
Comparison of Models for Predicting the Number

of Calls Received in a Call Center through Time

Series Analysis

Abraham Gutiérrez *, Jesús Bobadilla, and Santiago Alonso

Computer Systems Department, Polytechnic University of Madrid, Madrid, Spain

Email: abraham.gutierrez@upm.es (A.G.); jesus.bobadilla@upm.es (J.B.); santiago.alonso@upm.es (S.A.)

*Corresponding author

Abstract—Time series analysis is a crucial aspect of machine

learning that deals with data points ordered by time. Time

series data is prevalent in various domains, including finance,

economics, healthcare, weather forecasting, and many

others. Understanding and modeling time series data is

essential for making predictions, identifying trends, and

extracting meaningful insights. Effectively modeling time

series data is a complex task that requires a combination of

statistical methods, machine learning algorithms, and

domain-specific knowledge. The choice of a specific model

depends on the characteristics of the data and the goals of the

analysis or prediction task. Our research provides an

innovative method to carry out the analysis of time series

data. This method is based on successive sequential steps to

perform the temporal analysis. Each step is explained

theoretically, and then tested on real data. Furthermore, we

apply and compare different models based on both statistical

approaches, i.e., Seasonal Autoregressive Integrated Moving

Average (SARIMA), Seasonal Autoregressive Integrated

Moving Average + Exogenous Variables (SARIMAX), and

neural networks, i.e., Long Short-Term Memory (LSTM).

For the comparison between the models, the Mean Absolute

Error (MAE) and Root Mean Squared Error (RMSE)

metrics are used, as well as another empirical metric

provided by the collaborating company. In each

methodology, two verticals are defined, one with exogenous

variables and the other without them. The conclusions of the

study show that considering the nature of the data analyzed,

the model based on neural networks using exogenous

variables is the one that provides the best results.

Keywords—artificial intelligence, machine learning, time

series, neural networks, AI applied to industry

I. INTRODUCTION

Time series analysis serves as a vital tool in business,

offering a systematic approach to unravel patterns and

glean insights from data that unfolds over time. Companies

leverage time series analysis in a spectrum of applications,

from sales forecasting and supply chain optimization to

analyzing financial markets [1] and tracking economic

indicators [2], but also to optimize operations, effective

resource allocation, customer interactions over time,

identification of unusual patterns or anomalies in business

data, healthcare systems [3], weather forecasting [4],

agricultural commodities [5], retail [6], etc. The overall

goal is to improve operational efficiency, make informed

decisions and adapt to changing market conditions.

Time series forecasting is the process of analyzing time

series data using statistics and modeling to make

predictions and inform strategic decision-making [7]. It is

not always an exact prediction, and likelihood of forecasts

can vary wildly—especially when dealing with the

commonly fluctuating variables in time series data and

factors outside our control. However, forecasting insight

about which outcomes are more likely—or less likely—to

occur than other potential outcomes. Naturally, there are

limitations when dealing with the unpredictable and the

unknown [8].

A repertoire of models and techniques is employed in

time series analysis and forecasting, ranging from classical

methods to advanced approaches such as machine learning

models and exponential smoothing methods. While

traditional methods have focused on parametric models

informed by domain expertise—such as Autoregressive

(AR) [9–11], exponential smoothing [12, 13] or structural

time-series models [14]—modern machine learning

methods provide a means to learn temporal dynamics in a

purely data-driven manner. With the increasing data

availability and computing power in recent times, machine

learning has become a vital part of the next generation of

time-series forecasting models [15–18].

Our research provides an innovative method to carry out

the analysis of time series data. This method is based on

successive sequential steps to perform the temporal

analysis. Each step is explained theoretically, and then

tested on real data provided by one of the main

telecommunications companies in Spain. The goal is to

predict the volume of calls made to its call center.

Predicting the number of calls enables us to optimize the

workforce at the call center, ensuring we have an adequate

number of agents available to provide customers with

quality and immediate service.

This paper applies and compares different models based

on both statistical approaches, i.e., Seasonal

Manuscript received January 12, 2024; revised March 6, 2024; accepted

May 29, 2024; published November 27, 2024.

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1273doi: 10.12720/jait.15.11.1273-1282

Autoregressive Integrated Moving Average (SARIMA),

Seasonal Autoregressive Integrated Moving Average +

Exogenous Variables (SARIMAX) and neural networks,

i.e., Long Short-Term Memory (LSTM) [18–21]. For the

comparison between the models, the MAE and RMSE

metrics are used, as well as another empirical metric

provided by the collaborating company. In each

methodology, two verticals are defined, one with

exogenous variables and the other without them.

The structure of the article is composed of a first section

in which the theoretical framework related to the analysis

of time series is described. Subsequently, it moves on to

the experimentation section, outlining the steps to be taken

for the corresponding analysis based on the selected

models. Finally, the study’s conclusions and bibliographic

references are included.

II. THEORETICAL FRAMEWORK

The mathematical formulation of time series involves

expressing the underlying structure of the data in

mathematical terms. Time series data is a sequence of

observations collected or recorded over time, and various

mathematical models are used to represent and analyze this

data. Here are some fundamental concepts and

mathematical formulations commonly used in time series

analysis.

A time series is typically denoted as:

 {yt = Tt + St + εt} (1)

where 𝑦𝑡 represents the observation at time t; 𝑇𝑡 is the

trend component (long-term movement or direction in the

data); 𝑆𝑡 is the seasonal component (repeating patterns or

cycles at fixed intervals), and 𝜀𝑡 are the residuals or errors

(random fluctuations or noise in the data).

The Autoregressive Integrated Moving Average

(ARIMA) model is a widely used time series model that

combines Autoregression (AR), Differencing (I), and

Moving Averages (MA). The notation for an ARIMA

model is ARIMA (p, d, q), where p is the order of

autoregression, d is the degree of differencing, and q is the

order of the moving average. Denoted by:

 𝛷(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝛩(𝐵)𝜀𝑡 (2)

where 𝛷(𝐵) and 𝛩(𝐵) are polynomials in the lag operator

B, representing autoregressive and moving average

components, respectively.

The Exponential Smoothing State Space (ETS) models

represent time series data using error, trend, and

seasonality components. The notation for ETS models is

𝐸𝑇𝑆(𝐸𝑟𝑟𝑜𝑟, 𝑇𝑟𝑒𝑛𝑑, 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙) and is typically denoted

as:

 𝑦𝑡 = 𝑙𝑒𝑣𝑒𝑙𝑡−1 + 𝑡𝑟𝑒𝑛𝑑𝑡−1 + 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑡−𝑚 + 𝜀𝑡 (3)

The Seasonal Decomposition of Time Series (STL)

decomposes a time series into trend, seasonal, and residual

components. The decomposition can be represented as:

 𝑦𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡 (4)

The General Autoregressive Conditional

Heteroskedasticity (GARCH) models are used for

modeling volatility in time series data, particularly in

financial markets. The GARCH (p, q) model is represented

as:

 𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑝
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑞
𝑗=1 (5)

Here, 𝛼0 , 𝛼𝑖 , 𝛽𝑗 are model parameters, 𝜀𝑡−𝑖
 are the

lagged squared residuals, and 𝜎𝑡−𝑗
 are the lagged

conditional variances.

These mathematical formulations represent some of the

key models used in time series analysis. The choice of a

specific model depends on the characteristics of the time

series data and the goals of analysis or forecasting. Model

parameters are typically estimated using statistical

methods, and the model performance is evaluated using

various metrics, such as mean squared error or likelihood-

based criteria.

A. The SARIMA Models

In this work, we will use a Seasonal Autoregressive

Integrated Moving Average model that is an extension of

the ARIMA model that incorporates seasonality. SARIMA

is particularly useful for time series data that exhibit

patterns that repeat at fixed intervals, such as monthly or

quarterly seasonality. The SARIMA model is denoted as

SARIMA (p, d, q (P, D, Q) s), where p, d, and q are the

non-seasonal orders, and P, D, and Q are the seasonal

orders, with s representing the length of the seasonal cycle.

The components of SARIMA include:

- Non-seasonal Autoregressive component:

 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 (6)

- Seasonal Autoregressive component:

 𝛷1𝑦𝑡−𝑠 + 𝛷2𝑦𝑡−2𝑠 + ⋯ + 𝛷𝑃𝑦𝑡−𝑃𝑠 (7)

- Non-seasonal differencing:

 (1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑦𝑡 (8)

Here, B is the backshift operator.

- Non-seasonal Moving Average component:

 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 (9)

- Seasonal Moving Average component:

 𝛩1𝜀𝑡−𝑠 + 𝛩2𝜀𝑡−2𝑠 + ⋯ + 𝛩𝑄𝜀𝑡−𝑄𝑠 (10)

- Seasonal Component. The seasonal component

represents the periodic patterns in the data and is

expressed as St, where t is the time index. The

SARIMA model is then formulated as:

(1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝)(1 − 𝐵)𝑑(1 −

𝐵𝑠)𝐷𝑦𝑡 = (1 + 𝜃1𝐵 + 𝜃2𝐵2 + ⋯ + 𝜃𝑞𝐵𝑞)(1 + 𝛩1𝐵𝑠 +

 𝛩2𝐵2𝑠 + ⋯ + 𝛩𝑄𝐵𝑄𝑠)𝜀𝑡 (11)

In summary, the SARIMA model is a powerful tool for

modeling and forecasting time series data with both non-

seasonal and seasonal patterns. Selecting appropriate

values for p, d, q, P, D, and Q requires careful analysis of

the time series characteristics, and model parameters are

typically estimated using statistical methods. SARIMA

models are widely used in various fields, including

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1274

finance, economics, and environmental science, where

seasonality is a significant factor in the data.

B. The SARIMAX Model

The Seasonal Autoregressive Integrated Moving

Average with Exogenous Variables model is an extension

of the SARIMA model that incorporates exogenous or

external variables. Exogenous variables are additional

time series that may influence the target variable but are

not predicted by the model. SARIMAX is a powerful tool

for time series analysis, as it includes of external factors

that may impact the behavior of the time series being

modeled.

The general form of the SARIMAX model is

SARIMAX (p, d, q (P, D, Q)s), where p, d, and q are the

non-seasonal orders, P, D, and Q are the seasonal orders,

and s is the length of the seasonal cycle. The addition of

exogenous variables introduces them into the model, and

the structure becomes SARIMAX (p, d, q (P, D, Q)s)(Px,

Dx, Qx), where Px, Dx, and Qx represent the orders of the

exogenous variables. The SARIMAX model is formulated

as follows:

(1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝)(1 − Φ1𝐵𝑠 − Φ2𝐵2s −

Φ𝑝𝐵𝑃𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑦𝑡 = (1 + 𝜃1𝐵 + 𝜃2𝐵2 +

⋯ + 𝜃𝑞𝐵𝑞)(1 + 𝛩1𝐵𝑠 + 𝛩2𝐵2𝑠 + ⋯ + 𝛩𝑄𝐵𝑄𝑠) (1 +

 β1B + β2B2 + ⋯ + β𝑝B𝑝)𝑥𝑡 (12)

Here, yt is the time series being modeled, xt represents

the exogenous variable, and εt is the error term. The β

coefficients represent the impact of the exogenous variable

on the time series.

Key points about SARIMAX:

1. Exogenous Variables: SARIMAX allows for

including of one or more exogenous variables, which

can improve the model’s predictive performance by

capturing additional information that influences the

target variable.

2. Model Selection: The selection of the orders

(p,d,q,P,D,Q,Px,Dx,Qx) involves analyzing the

autocorrelation and partial autocorrelation functions,

as well as considering the nature of the time series

and the potential impact of exogenous variables.

3. Estimation and Forecasting: Model parameters are

typically estimated using methods like maximum

likelihood estimation. Once the model is fitted, it can

be used to forecast future time series values.

4. Diagnostic Checks: Diagnostic checks, such as

residual analysis, are essential to ensure that the

model adequately captures the patterns in the time

series and that the residuals are white noise.

SARIMAX models are widely applied in various fields,

including economics, finance, and environmental science,

where external factors can significantly influence the

observed time series. When dealing with complex time

series data influenced by both internal dynamics and

external variables, SARIMAX provides a flexible

framework for accurate modeling and forecasting.

C. Handling Stationarity

Handling non-stationarity is crucial in time series

analysis, as many statistical models assume that the

underlying data is stationary. A stationary time series has

constant statistical properties over time, such as a constant

mean and variance. This concept is essential, since most

models, such as ARIMA, require the series to be

stationary. Here are some standard methods for handling

non-stationarity in time series:

Differencing. Removes the seasonal effect by

subtracting the observation at time t from the observation

at time t−s, where s is the length of the season.

Trend-Seasonal Decomposition of Time Series

(STL). Separates the different components of the time

series using a process like Seasonal-Trend decomposition

using LOESS.

Detrending. Removing the trend component from the

time series using linear regression or polynomial fitting

techniques.

Transformations. This method stabilize the variance

and make the time series more amenable to modeling. Log-

transformations are often used when dealing with data that

exhibits exponential growth.

Augmented Dickey-Fuller Test (ADF). Statistical test

to check for the presence of a unit root, indicating non-

stationarity. If a unit root is found, differencing may be

applied.

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS)

test. Statistical test used to determine the stationarity of a

time series. Unlike ADP test, is designed to test the null

hypothesis of stationarity around a deterministic trend.

The choice of method depends on the specific

characteristics of the time series data and the goals of the

analysis or forecasting task. It often involves

experimenting with different approaches and evaluating

their effectiveness in achieving stationarity.

D. The LSTM Models

Recurrent Neural Networks (RNNs) are a class of

artificial neural networks designed for processing

sequential and time-series data. Unlike traditional

feedforward neural networks, RNNs have connections that

form directed cycles, allowing them to maintain a hidden

state that captures information from previous time steps.

This makes RNNs well-suited for tasks where the order

and context of input data are important, such as natural

language processing, speech recognition, and time series

analysis [16–18].

RNNs tend to have difficulties capturing long-term

dependencies in sequences. Long Short-Term Memory

(LSTM) [18–21] is a type of Recurrent Neural Network

(RNN) architecture designed to overcome the limitations

of traditional RNNs in capturing long-term dependencies

in sequential data. LSTMs were introduced by Hochreiter

and Schmidhuber in 1997 and have since become widely

used for various applications, including time series

forecasting, natural language processing, and speech

recognition.

The core idea behind LSTM is the introduction of a

memory cell, which allows the network to maintain and

update information over long sequences. The memory cell

acts as a storage unit, selectively adding or removing

information. LSTMs have three gates that control the flow

of information into and out of the memory cell: one gate

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1275

that regulates the input into the memory cell, another gate

that decides what information to discard from the memory

cell and an output gate that determines the output based on

the current input and the memory cell content.

In an LSTM network two states are defined, the cell and

the hidden states. The cell state is the internal memory of

the LSTM. It runs straight down the entire chain, with only

minor linear interactions. The cell state allows information

to flow through the network without being altered, which

helps in preserving long-term dependencies. The hidden

state is the output of the LSTM at a particular time step. It

is a filtered version of the cell state and contains

information the model has deemed relevant for the task.

LSTMs are trained using BackPropagation Through

Time (BPTT), where gradients are computed through the

entire sequence. The use of the memory cell and gates

facilitates the training of deep networks over long

sequences without the vanishing gradient problem often

encountered in traditional RNNs.

LSTMs have demonstrated remarkable success in

modeling and predicting sequential data, making them a

popular choice for a wide range of applications where

understanding and capturing long-term dependencies are

crucial [16].

III. EXPERIMENTS

The first thing to consider is the amount of data at hand.

This is a constant across all types of analysis, and time

series analysis forecasting is no exception. However,

forecasting relies heavily on the amount of data, possibly

even more so than other analyses. It builds directly off past

and current data. Having a limited amount of data for

extrapolation can lead to less accurate forecasting.

The forecast time frame also matters. This is known as

a time horizon—a fixed point in time where a process (like

the forecast) ends. Forecasting a shorter time horizon with

fewer variables is generally easier compared to forecasting

a longer time horizon. The longer the time horizon, the

more unpredictable the variables will be. Alternatively,

having less data can sometimes work with forecasting if

time horizons are adjusted.

As always with analysis, the best analysis is only valid

if the data is of a usable quality. Dirty, poorly, overly, or

inadequate processed and collected data can significantly

skew results and create wildly inaccurate forecasts.

Our proposed method is a sequential algorithm that

involves a series of steps that start with data collection and

preprocessing and, end with the generation of

corresponding forecasts. These steps may vary based on

the characteristics of the data and the specific objectives of

the analysis. The subsections in this section provide a

general summary of the key steps in processing time series

data. Following these steps can ensure that time series data

is adequately prepared and analyzed, resulting in more

accurate and meaningful insights or predictions.

A. Data Collection

Collect and assemble the time series data from relevant

sources, ensuring that the data covers the desired period

and includes all necessary variables.

In our case, the provided data corresponds to all calls

made during two years (2021 to 2022), averaging

approximately 250 K calls per month. This information

allows grouping at the day, week, month, and year levels.

The data is collected from the Contact Center’s Interactive

Voice Response (IVR) system, which interacts with

callers, gathers information, and routes calls to the

appropriate recipient. The IVR Data Collector saves

information that callers provide (IVR slots). This

information includes the caller’s ID, agent ID, date/time,

the telephone number from which the caller made the call,

and a voice recording. The preprocessing on the data is

reduced to keeping the call identifier and the date and time

in which it occurred. The project aims to predict the calls

received on a daily level; that is why, from now on, we will

only consider the data per day.

B. Data Inspection

Explore the principal characteristics of the time series,

including the structure, frequency, and any obvious

patterns or trends. Visualizations such as line plots,

histograms, and autocorrelation plots can be helpful for

initial inspection. The preliminary inspection, shown in

Fig. 1, is carried out through a line plot with the data in

daily aggregations.

Fig. 1. Data inspection. Data inspection display per day.

In an initial verification of the data provided, an

apparent degradation is detected between the months of

March and July 2020. This degradation is due to the

pandemic caused by the SARS-CoV-2 virus that resulted

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1276

in the mandatory home confinement of the country, forcing

most of the population to work from home. This situation

caused the call center to close temporarily, so the data for

that period is unrealible.

C. Handle Missing Values

Check for missing values in the time series and decide

on an appropriate strategy for handling them. This may

involve imputation or removing observations with missing

values. No problems with missing values are detected after

analyzing the starting dataset.

D. Handle Outliers

Identify and handle outliers or anomalies in the data.

Outliers can significantly impact the analysis and

modeling process, so it is essential to address them

appropriately. To treat outliers, it is first necessary to

identify them; to do this, any value outside the range

defined by the floor and ceiling will be considered an

outlier. Fig. 2 shows graphically the outliers that were

found thanks to this method.

 𝐹𝑙𝑜𝑜𝑟𝑖+𝑠 = (
1

𝑠
∑ 𝑥𝑖

𝑠
𝑖=1) − 𝜎 (13)

 𝐶𝑒𝑖𝑙𝑖𝑛𝑔𝑖+𝑠 = (
1

𝑠
∑ 𝑥𝑖

𝑠
𝑖=1) + 𝜎 (14)

In time series problems, preserving the data continuity

is crucial, and outright removal of outliers is discouraged.

Maintaining the flow of information is essential in these

scenarios. While conventional methods like using mean or

median exist, we have opted for a more robust approach—

the Hampel filter. This method, also known as the Hampel

identifier, excels at identifying and handling outliers,

particularly in time series or ordered datasets. The Hampel

filter scrutinizes observations that deviate from the median

within a local window or neighborhood. This makes it

particularly effective when outliers coexist with regular

data points.

Fig. 2. Outlier detected per day.

E. Check Frequency, Seasonality and Trend

Confirm that the time series data has a consistent

frequency. If there are missing time points, consider

imputing or filling in the gaps to create a regular time

series. Examine the time series for the presence of

seasonality or repeating patterns. This can be done through

visual inspection, autocorrelation plots, or statistical tests

for seasonality. Investigate the presence of a trend in the

time series. Trends can be identified visually or through

statistical methods like regression analysis. As shown in

Fig. 3, a slight downward trend is observed, which

indicates that differentiation of the data is necessary to

eliminate this trend.

Fig. 3. STL decomposition of raw data.

F. Stationarity Check

Assess the stationarity of the time series using statistical

tests such as the Augmented Dickey-Fuller (ADF) test or

the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. If

the series is non-stationary, consider differencing or other

transformations.

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1277

TABLE I. ADF AND KPSS TEST ON RAW DATA

Results ADF Test KPSS Test

Test Statistic −2.859853 0.388766

p-value 0.050220 0.016285

#Lags Used 14 14

Number of Observations 5000000 5000000

Critical Value (1%) −3.443418 0.216000

Critical Value (5%) −2.867303 0.146000

Critical Value (10%) −2.569840 0.119000

Considering the p-value of the ADF test (Table I) in

relation to the significance level of 0.05, the null

hypothesis cannot be rejected. If the p-value is above a

critical size, we cannot reject the existence of a unit root.

Therefore, the series is non-stationary, and we should

consider differentiation.

Considering the p-value of the KPSS test (Table I) in

relation to the significance level of 0.05, there is evidence

for rejecting the null hypothesis in favor of the alternative.

Hence, the series is non-stationary according to the KPSS

test. It is advisable to apply both tests to ensure the series

is truly stationary.

G. Differencing or Transformation

If the time series is non-stationary, apply differencing or

other transformations to stabilize the mean and variance.

This step may involve removing trends, seasonality, or

both. A logarithmic transformation is performed as a first

option, but the ADF test results are still inconclusive.

Therefore, an ordinal differentiation is carried out. The

results of the ADF test corroborate this conclusion. The p-

value (5.225508e−14) is now much less than the

significance level of 0.05, which makes us reject the null

hypothesis, and therefore, confirm that the series is now

trend stationary.

With the autocorrelation function, it can be seen how

there is a certain pattern that repeats every 7 lags, which

indicates that seasonal differentiation is necessary, so a

seasonal differentiation is carried out on the data. The

Dickey-Fuller test is performed again, where it is verified

that the null hypothesis continues to be rejected, so the

series continues to be stationary due to trend (p-value is

3.194650e−10). Now that it has been differentiated

ordinally and seasonally, it is possible to interpret the

autocorrelation functions in Fig. 4 to extract the parameters

of the SARIMA and SARIMAX models.

Fig. 4. Simple and partial autocorrelation functions of seasonally differentiated data.

H. Feature Engineering

Create additional features or variables that might be

useful for analysis or modeling. For example, extract day-

of-week, month, or other temporal features. The feature

engineering process is applied to the SARIMAX and

LSTM models to use exogenous variables. The model

without exogenous variables only has the number of daily

calls as a feature. The exogenous variables that expand the

model include the day of the week, week, month, year,

holiday, special day (though not officially a holiday, a

majority of people likely consider it as such), working days

of the month, working days of the month without holidays,

sending an invoice (the invoice has been sent to the client),

and sending SMS (SMS related to any non-payment has

been sent).

I. Normalization or Scaling

Normalize or scale the time series data to a consistent

range. This step can be important for certain modeling

techniques, especially those sensitive to the scale of the

input features. Depending on the nature of the data, we

choose to perform MinMaxScaler type normalization for

numerical data and OneHotEncoder type encoding for

categorical features. MinMaxScaler scales and translates

each feature individually to be in the given range on the

training, in our case, between 0 and 1. MinMaxScaler does

not reduce the effect of outliers. However, it linearly scales

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1278

them down into a fixed range, where the largest occurring

data point corresponds to the maximum value and the

smallest one corresponds to the minimum value.

OneHotEncoder encodes categorical features as a one-hot

numeric array. By default, the encoder derives the

categories based on the unique values in each feature.

J. Modeling

Choose an appropriate modeling approach based on the

characteristics of the time series data.

1) SARIMA model

The interpretation of autocorrelation graphs leads to the

determination of SARIMA (p, d, q (P, D, Q)s) values:

- p = 0. The partial autocorrelation function shows a

structure based on 3 significant lags.

- d = 1. Data has been ordinally differentiated only

once.

- q = 1. Single significant delay observed in the

simple autocorrelation function.

- P = 0. At the seasonal part of the autocorrelation

functions every 7 delays a certain structure is

observed.

- D = 1. It has only been seasonally differentiated

once.

- Q = 0. Simple autocorrelation function reveals no

significant delay in the seasonal part.

- s = 7. Determined by the repetition of the pattern

every 7 delays during seasonal differencing.

Table II presents the summary of the most important

variables. Special attention should be paid to the p-value

of ma.L1; if it is greater than 0.05, it would indicate that

the model is prone to overfitting. In this case, it is lower,

so we will continue with the chosen model.

TABLE II. SARIMA SUMMARY

 ma.L1 sigma2

coef −0.7054 0.0747

std err 0.020 0.002

z −34.704 32.481

P>|z| 0.000 0.000

[0.025 −0.745 0.070

0.975] −0.666 0.079

2) SARIMAX model

In the case of the SARIMAX, the autocorrelation

functions have been interpreted differently. The ordinal

part remains the same; however, the stationary part would

remain:

- P = 3. The partial autocorrelation function has 3

significant lags.

- D = 1. It has only been seasonally differentiated

once.

- Q = 1. One of the lags of the autocorrelation

function has been considered significant.

Table III presents the summary of the most important

variables. It is important to note that some variables have

a p-value greater than 0.05. This is a good indicator to

determine which variables are necessary. In this case,

variables x6, x8, x9, and x10 have p-values greater than

0.05, so the model must be rebuilt without these variables.

TABLE III. SARIMAX SUMMARY

 coef std err z P>|z| [0.025 0.975]

x1 −3653.1650 104.076 −35.101 0.000 −3857.151 −3449.179

x2 −2871.3935 234.900 −12.224 0.000 −3331.790 −2410.997

x3 1404.5050 404.241 3.474 0.001 612.208 2196.802
x4 7.4570 2.107 3.539 0.000 3.327 11.587

x5 −436.4175 190.470 −2.291 0.022 −809.732 −63.103

x6 57.2398 121.052 0.473 0.636 −180.018 294.498

x7 −289.4350 93.146 −3.107 0.002 −471.998 −106.872

x8 2.5123 481.682 0.005 0.996 −941.567 946.591

x9 −378.9693 208.737 −1.816 0.069 −788.085 30.147

x10 3.4417 239.960 0.014 0.989 −466.870 473.754

ma.L1 −0.5455 0.032 −17.266 0.000 −0.607 −0.484

ar.S.L7 0.0921 0.045 2.058 0.040 0.004 0.180

ar.S.L14 0.0524 0.045 1.157 0.247 −0.036 0.141

ar.S.L21 0.0675 0.037 1.808 0.071 −0.006 0.141

ma.S.L7 −0.9998 0.045 −22.259 0.000 −1.088 −0.912

sigma2 8.729e+05 0.004 1.94e+08 0.000 8.73e+05 8.73e+05

3) LSTM model

The LSTM model is constructed using the Keras library,

employing a relatively straightforward structure based on

the “Sequential” model. The architecture consists of an

input layer with a shape of (31, 1) to capture information

from the 31 days preceding the prediction. Subsequently,

there is an LSTM layer with 62 neurons, followed by

another LSTM layer with 32 neurons. The output is

facilitated by a dense layer with 31 neurons, representing

the prediction for the subsequent 31 days.

For the LSTM layers, the ReLU function serves as the

recurrent activation, while Sigmoid is applied for normal

activation. The dense layer adopts a ReLU activation. The

model is compiled using the Adam optimizer, and the

Mean Squared Error (MSE) is declared as the loss function

and metric. This configuration ensures that the model

focuses on minimizing the mean squared error during

training, providing a robust framework for time series

forecasting. Table IV shows the defined architecture:

TABLE IV. MODEL ARCHITECTURE

Layer (type) Output Shape Param #

input (InputLayer) [(None, 31, 1)] 0

lstm_1 (LSTM) (None, 31, 64) 16896
lstm_2 (LSTM) (None, 32) 12416

dense_out (Dense) (None, 32) 1023

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1279

A validation split of 25% has been defined for training

the model. A small batch size of 3 is chosen to prevent a

substantial decline in model quality while preserving its

generalization capabilities. Training spans 120 epochs, and

as observed, overfitting begins beyond this point. Due to

the time series nature of the data, the shuffle parameter is

set to false, ensuring chronological training order.

4) LSTM model with exogenous variables

Prediction with additional variables necessitated the

creation of two distinct models. The first model comprises

an LSTM layer with 64 neurons featuring sigmoid

activation and recurrent ReLU activation, a Dense layer

with 31 neurons employing ReLU activation, and a Flatten

layer. This model takes “escalations” as input. The second

model incorporates a Dense layer with 64 neurons and

another Dense layer with 31 neurons, both utilizing

“ReLU” activation taking exogenous variables as input.

Subsequently, these models are fused using a Multiply

layer, followed by a Flatten layer, and finally a Dense layer

with 31 neurons with ReLU activation serving as the

output layer. Table V shows the defined architecture.

TABLE V. MODEL ARCHITECTURE

Layer (type) Output Shape Param # Connected to

lstm_input
(InputLayer)

[(None, 31, 1)] 0

lstm (LSTM) (None, 64) 16896 lstm_input[0][0]

dense_1_input

(InputLayer)
[(None, 31, 8)] 0

dense (Dense) (None, 31) 2015 lstm[0][0]

dense_1 (Dense) (None, 31, 64) 576
dense_1_input

[0][0]]

flatten (Flatten) (None, 31) 0 dense[0][0]

dense_2 (Dense) (None, 31, 31) 2015 dense_1[0][0]]

multiply (Multiply) (None, 31, 31) 0
flatten[0][0]

dense_2[0][0]

flatten_1 (Flatten) (None, 961) 0 multiply[0][0]

dense_3 (Dense) (None, 31) 29822 flatten_1[0][0]

Training parameters for this model mirror those of the

model without exogenous variables. A validation set

encompassing 25% of the training data is established,

employing a batch size of 15, and the shuffle is set to false

to ensure orderly data processing. The model is trained for

70 epochs, fine-tuning its ability to integrate both

escalations and exogenous variables for more nuanced

predictions.

5) Evaluation

Evaluate the model performance using appropriate

metrics, such as Mean Squared Error (MSE), Mean

Absolute Error (MAE), or others, depending on the nature

of the problem. The company uses a simple calculation as

a Metric (CM) to evaluate its models: the percentage

obtained by dividing the MAE by the sum of the actual

values. Table VI summarizes the comparison between the

different models.

TABLE VI. COMPARISON OF RESULTS

model MAE RMSE CM

SARIMA 537.88 622,18 15.37

SARIMAX 237.63 282,78 8.25

LSTM 221.83 255,18 7.05
LSTM Exo. 160.22 179,31 4.05

6) Adjust and iterate

Iterative refinement is often necessary to improve the

model performance. In view of the results obtained, the

company considered that no further adjustments were

necessary.

IV. RESULT AND DISCUSSION

As seen in Table VI, the best results in terms of the

metrics used are obtained with the LSTM Exo model. This

is evident in the level of model fit shown in Fig. 5. For

example, Tables VII and VIII present the errors in

predictions for both the statistical models and those based

on neural networks for the first 5 days of January 2022.

Fig. 5. LSTM model predictions with exogen variables.

TABLE VII. EXAMPLE OF SARIMA AND SARIMAX PREDICTIONS

date calls
SARIMA SARIMAX

prediction error prediction error

2022-01-01 1777 1.954,70 177,70 1.883,62 106,62

2022-01-02 2791 3.070,10 279,10 3.014,28 223,28

2022-01-03 7426 7.648,78 222,78 7.648,78 222,78

2022-01-04 6603 7.395,36 792,36 6.933,15 330,15

2022-01-05 5666 6.175,94 509,94 6.062,62 396,62

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1280

TABLE VIII. EXAMPLE OF LSTM AND LSTM EXO PREDICTIONS

date calls
LSTM LSTM Exo.

prediction error prediction error

2022-01-01 1777 1.880,06 103,06 1.874,73 97,73

2022-01-02 2791 2.958,46 167,46 2.944,50 153,50

2022-01-03 7426 7.641,35 215,35 7.567,09 141,09
2022-01-04 6603 6.900,13 297,13 6.834,10 231,10

2022-01-05 5666 5.983,29 317,29 5.869,97 203,97

Finally, Fig. 6 confirms that the errors of the test set and

the validation set for the LSTM Exo model converge,

indicating the absence of overfitting in the model.

Fig. 6. Error diagnosis of the LSTM model with exogenous variables.

It is important to note that the results obtained depend

on the nature of the data and the objectives set for the

problem. Regardless, it is necessary to highlight the

differences between the different methods used. The

distinctions among the results obtained from ARIMA,

ARIMAX, and LSTM models in time series analysis are

noteworthy:

- Pattern Assumption: ARIMA models assume linear

patterns suitable for data with well-defined trends and

seasonality. LSTM models capture complex nonlinear

patterns, making them effective for data with intricate

dependencies and long-term memory.

- Handling Seasonality: While ARIMA models are

designed to handle seasonality, they may struggle with

highly irregular patterns. LSTM models adapt to and

capture both regular and irregular seasonality, making

them versatile for diverse temporal patterns.

- Temporal Dependency: ARIMA models assume a

fixed temporal dependency structure, limiting their

ability to capture long-term dependencies. LSTM

models are specifically designed for sequences and

can capture long-term dependencies in time series

data with extended temporal relationships.

- Interpretability: ARIMA models’ results are often

more interpretable, given explicit mathematical

formulations, making it easier to understand the

impact of each component. On the other hand, LSTM

models are often considered black boxes, capturing

intricate patterns but posing challenges in

understanding the underlying logic.

- Computational Intensity: ARIMA models are

typically computationally less intensive, making them

more suitable for scenarios with limited

computational resources. In contrast, LSTM models

are more computationally demanding, requiring

robust hardware, and may not be suitable for real-time

applications with strict computational constraints.

These distinctions highlight the trade-offs between

interpretability, computational efficiency, and the ability

to capture complex patterns. The choice between ARIMA,

ARIMAX, and LSTM models depends on the specific

characteristics of the time series data, the goals of the

analysis, and the available computational resources.

V. CONCLUSION

In this paper, several models have been developed

capable of predicting the number of calls received in a call

center with an approximate precision ranging between

84% and 95%, using a dataset that spans approximately

two years of calls.

Considering the objective of modeling time series, two

widely used statistical models, SARIMA and SARIMAX,

were chosen. Their results have been compared with a

neural network-based model (LSTM). For each of these

models, two options have been defined: one using

exogenous variables and one without.

After observing the performance of the models, it has

been concluded that, despite the high precision offered by

purely statistical models, the deep learning model (LSTM)

exhibits significantly better performance with less and

simpler data preprocessing. On the other hand, the results

indicate that using exogenous variables in the models is an

important component, as these variables provide

additional information to the model, allowing it to achieve

better results.

Future work would involve comparing the network

models developed in the paper with other alternative

models such as stacked LSTM, CNN LSTM, and

convolutional LSTM among others.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Abraham Gutiérrez and Jesús Bobadilla conducted the

research, analyzed data, and wrote portions of the

introduction, methodology, results, and conclusion.

Santiago Alonso contributed to the introduction and

literature review. All authors participated in reviewing and

approving the final version.

FUNDING

This work was partially supported by the Ministerio de

Ciencia e Innovación of Spain under the project PID2019-

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1281

106493RB-I00 (DL-CEMG) and the Comunidad de

Madrid under the Convenio Plurianual with the

Universidad Politécnica de Madrid in the actuation line of

the Programa de Excelencia para el Profesorado

Universitario.

ACKNOWLEDGMENT

Thank the group Xfera Móviles, S.A.U. for the support

provided to carry out the study both at the level of data and

technological infrastructure. The project has been

developed under the agreement of the Chair in Artificial

Intelligence for the Analysis of the Telecommunications

Market.

REFERENCES

[1] O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, “Financial time

series forecasting with deep learning: A systematic literature review:
2005–2019,” Applied Soft Computing, vol. 90, 106181, May 2020.

[2] O. Claveria, E. Monte, and S. Torra, “Economic forecasting with

evolved confidence indicators,” Economic Modelling, vol. 93, pp.
576–585, Dec. 2020.

[3] E. J. Topol, “High-performance medicine: The convergence of

human and artificial intelligence,” Nature Medicine, vol. 25, pp.
44–56, Jan. 2019.

[4] J. M. Dad, M. Muslim, I. Rashid, I. Rashid, and Z. A. Reshi, “Time

series analysis of climate variability and trends in Kashmir
Himalaya,” Ecological Indicators, vol. 126, 107690, Jul. 2021.

[5] M. Mudelsee, “Trend analysis of climate time series: A review of

methods,” Earth-Science Reviews, vol. 190, pp. 310–322, Mar.

2019.

[6] R. Murugesan, E. Mishra and A. H. Krishnan, “Forecasting

agricultural commodities prices using deep learning-based models:
Basic LSTM, bi-LSTM, stacked LSTM, CNN LSTM, and

convolutional LSTM,” International Journal of Sustainable

Agricultural Management and Informatics, vol. 8, no. 3, pp. 242–
277, Sep. 2022.

[7] Y. Xie, C. Li, M. Li, F. Liu, and M. Taukenova, “An overview of

deterministic and probabilistic forecasting methods of wind energy,”
Iscience, vol. 26, no. 1, 105804, Jan. 2023.

[8] V. F. Silva, M. E. Silva, P. Ribeiro, and F. Silva, “Time series

analysis via network science: Concepts and algorithms,” WIREs
Data Mining and Knowledge Discovery, vol. 11, no. 3, Mar. 2021.

[9] C. A. Thilker, H. Madsen, and J. B. Jørgensen, “Advanced

forecasting and disturbance modelling for model predictive control
of smart energy systems,” Applied Energy, vol. 292, 116889, Jun.

2021.

[10] J. D. Hamilton, Time Series Analysis, Princeton University Press,

2020.

[11] S. R. Beeram and S. Kuchibhotla, “Time series analysis on

univariate and multivariate variables: A comprehensive survey,”

Communication Software and Networks. Lecture Notes in Networks

and Systems, vol. 134, pp. 119–126, Oct. 2021.

[12] H. Hidayatulah and S. Parasian, “Comparison of forecasting
accuracy rate of exponential smoothing method on admission of

new students,” Journal of Critical Review, vol. 7, no. 2, pp. 268–

274, Jul. 2020.
[13] Q. T. Tran, L. Hao, and Q. K. Trinh, “A comprehensive research on

exponential smoothing methods in modeling and forecasting

cellular traffic,” Concurrency and Computation: Practice and
Experience, vol. 32, no. 23, e5602, Nov. 2020.

[14] V. Cerqueira, L. Torgo, and I. Mozetič, “Evaluating time series

forecasting models: An empirical study on performance estimation
methods,” Machine Learning, vol. 109, pp. 1997–2028, Oct. 2020.

[15] K. Christensen, M. Siggaard, and B. Veliyev, “A machine learning

approach to volatility forecasting,” Journal of Financial
Econometrics, vol. 21, no. 5, pp. 1680–1727, Jun. 2022.

[16] R. P. Masini, M. C. Medeiros, and E. F. Mendes, “Machine learning

advances for time series forecasting,” Journal of Economic Surveys,
vol. 37, no. 1, pp. 76–111, Jul. 2021.

[17] B. Lim, and S. Zohren, “Time-series forecasting with deep learning:

a survey,” A Philosophical Transactions of the Royal Society, Feb.
2021.

[18] A. K. Dubey, A. Kumar, V. García-Díaz, A. K. Sharma, and K.

Kanhaiya, “Study and analysis of SARIMA and LSTM in
forecasting time series data,” Sustainable Energy Technologies and

Assessments, vol. 47, 101474, Oct. 2021.

[19] C. Nontapa, C. Kesamoon, N. Kaewhawong, and P. Intrapaiboon,
“A new time series forecasting using decomposition method with

SARIMAX model,” in Proc. 27th International Conference on

Neural Information Processing, ICONIP 2020, Bangkok, Thailand,
Nov. 2020, pp. 743–751.

[20] D. H. Hopfe, K. Lee, and C. Yu, “Short-term forecasting airport

passenger flow during periods of volatility: Comparative
investigation of time series vs. neural network models,” Journal of

Air Transport Management, vol. 115, 102525, Mar. 2024.

[21] A. Jain, T. Sukhdeve, H. Gadia, S. P. Sahu, and S. Verma, “Covid19
prediction using time series analysis,” in Proc. International

Conference on Artificial Intelligence and Smart Systems (ICAIS),
Mar. 2021, pp. 1599–1606.

[22] W. Yu, I. Y. Kim, and C. Mechefske, “Analysis of different RNN

autoencoder variants for time series classification and machine
prognostics,” Mechanical Systems and Signal Processing, vol. 149,

107322, Feb. 2021.

[23] M. Khan, H. Wang, A. Riaz, A. Elfatyany, and S. Karim,
“Bidirectional LSTM-RNN-based hybrid deep learning

frameworks for univariate time series classification,” The Journal

of Supercomputing, vol. 77, pp. 7021–7045, Jan. 2021.

Copyright © 2024 by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1282

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V15N11-1273

