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Abstract—Time series analysis is a crucial aspect of machine 

learning that deals with data points ordered by time. Time 

series data is prevalent in various domains, including finance, 

economics, healthcare, weather forecasting, and many 

others. Understanding and modeling time series data is 

essential for making predictions, identifying trends, and 

extracting meaningful insights. Effectively modeling time 

series data is a complex task that requires a combination of 

statistical methods, machine learning algorithms, and 

domain-specific knowledge. The choice of a specific model 

depends on the characteristics of the data and the goals of the 

analysis or prediction task. Our research provides an 

innovative method to carry out the analysis of time series 

data. This method is based on successive sequential steps to 

perform the temporal analysis. Each step is explained 

theoretically, and then tested on real data. Furthermore, we 

apply and compare different models based on both statistical 

approaches, i.e., Seasonal Autoregressive Integrated Moving 

Average (SARIMA), Seasonal Autoregressive Integrated 

Moving Average + Exogenous Variables (SARIMAX), and 

neural networks, i.e., Long Short-Term Memory (LSTM). 

For the comparison between the models, the Mean Absolute 

Error (MAE) and Root Mean Squared Error (RMSE) 

metrics are used, as well as another empirical metric 

provided by the collaborating company. In each 

methodology, two verticals are defined, one with exogenous 

variables and the other without them. The conclusions of the 

study show that considering the nature of the data analyzed, 

the model based on neural networks using exogenous 

variables is the one that provides the best results. 

 

Keywords—artificial intelligence, machine learning, time 

series, neural networks, AI applied to industry 

 

I. INTRODUCTION 

Time series analysis serves as a vital tool in business, 

offering a systematic approach to unravel patterns and 

glean insights from data that unfolds over time. Companies 

leverage time series analysis in a spectrum of applications, 

from sales forecasting and supply chain optimization to 

analyzing financial markets [1] and tracking economic 

indicators [2], but also to optimize operations, effective 

resource allocation, customer interactions over time, 

identification of unusual patterns or anomalies in business 

data, healthcare systems [3], weather forecasting [4], 

agricultural commodities [5], retail [6], etc. The overall 

goal is to improve operational efficiency, make informed 

decisions and adapt to changing market conditions. 

Time series forecasting is the process of analyzing time 

series data using statistics and modeling to make 

predictions and inform strategic decision-making [7]. It is 

not always an exact prediction, and likelihood of forecasts 

can vary wildly—especially when dealing with the 

commonly fluctuating variables in time series data and 

factors outside our control. However, forecasting insight 

about which outcomes are more likely—or less likely—to 

occur than other potential outcomes. Naturally, there are 

limitations when dealing with the unpredictable and the 

unknown [8]. 

A repertoire of models and techniques is employed in 

time series analysis and forecasting, ranging from classical 

methods to advanced approaches such as machine learning 

models and exponential smoothing methods. While 

traditional methods have focused on parametric models 

informed by domain expertise—such as Autoregressive 

(AR) [9–11], exponential smoothing [12, 13] or structural 

time-series models [14]—modern machine learning 

methods provide a means to learn temporal dynamics in a 

purely data-driven manner. With the increasing data 

availability and computing power in recent times, machine 

learning has become a vital part of the next generation of 

time-series forecasting models [15–18]. 

Our research provides an innovative method to carry out 

the analysis of time series data. This method is based on 

successive sequential steps to perform the temporal 

analysis. Each step is explained theoretically, and then 

tested on real data provided by one of the main 

telecommunications companies in Spain. The goal is to 

predict the volume of calls made to its call center. 

Predicting the number of calls enables us to optimize the 

workforce at the call center, ensuring we have an adequate 

number of agents available to provide customers with 

quality and immediate service. 

This paper applies and compares different models based 

on both statistical approaches, i.e., Seasonal 
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Autoregressive Integrated Moving Average (SARIMA), 

Seasonal Autoregressive Integrated Moving Average + 

Exogenous Variables (SARIMAX) and neural networks, 

i.e., Long Short-Term Memory (LSTM) [18–21]. For the 

comparison between the models, the MAE and RMSE 

metrics are used, as well as another empirical metric 

provided by the collaborating company. In each 

methodology, two verticals are defined, one with 

exogenous variables and the other without them. 

The structure of the article is composed of a first section 

in which the theoretical framework related to the analysis 

of time series is described. Subsequently, it moves on to 

the experimentation section, outlining the steps to be taken 

for the corresponding analysis based on the selected 

models. Finally, the study’s conclusions and bibliographic 

references are included. 

II. THEORETICAL FRAMEWORK 

The mathematical formulation of time series involves 

expressing the underlying structure of the data in 

mathematical terms. Time series data is a sequence of 

observations collected or recorded over time, and various 

mathematical models are used to represent and analyze this 

data. Here are some fundamental concepts and 

mathematical formulations commonly used in time series 

analysis. 

A time series is typically denoted as: 

 {yt = Tt + St + εt} (1) 

where 𝑦𝑡  represents the observation at time t; 𝑇𝑡  is the 

trend component (long-term movement or direction in the 

data); 𝑆𝑡 is the seasonal component (repeating patterns or 

cycles at fixed intervals), and 𝜀𝑡 are the residuals or errors 

(random fluctuations or noise in the data). 

The Autoregressive Integrated Moving Average 

(ARIMA) model is a widely used time series model that 

combines Autoregression (AR), Differencing (I), and 

Moving Averages (MA). The notation for an ARIMA 

model is ARIMA (p, d, q), where p is the order of 

autoregression, d is the degree of differencing, and q is the 

order of the moving average. Denoted by: 

 𝛷(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝛩(𝐵)𝜀𝑡 (2) 

where 𝛷(𝐵) and 𝛩(𝐵) are polynomials in the lag operator 

B, representing autoregressive and moving average 

components, respectively. 

The Exponential Smoothing State Space (ETS) models 

represent time series data using error, trend, and 

seasonality components. The notation for ETS models is 

𝐸𝑇𝑆(𝐸𝑟𝑟𝑜𝑟, 𝑇𝑟𝑒𝑛𝑑, 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙)  and is typically denoted 

as: 

 𝑦𝑡 = 𝑙𝑒𝑣𝑒𝑙𝑡−1 + 𝑡𝑟𝑒𝑛𝑑𝑡−1 + 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑡−𝑚 + 𝜀𝑡 (3) 

The Seasonal Decomposition of Time Series (STL) 

decomposes a time series into trend, seasonal, and residual 

components. The decomposition can be represented as: 

  𝑦𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡 (4) 

The General Autoregressive Conditional 

Heteroskedasticity (GARCH) models are used for 

modeling volatility in time series data, particularly in 

financial markets. The GARCH (p, q) model is represented 

as: 

  𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑝
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑞
𝑗=1  (5)  

Here, 𝛼0 , 𝛼𝑖 , 𝛽𝑗  are model parameters, 𝜀𝑡−𝑖
  are the 

lagged squared residuals, and 𝜎𝑡−𝑗
  are the lagged 

conditional variances. 

These mathematical formulations represent some of the 

key models used in time series analysis. The choice of a 

specific model depends on the characteristics of the time 

series data and the goals of analysis or forecasting. Model 

parameters are typically estimated using statistical 

methods, and the model performance is evaluated using 

various metrics, such as mean squared error or likelihood-

based criteria. 

A. The SARIMA Models 

In this work, we will use a Seasonal Autoregressive 

Integrated Moving Average model that is an extension of 

the ARIMA model that incorporates seasonality. SARIMA 

is particularly useful for time series data that exhibit 

patterns that repeat at fixed intervals, such as monthly or 

quarterly seasonality. The SARIMA model is denoted as 

SARIMA (p, d, q (P, D, Q) s), where p, d, and q are the 

non-seasonal orders, and P, D, and Q are the seasonal 

orders, with s representing the length of the seasonal cycle. 

The components of SARIMA include: 

- Non-seasonal Autoregressive component: 

 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝  (6) 

- Seasonal Autoregressive component:  

 𝛷1𝑦𝑡−𝑠 + 𝛷2𝑦𝑡−2𝑠 + ⋯ + 𝛷𝑃𝑦𝑡−𝑃𝑠 (7) 

- Non-seasonal differencing: 

 (1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑦𝑡   (8) 

Here, B is the backshift operator. 

- Non-seasonal Moving Average component:  

 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 (9) 

- Seasonal Moving Average component: 

 𝛩1𝜀𝑡−𝑠 + 𝛩2𝜀𝑡−2𝑠 + ⋯ + 𝛩𝑄𝜀𝑡−𝑄𝑠  (10) 

- Seasonal Component. The seasonal component 

represents the periodic patterns in the data and is 

expressed as St, where t is the time index. The 

SARIMA model is then formulated as: 

(1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝)(1 − 𝐵)𝑑(1 −

𝐵𝑠)𝐷𝑦𝑡 = (1 + 𝜃1𝐵 + 𝜃2𝐵2 + ⋯ + 𝜃𝑞𝐵𝑞)(1 + 𝛩1𝐵𝑠 +

                       𝛩2𝐵2𝑠 + ⋯ + 𝛩𝑄𝐵𝑄𝑠)𝜀𝑡                   (11) 

In summary, the SARIMA model is a powerful tool for 

modeling and forecasting time series data with both non-

seasonal and seasonal patterns. Selecting appropriate 

values for p, d, q, P, D, and Q requires careful analysis of 

the time series characteristics, and model parameters are 

typically estimated using statistical methods. SARIMA 

models are widely used in various fields, including 
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finance, economics, and environmental science, where 

seasonality is a significant factor in the data.  

B. The SARIMAX Model 

The Seasonal Autoregressive Integrated Moving 

Average with Exogenous Variables model is an extension 

of the SARIMA model that incorporates exogenous or 

external variables. Exogenous variables are additional 

time series that may influence the target variable but are 

not predicted by the model. SARIMAX is a powerful tool 

for time series analysis, as it includes of external factors 

that may impact the behavior of the time series being 

modeled. 

The general form of the SARIMAX model is 

SARIMAX (p, d, q (P, D, Q)s), where p, d, and q are the 

non-seasonal orders, P, D, and Q are the seasonal orders, 

and s is the length of the seasonal cycle. The addition of 

exogenous variables introduces them into the model, and 

the structure becomes SARIMAX (p, d, q (P, D, Q)s)(Px, 

Dx, Qx), where Px, Dx, and Qx represent the orders of the 

exogenous variables. The SARIMAX model is formulated 

as follows: 

(1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝)(1 − Φ1𝐵𝑠 − Φ2𝐵2s −

Φ𝑝𝐵𝑃𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑦𝑡 =  (1 + 𝜃1𝐵 + 𝜃2𝐵2 +

⋯ + 𝜃𝑞𝐵𝑞)(1 + 𝛩1𝐵𝑠 + 𝛩2𝐵2𝑠 + ⋯ + 𝛩𝑄𝐵𝑄𝑠) (1 +

                         β1B + β2B2 + ⋯ + β𝑝B𝑝)𝑥𝑡                 (12) 

Here, yt is the time series being modeled, xt represents 

the exogenous variable, and εt is the error term. The β 

coefficients represent the impact of the exogenous variable 

on the time series.  

Key points about SARIMAX: 

1. Exogenous Variables: SARIMAX allows for 

including of one or more exogenous variables, which 

can improve the model’s predictive performance by 

capturing additional information that influences the 

target variable. 

2. Model Selection: The selection of the orders 

(p,d,q,P,D,Q,Px,Dx,Qx) involves analyzing the 

autocorrelation and partial autocorrelation functions, 

as well as considering the nature of the time series 

and the potential impact of exogenous variables. 

3. Estimation and Forecasting: Model parameters are 

typically estimated using methods like maximum 

likelihood estimation. Once the model is fitted, it can 

be used to forecast future time series values. 

4. Diagnostic Checks: Diagnostic checks, such as 

residual analysis, are essential to ensure that the 

model adequately captures the patterns in the time 

series and that the residuals are white noise. 

SARIMAX models are widely applied in various fields, 

including economics, finance, and environmental science, 

where external factors can significantly influence the 

observed time series. When dealing with complex time 

series data influenced by both internal dynamics and 

external variables, SARIMAX provides a flexible 

framework for accurate modeling and forecasting. 

C. Handling Stationarity 

Handling non-stationarity is crucial in time series 

analysis, as many statistical models assume that the 

underlying data is stationary. A stationary time series has 

constant statistical properties over time, such as a constant 

mean and variance. This concept is essential, since most 

models, such as ARIMA, require the series to be 

stationary. Here are some standard methods for handling 

non-stationarity in time series: 

Differencing. Removes the seasonal effect by 

subtracting the observation at time t from the observation 

at time t−s, where s is the length of the season.  

Trend-Seasonal Decomposition of Time Series 

(STL). Separates the different components of the time 

series using a process like Seasonal-Trend decomposition 

using LOESS. 

Detrending. Removing the trend component from the 

time series using linear regression or polynomial fitting 

techniques. 

Transformations. This method stabilize the variance 

and make the time series more amenable to modeling. Log-

transformations are often used when dealing with data that 

exhibits exponential growth. 

Augmented Dickey-Fuller Test (ADF). Statistical test 

to check for the presence of a unit root, indicating non-

stationarity. If a unit root is found, differencing may be 

applied. 

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 

test. Statistical test used to determine the stationarity of a 

time series. Unlike ADP test, is designed to test the null 

hypothesis of stationarity around a deterministic trend. 

The choice of method depends on the specific 

characteristics of the time series data and the goals of the 

analysis or forecasting task. It often involves 

experimenting with different approaches and evaluating 

their effectiveness in achieving stationarity. 

D. The LSTM Models 

Recurrent Neural Networks (RNNs) are a class of 

artificial neural networks designed for processing 

sequential and time-series data. Unlike traditional 

feedforward neural networks, RNNs have connections that 

form directed cycles, allowing them to maintain a hidden 

state that captures information from previous time steps. 

This makes RNNs well-suited for tasks where the order 

and context of input data are important, such as natural 

language processing, speech recognition, and time series 

analysis [16–18]. 

RNNs tend to have difficulties capturing long-term 

dependencies in sequences. Long Short-Term Memory 

(LSTM) [18–21] is a type of Recurrent Neural Network 

(RNN) architecture designed to overcome the limitations 

of traditional RNNs in capturing long-term dependencies 

in sequential data. LSTMs were introduced by Hochreiter 

and Schmidhuber in 1997 and have since become widely 

used for various applications, including time series 

forecasting, natural language processing, and speech 

recognition.  

The core idea behind LSTM is the introduction of a 

memory cell, which allows the network to maintain and 

update information over long sequences. The memory cell 

acts as a storage unit, selectively adding or removing 

information. LSTMs have three gates that control the flow 

of information into and out of the memory cell: one gate 
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that regulates the input into the memory cell, another gate 

that decides what information to discard from the memory 

cell and an output gate that determines the output based on 

the current input and the memory cell content.  

In an LSTM network two states are defined, the cell and 

the hidden states. The cell state is the internal memory of 

the LSTM. It runs straight down the entire chain, with only 

minor linear interactions. The cell state allows information 

to flow through the network without being altered, which 

helps in preserving long-term dependencies. The hidden 

state is the output of the LSTM at a particular time step. It 

is a filtered version of the cell state and contains 

information the model has deemed relevant for the task. 

LSTMs are trained using BackPropagation Through 

Time (BPTT), where gradients are computed through the 

entire sequence. The use of the memory cell and gates 

facilitates the training of deep networks over long 

sequences without the vanishing gradient problem often 

encountered in traditional RNNs. 

LSTMs have demonstrated remarkable success in 

modeling and predicting sequential data, making them a 

popular choice for a wide range of applications where 

understanding and capturing long-term dependencies are 

crucial [16]. 

III. EXPERIMENTS 

The first thing to consider is the amount of data at hand. 

This is a constant across all types of analysis, and time 

series analysis forecasting is no exception. However, 

forecasting relies heavily on the amount of data, possibly 

even more so than other analyses. It builds directly off past 

and current data. Having a limited amount of data for 

extrapolation can lead to less accurate forecasting. 

The forecast time frame also matters. This is known as 

a time horizon—a fixed point in time where a process (like 

the forecast) ends. Forecasting a shorter time horizon with 

fewer variables is generally easier compared to forecasting 

a longer time horizon. The longer the time horizon, the 

more unpredictable the variables will be. Alternatively, 

having less data can sometimes work with forecasting if 

time horizons are adjusted. 

As always with analysis, the best analysis is only valid 

if the data is of a usable quality. Dirty, poorly, overly, or 

inadequate processed and collected data can significantly 

skew results and create wildly inaccurate forecasts.  

Our proposed method is a sequential algorithm that 

involves a series of steps that start with data collection and 

preprocessing and, end with the generation of 

corresponding forecasts. These steps may vary based on 

the characteristics of the data and the specific objectives of 

the analysis. The subsections in this section provide a 

general summary of the key steps in processing time series 

data. Following these steps can ensure that time series data 

is adequately prepared and analyzed, resulting in more 

accurate and meaningful insights or predictions. 

A. Data Collection 

Collect and assemble the time series data from relevant 

sources, ensuring that the data covers the desired period 

and includes all necessary variables.  

In our case, the provided data corresponds to all calls 

made during two years (2021 to 2022), averaging 

approximately 250 K calls per month. This information 

allows grouping at the day, week, month, and year levels. 

The data is collected from the Contact Center’s Interactive 

Voice Response (IVR) system, which interacts with 

callers, gathers information, and routes calls to the 

appropriate recipient. The IVR Data Collector saves 

information that callers provide (IVR slots). This 

information includes the caller’s ID, agent ID, date/time, 

the telephone number from which the caller made the call, 

and a voice recording. The preprocessing on the data is 

reduced to keeping the call identifier and the date and time 

in which it occurred. The project aims to predict the calls 

received on a daily level; that is why, from now on, we will 

only consider the data per day. 

B. Data Inspection 

Explore the principal characteristics of the time series, 

including the structure, frequency, and any obvious 

patterns or trends. Visualizations such as line plots, 

histograms, and autocorrelation plots can be helpful for 

initial inspection. The preliminary inspection, shown in 

Fig. 1, is carried out through a line plot with the data in 

daily aggregations. 

 

 

Fig. 1. Data inspection. Data inspection display per day. 

In an initial verification of the data provided, an 

apparent degradation is detected between the months of 

March and July 2020. This degradation is due to the 

pandemic caused by the SARS-CoV-2 virus that resulted 
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in the mandatory home confinement of the country, forcing 

most of the population to work from home. This situation 

caused the call center to close temporarily, so the data for 

that period is unrealible. 

C. Handle Missing Values 

Check for missing values in the time series and decide 

on an appropriate strategy for handling them. This may 

involve imputation or removing observations with missing 

values. No problems with missing values are detected after 

analyzing the starting dataset. 

D. Handle Outliers 

Identify and handle outliers or anomalies in the data. 

Outliers can significantly impact the analysis and 

modeling process, so it is essential to address them 

appropriately. To treat outliers, it is first necessary to 

identify them; to do this, any value outside the range 

defined by the floor and ceiling will be considered an 

outlier. Fig. 2 shows graphically the outliers that were 

found thanks to this method. 

 𝐹𝑙𝑜𝑜𝑟𝑖+𝑠 =  (
1

𝑠
∑ 𝑥𝑖

𝑠
𝑖=1 ) − 𝜎 (13) 

 𝐶𝑒𝑖𝑙𝑖𝑛𝑔𝑖+𝑠 =  (
1

𝑠
∑ 𝑥𝑖

𝑠
𝑖=1 ) + 𝜎 (14) 

In time series problems, preserving the data continuity 

is crucial, and outright removal of outliers is discouraged. 

Maintaining the flow of information is essential in these 

scenarios. While conventional methods like using mean or 

median exist, we have opted for a more robust approach—

the Hampel filter. This method, also known as the Hampel 

identifier, excels at identifying and handling outliers, 

particularly in time series or ordered datasets. The Hampel 

filter scrutinizes observations that deviate from the median 

within a local window or neighborhood. This makes it 

particularly effective when outliers coexist with regular 

data points. 

 

 

Fig. 2. Outlier detected per day. 

E. Check Frequency, Seasonality and Trend 

Confirm that the time series data has a consistent 

frequency. If there are missing time points, consider 

imputing or filling in the gaps to create a regular time 

series. Examine the time series for the presence of 

seasonality or repeating patterns. This can be done through 

visual inspection, autocorrelation plots, or statistical tests 

for seasonality. Investigate the presence of a trend in the 

time series. Trends can be identified visually or through 

statistical methods like regression analysis. As shown in 

Fig. 3, a slight downward trend is observed, which 

indicates that differentiation of the data is necessary to 

eliminate this trend. 

 

 

Fig. 3. STL decomposition of raw data. 

F. Stationarity Check 

Assess the stationarity of the time series using statistical 

tests such as the Augmented Dickey-Fuller (ADF) test or 

the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. If 

the series is non-stationary, consider differencing or other 

transformations. 

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1277



TABLE I. ADF AND KPSS TEST ON RAW DATA 

Results ADF Test KPSS Test 

Test Statistic −2.859853 0.388766 

p-value 0.050220 0.016285 

#Lags Used 14 14 

Number of Observations 5000000 5000000 

Critical Value (1%) −3.443418 0.216000 

Critical Value (5%) −2.867303 0.146000 

Critical Value (10%) −2.569840 0.119000 

 

Considering the p-value of the ADF test (Table I) in 

relation to the significance level of 0.05, the null 

hypothesis cannot be rejected. If the p-value is above a 

critical size, we cannot reject the existence of a unit root. 

Therefore, the series is non-stationary, and we should 

consider differentiation. 

Considering the p-value of the KPSS test (Table I) in 

relation to the significance level of 0.05, there is evidence 

for rejecting the null hypothesis in favor of the alternative. 

Hence, the series is non-stationary according to the KPSS 

test. It is advisable to apply both tests to ensure the series 

is truly stationary. 

G. Differencing or Transformation 

If the time series is non-stationary, apply differencing or 

other transformations to stabilize the mean and variance. 

This step may involve removing trends, seasonality, or 

both. A logarithmic transformation is performed as a first 

option, but the ADF test results are still inconclusive. 

Therefore, an ordinal differentiation is carried out. The 

results of the ADF test corroborate this conclusion. The p-

value (5.225508e−14) is now much less than the 

significance level of 0.05, which makes us reject the null 

hypothesis, and therefore, confirm that the series is now 

trend stationary. 

With the autocorrelation function, it can be seen how 

there is a certain pattern that repeats every 7 lags, which 

indicates that seasonal differentiation is necessary, so a 

seasonal differentiation is carried out on the data. The 

Dickey-Fuller test is performed again, where it is verified 

that the null hypothesis continues to be rejected, so the 

series continues to be stationary due to trend (p-value is 

3.194650e−10). Now that it has been differentiated 

ordinally and seasonally, it is possible to interpret the 

autocorrelation functions in Fig. 4 to extract the parameters 

of the SARIMA and SARIMAX models. 

 

 

Fig. 4. Simple and partial autocorrelation functions of seasonally differentiated data. 

H. Feature Engineering 

Create additional features or variables that might be 

useful for analysis or modeling. For example, extract day-

of-week, month, or other temporal features. The feature 

engineering process is applied to the SARIMAX and 

LSTM models to use exogenous variables. The model 

without exogenous variables only has the number of daily 

calls as a feature. The exogenous variables that expand the 

model include the day of the week, week, month, year, 

holiday, special day (though not officially a holiday, a 

majority of people likely consider it as such), working days 

of the month, working days of the month without holidays, 

sending an invoice (the invoice has been sent to the client), 

and sending SMS (SMS related to any non-payment has 

been sent). 

I. Normalization or Scaling 

Normalize or scale the time series data to a consistent 

range. This step can be important for certain modeling 

techniques, especially those sensitive to the scale of the 

input features. Depending on the nature of the data, we 

choose to perform MinMaxScaler type normalization for 

numerical data and OneHotEncoder type encoding for 

categorical features. MinMaxScaler scales and translates 

each feature individually to be in the given range on the 

training, in our case, between 0 and 1. MinMaxScaler does 

not reduce the effect of outliers. However, it linearly scales 
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them down into a fixed range, where the largest occurring 

data point corresponds to the maximum value and the 

smallest one corresponds to the minimum value. 

OneHotEncoder encodes categorical features as a one-hot 

numeric array. By default, the encoder derives the 

categories based on the unique values in each feature. 

J. Modeling 

Choose an appropriate modeling approach based on the 

characteristics of the time series data. 

1) SARIMA model 

The interpretation of autocorrelation graphs leads to the 

determination of SARIMA (p, d, q (P, D, Q)s) values: 

- p = 0. The partial autocorrelation function shows a 

structure based on 3 significant lags. 

- d = 1. Data has been ordinally differentiated only 

once. 

- q = 1. Single significant delay observed in the 

simple autocorrelation function. 

- P = 0. At the seasonal part of the autocorrelation 

functions every 7 delays a certain structure is 

observed. 

- D = 1. It has only been seasonally differentiated 

once. 

- Q = 0. Simple autocorrelation function reveals no 

significant delay in the seasonal part. 

- s = 7. Determined by the repetition of the pattern 

every 7 delays during seasonal differencing. 

Table II presents the summary of the most important 

variables. Special attention should be paid to the p-value 

of ma.L1; if it is greater than 0.05, it would indicate that 

the model is prone to overfitting. In this case, it is lower, 

so we will continue with the chosen model. 

TABLE II. SARIMA SUMMARY 

 ma.L1 sigma2 

coef −0.7054 0.0747 

std err 0.020 0.002 

z −34.704 32.481 

P>|z| 0.000 0.000 

[0.025 −0.745 0.070 

0.975] −0.666 0.079 

 

2) SARIMAX model 

In the case of the SARIMAX, the autocorrelation 

functions have been interpreted differently. The ordinal 

part remains the same; however, the stationary part would 

remain: 

- P = 3. The partial autocorrelation function has 3 

significant lags. 

- D = 1. It has only been seasonally differentiated 

once. 

- Q = 1. One of the lags of the autocorrelation 

function has been considered significant. 

Table III presents the summary of the most important 

variables. It is important to note that some variables have 

a p-value greater than 0.05. This is a good indicator to 

determine which variables are necessary. In this case, 

variables x6, x8, x9, and x10 have p-values greater than 

0.05, so the model must be rebuilt without these variables.

TABLE III. SARIMAX SUMMARY 

 coef std err z P>|z| [0.025 0.975] 

x1 −3653.1650 104.076 −35.101 0.000 −3857.151 −3449.179 

x2 −2871.3935 234.900 −12.224 0.000 −3331.790 −2410.997 

x3 1404.5050 404.241 3.474 0.001 612.208 2196.802 
x4 7.4570 2.107 3.539 0.000 3.327 11.587 

x5 −436.4175 190.470 −2.291 0.022 −809.732 −63.103 

x6 57.2398 121.052 0.473 0.636 −180.018 294.498 

x7 −289.4350 93.146 −3.107 0.002 −471.998 −106.872 

x8 2.5123 481.682 0.005 0.996 −941.567 946.591 

x9 −378.9693 208.737 −1.816 0.069 −788.085 30.147 

x10 3.4417 239.960 0.014 0.989 −466.870 473.754 

ma.L1 −0.5455 0.032 −17.266 0.000 −0.607 −0.484 

ar.S.L7 0.0921 0.045 2.058 0.040 0.004 0.180 

ar.S.L14 0.0524 0.045 1.157 0.247 −0.036 0.141 

ar.S.L21 0.0675 0.037 1.808 0.071 −0.006 0.141 

ma.S.L7 −0.9998 0.045 −22.259 0.000 −1.088 −0.912 

sigma2 8.729e+05 0.004 1.94e+08 0.000 8.73e+05 8.73e+05 

 

3) LSTM model 

The LSTM model is constructed using the Keras library, 

employing a relatively straightforward structure based on 

the “Sequential” model. The architecture consists of an 

input layer with a shape of (31, 1) to capture information 

from the 31 days preceding the prediction. Subsequently, 

there is an LSTM layer with 62 neurons, followed by 

another LSTM layer with 32 neurons. The output is 

facilitated by a dense layer with 31 neurons, representing 

the prediction for the subsequent 31 days. 

For the LSTM layers, the ReLU function serves as the 

recurrent activation, while Sigmoid is applied for normal 

activation. The dense layer adopts a ReLU activation. The 

model is compiled using the Adam optimizer, and the 

Mean Squared Error (MSE) is declared as the loss function 

and metric. This configuration ensures that the model 

focuses on minimizing the mean squared error during 

training, providing a robust framework for time series 

forecasting. Table IV shows the defined architecture: 

TABLE IV. MODEL ARCHITECTURE 

Layer (type) Output Shape Param # 

input (InputLayer) [(None, 31, 1)] 0 

lstm_1 (LSTM) (None, 31, 64) 16896 
lstm_2 (LSTM) (None, 32) 12416 

dense_out (Dense) (None, 32) 1023 
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A validation split of 25% has been defined for training 

the model. A small batch size of 3 is chosen to prevent a 

substantial decline in model quality while preserving its 

generalization capabilities. Training spans 120 epochs, and 

as observed, overfitting begins beyond this point. Due to 

the time series nature of the data, the shuffle parameter is 

set to false, ensuring chronological training order. 

4) LSTM model with exogenous variables 

Prediction with additional variables necessitated the 

creation of two distinct models. The first model comprises 

an LSTM layer with 64 neurons featuring sigmoid 

activation and recurrent ReLU activation, a Dense layer 

with 31 neurons employing ReLU activation, and a Flatten 

layer. This model takes “escalations” as input. The second 

model incorporates a Dense layer with 64 neurons and 

another Dense layer with 31 neurons, both utilizing 

“ReLU” activation taking exogenous variables as input. 

Subsequently, these models are fused using a Multiply 

layer, followed by a Flatten layer, and finally a Dense layer 

with 31 neurons with ReLU activation serving as the 

output layer. Table V shows the defined architecture. 

TABLE V. MODEL ARCHITECTURE 

Layer (type) Output Shape Param # Connected to 

lstm_input 
(InputLayer) 

[(None, 31, 1)] 0  

lstm (LSTM) (None, 64) 16896 lstm_input[0][0] 

dense_1_input 

(InputLayer) 
[(None, 31, 8)] 0  

dense (Dense) (None, 31) 2015 lstm[0][0] 

dense_1 (Dense) (None, 31, 64) 576 
dense_1_input 

[0][0]] 

flatten (Flatten) (None, 31) 0 dense[0][0] 

dense_2 (Dense) (None, 31, 31) 2015 dense_1[0][0]] 

multiply (Multiply) (None, 31, 31) 0 
flatten[0][0] 

dense_2[0][0] 

flatten_1 (Flatten) (None, 961) 0 multiply[0][0] 

dense_3 (Dense) (None, 31) 29822 flatten_1[0][0] 

 

Training parameters for this model mirror those of the 

model without exogenous variables. A validation set 

encompassing 25% of the training data is established, 

employing a batch size of 15, and the shuffle is set to false 

to ensure orderly data processing. The model is trained for 

70 epochs, fine-tuning its ability to integrate both 

escalations and exogenous variables for more nuanced 

predictions. 

5) Evaluation 

Evaluate the model performance using appropriate 

metrics, such as Mean Squared Error (MSE), Mean 

Absolute Error (MAE), or others, depending on the nature 

of the problem. The company uses a simple calculation as 

a Metric (CM) to evaluate its models: the percentage 

obtained by dividing the MAE by the sum of the actual 

values. Table VI summarizes the comparison between the 

different models. 

TABLE VI. COMPARISON OF RESULTS 

model MAE RMSE CM 

SARIMA 537.88 622,18 15.37 

SARIMAX 237.63 282,78 8.25 

LSTM 221.83 255,18 7.05 
LSTM Exo. 160.22 179,31 4.05 

 

6) Adjust and iterate 

Iterative refinement is often necessary to improve the 

model performance. In view of the results obtained, the 

company considered that no further adjustments were 

necessary.  

IV. RESULT AND DISCUSSION 

As seen in Table VI, the best results in terms of the 

metrics used are obtained with the LSTM Exo model. This 

is evident in the level of model fit shown in Fig. 5. For 

example, Tables VII and VIII present the errors in 

predictions for both the statistical models and those based 

on neural networks for the first 5 days of January 2022. 

 

 

Fig. 5. LSTM model predictions with exogen variables. 

TABLE VII. EXAMPLE OF SARIMA AND SARIMAX PREDICTIONS 

date calls 
SARIMA SARIMAX 

prediction error prediction error 

2022-01-01 1777 1.954,70 177,70 1.883,62 106,62 

2022-01-02 2791 3.070,10 279,10 3.014,28 223,28 

2022-01-03 7426 7.648,78 222,78 7.648,78 222,78 

2022-01-04 6603 7.395,36 792,36 6.933,15 330,15 

2022-01-05 5666 6.175,94 509,94 6.062,62 396,62 
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TABLE VIII. EXAMPLE OF LSTM AND LSTM EXO PREDICTIONS 

date calls 
LSTM LSTM Exo. 

prediction error prediction error 

2022-01-01 1777 1.880,06 103,06 1.874,73 97,73 

2022-01-02 2791 2.958,46 167,46 2.944,50 153,50 

2022-01-03 7426 7.641,35 215,35 7.567,09 141,09 
2022-01-04 6603 6.900,13 297,13 6.834,10 231,10 

2022-01-05 5666 5.983,29 317,29 5.869,97 203,97 

  

Finally, Fig. 6 confirms that the errors of the test set and 

the validation set for the LSTM Exo model converge, 

indicating the absence of overfitting in the model. 

 

 

Fig. 6. Error diagnosis of the LSTM model with exogenous variables. 

It is important to note that the results obtained depend 

on the nature of the data and the objectives set for the 

problem. Regardless, it is necessary to highlight the 

differences between the different methods used. The 

distinctions among the results obtained from ARIMA, 

ARIMAX, and LSTM models in time series analysis are 

noteworthy: 

- Pattern Assumption: ARIMA models assume linear 

patterns suitable for data with well-defined trends and 

seasonality. LSTM models capture complex nonlinear 

patterns, making them effective for data with intricate 

dependencies and long-term memory. 

- Handling Seasonality: While ARIMA models are 

designed to handle seasonality, they may struggle with 

highly irregular patterns. LSTM models adapt to and 

capture both regular and irregular seasonality, making 

them versatile for diverse temporal patterns. 

- Temporal Dependency: ARIMA models assume a 

fixed temporal dependency structure, limiting their 

ability to capture long-term dependencies. LSTM 

models are specifically designed for sequences and 

can capture long-term dependencies in time series 

data with extended temporal relationships. 

- Interpretability: ARIMA models’ results are often 

more interpretable, given explicit mathematical 

formulations, making it easier to understand the 

impact of each component. On the other hand, LSTM 

models are often considered black boxes, capturing 

intricate patterns but posing challenges in 

understanding the underlying logic. 

- Computational Intensity: ARIMA models are 

typically computationally less intensive, making them 

more suitable for scenarios with limited 

computational resources. In contrast, LSTM models 

are more computationally demanding, requiring 

robust hardware, and may not be suitable for real-time 

applications with strict computational constraints. 

These distinctions highlight the trade-offs between 

interpretability, computational efficiency, and the ability 

to capture complex patterns. The choice between ARIMA, 

ARIMAX, and LSTM models depends on the specific 

characteristics of the time series data, the goals of the 

analysis, and the available computational resources. 

V. CONCLUSION 

In this paper, several models have been developed 

capable of predicting the number of calls received in a call 

center with an approximate precision ranging between 

84% and 95%, using a dataset that spans approximately 

two years of calls. 

Considering the objective of modeling time series, two 

widely used statistical models, SARIMA and SARIMAX, 

were chosen. Their results have been compared with a 

neural network-based model (LSTM). For each of these 

models, two options have been defined: one using 

exogenous variables and one without. 

After observing the performance of the models, it has 

been concluded that, despite the high precision offered by 

purely statistical models, the deep learning model (LSTM) 

exhibits significantly better performance with less and 

simpler data preprocessing. On the other hand, the results 

indicate that using exogenous variables in the models is an 

important component, as these variables provide 

additional information to the model, allowing it to achieve 

better results. 

Future work would involve comparing the network 

models developed in the paper with other alternative 

models such as stacked LSTM, CNN LSTM, and 

convolutional LSTM among others. 
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