Ramzan, and N. Javaid, “Energy management in smart sectors

using fog-based environment and meta-heuristic algorithms,” IEEE
Access, vol. 7, pp. 157254–157267, 2019.

[16] M. K. Hussein and M. H. Mousa, “Efficient task offloading for IoT-

based applications in fog computing using ant colony optimization,”
IEEE Access, vol. 8, pp. 37191–37201, 2019.

[17] V. Divya, “Intelligent deep reinforcement learning based resource

allocation in fog network,” in Proc. 2019 26th International
Conference on High Performance Computing, Data and Analytics

Workshop (HiPCW), 2019, pp. 18–22.

[18] I. M. Ali, K. M. Sallam, N. Moustafa, R. Chakraborty, M. Ryan,
and K. K. R. Choo, “An automated task scheduling model using

non-dominated sorting genetic algorithm II for fog-cloud systems,”

IEEE Transactions on Cloud Computing, vol. 10, no. 4, pp. 2294–
2308, 2020.

[19] K. K. R. Hameed, K. Munir, S. ul Islam, and I. Ahmad, “Load-

balancing of computing resources in vehicular fog computing,” in
Proc. 2020 3rd International Conference on Data Intelligence and

Security (ICDIS), 2020, pp. 101–108.

[20] J. Yan, J. Wu, Y. Wu, L. Chen, and S. Liu, “Task offloading
algorithms for novel load balancing in homogeneous fog network,”

in Proc. 2021 IEEE 24th International Conference on Computer
Supported Cooperative Work in Design (CSCWD), 2021, pp. 79–

84.

[21] A. Asghar, A. Abbas, H. A. Khattak, and S. U. Khan, “Fog based
architecture and load balancing methodology for health monitoring

systems,” IEEE Access, vol. 9, pp. 96189–96200, 2021.

[22] J. Wan, B. Chen, S. Wang, M. Xia, D. Li, and C. Liu, “Fog
computing for energy-aware load balancing and scheduling in smart

factory,” IEEE Transactions on Industrial Informatics, vol. 14, no.

10, pp. 4548–4556, 2018.
[23] A. Alzeyadi and N. Farzaneh, “A novel energy-aware scheduling

and load-balancing technique based on fog computing,” in Proc.

2019 9th International Conference on Computer and Knowledge
Engineering (ICCKE), 2019, pp. 104–109.

[24] G. Li, J. Yan, L. Chen, J. Wu, Q. Lin, and Y. Zhang, “Energy

consumption optimization with a delay threshold in cloud-fog
cooperation computing,” IEEE Access, vol. 7, pp. 159688–159697,

2019.

[25] M. Kaur and R. Aron, “Energy-aware load balancing in fog cloud
computing,” Materials Today: Proceedings, 2021.

[26] M. I. Bala and M. A. Chishti, “Offloading in cloud and fog hybrid

infrastructure using iFogSim,” in Proc. 2020 10th International
Conference on Cloud Computing, Data Science & Engineering

(Confluence), 2020, pp. 421–426.

[27] X. Xu, S. Fu, Q. Cai, W. Tian, W. Liu, W. Dou, X. Sun, and A. X.
Liu, “Dynamic resource allocation for load balancing in fog

environment,” Wireless Communications and Mobile Computing

2018.
[28] H. M. K. K. M. B. Herath, G. M. K. B. Karunasena, H. M. W. T.

Herath, H. D. N. S. Priyankara, B. G. D. A. Madushanka, and W. R.

De Mel, “Integration of IoT and Fog computing for the
development of COVID-19 cluster tracking system in urban cities,”

Computational Intelligence for COVID-19 and Future Pandemics:

Emerging Applications and Strategies, 2020, pp. 145–169.
[29] G. Goel and A. K. Chaturvedi, “A systematic review of task

offloading & load balancing methods in a fog computing

environment: major highlights & research areas,” in Proc. 2023 3rd
International Conference on Intelligent Communication and

Computational Techniques (ICCT), 2023, pp. 1–5.

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1293

[30] G. Goel and A. K. Chaturvedi, “A comprehensive review of QoS

aware load balancing techniques in generic & specific fog

deployment scenarios,” in Proc. 2023 International Conference on
Computational Intelligence and Sustainable Engineering Solutions

(CISES), 2023, pp. 983–987.

[31] A. Asghar, A. Abbas, H. A. Khattak, and S. U. Khan, “Fog based
architecture and load balancing methodology for health monitoring

systems,” IEEE Access, vol. 9, pp. 96189–96200, 2021.

[32] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim:
A toolkit for modeling and simulation of resource management

techniques in the internet of things, edge and fog computing

environments,” Software: Practice and Experience, vol. 47, no. 9,

pp. 1275–1296, 2017.

[33] A. U. Rehman, Z. Ahmad, A. I. Jehangiri, M. A. Ala’Anzy, M.
Othman, A. I. Umar, and J. Ahmad, “Dynamic energy efficient

resource allocation strategy for load balancing in fog environment,”

IEEE Access, vol. 8, pp. 199829–199839, 2020.

Copyright © 2024 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-
NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1294

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V15N11-1283

