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Abstract—Pome fruits, notably apples and pears, experience 

decay during storage due to fungal infections. The timely 

discernment of these infections is imperative to avert the 

deterioration of these fruits within warehouse confines. In an 

experimental setup, two distinct apple cultivars, Braeburn 

and Gala, were inoculated with fungi Monilinia laxa, 

Neonectria ditissima, and Botrytis cinerea. As the infection 

progresses, the apples release chemical volatile components, 

which are measured using mass spectrometry in both positive 

and negative ion modes, recording mass-charge ratios 

ranging from m/z 30 to m/z 900 with a 0.3 Dalton difference 

between each measurement. The dataset is then partitioned 

into 24 sets of three-dimensional data, encompassing 

attributes related to two types of apples, three types of fungi, 

and two types of ions. They are analyzed using various 

machine learning algorithms, including Logistic Regression, 

Support Vector Machines (SVM), XGBoost, Random Forest, 

and four distinct customised Neural Networks, to classify 

infected and uninfected apples. The outcomes from the 

different machine learning algorithms across the 12 

combinations of Apple-Fungi-Ion are recorded, revealing 

that certain algorithms excel in different combinations. The 

performance metrics namely True Positive, True Negative, 

False Positive, False Negative, Accuracy are closely analysed 

and the algorithms that produce the highest and second-

highest accuracy are highlighted. Upon thorough analysis of 

the 12 combinations, it is observed that Logistic Regression 

and SVM with a linear kernel achieve the highest accuracy in 

approximately 11 combinations. Specifically, Logistic 

Regression achieves a precision of 98% for Braeburn apples, 

while SVM attains 99% accuracy for Gala apples. This 

research project has a triple impact on industry, economy, 

and society. On an industrial level, the precision and early 

predictions of the proposed work can effectively safeguard 

large quantities of apples in storage bins. Economically, it has 

the potential to avert substantial monetary losses. Societally, 

it plays a crucial role in determining the ideal timing to 

release fruits to the market for consumption without 

jeopardizing human health. 
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I. INTRODUCTION 

Among the plethora of available fruits, apples emerge 

as the preeminent choice for individuals spanning all age 

groups, proving beneficial to intestinal health amidst 

various illnesses. Apples are convenient for on-the-go 

consumption at work or during travel and the judicious 

interplay between the price and the size of apples renders 

them reasonably priced and affordable [1]. Numerous 

countries globally have implemented legal regulations 

governing the cultivation, processing, packaging, and 

fresh delivery of diverse apple cultivars. In 2011, the 

United Kingdom established a standard to deliver fresh 

apples to consumers, emphasizing the preservation of 

apple quality by ensuring they are undamaged, clean, and 

free from pests and infections [2]. 

The fungal pathogens can infect apples trees in orchards 

causing the fruit to drop prematurely. Often these 

pathogens colonize to the interior of apple or on the surface 

and travel form the orchard to postharvest storage. These 

postharvest fungal infections cause significant loss 

compared to preharvest, up to 20% in United States [3] 

ranging from 30–40% in developing countries to as high 

as 60% in severe cases [4]. The spread and severity of the 

infection varies every year based on different factors such 

as the grower, apple variety, packaging design, storage 

temperature and other attributes. Conventional 

microbiological techniques [5] that are applied to detect 

the infection are either time consuming or involve 

destroying the fruit to study the infection. While 

experimental [6] and statistical models [7] also exist to 

identify infections, there is a need for an efficient AI model 

that can swiftly predict both the occurrence and severity of 

infections.  

While extensive research has been conducted in 

predicting postharvest fruit fungal infections, particularly 
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in apples, numerous challenges persist in accurately 

identifying these infections: Difficulty in detecting 

infections within apple cores due to the absence of obvious 

external symptoms; Microbiological studies conducted in 

labs often involve destructive methods; Visual inspection 

of fruit is convenient but prone to inconsistency and 

subjectivity; The application of RGB and hyperspectral 

imaging on apple images is utilized. While RGB images 

effectively capture shape, color, and texture for infection 

detection, they lack accuracy in revealing internal 

structures and type of infections [8]. Hyperspectral images 

offer detailed insights into internal structures, providing 

both spatial and spectral characteristics of objects. 

However, they require expensive imaging devices and 

skilled operators. 

Nevertheless, subjecting apples to prolonged storage 

exerts minimal influence on their nutritional constituents, 

thereby preserving both the phytochemical composition 

and antioxidant attributes [9]. Hence the primary focus of 

the research is directed towards protecting apples from 

fungal infection, with an emphasis on early identification 

if such infections occur.  

In this research, we explore the primary findings of 

mass spectrometry results conducted on two distinct apple 

cultivars, Gala and Braeburn during the post-harvest 

storage. These apples were inoculated with Monilinia laxa, 

Neonectria ditissima, and Botrytis cinerea. We then 

employ various machine learning models to precisely 

identify the infected and uninfected samples. 

II. LITERATURE REVIEW 

The pathogen Monilinia laxa, classified under the genus 

Monilia, primarily affects apple. This pathogen is 

responsible for causing brown rot disease in apples [10]. 

Apple canker or European canker [11] is one of most 

disease that affects apple across UK and Europe and is 

cause by Neonectria ditissima previously known as N. 

galligena that causes the apples to rot and affects the barks 

of apple trees. The pathogen Botrytis cinerea (B. 

Cinerea)  [8] causes gray mold disease in pome fruits, 

affecting over 200 crop species globally. However, the 

most significant impact of gray mold occurs during the 

postharvest period in apples, with losses reaching levels as 

high as 20–50%. Surveys conducted in the Pacific 

Northwest have identified gray mold as the second most 

significant postharvest infection. 

The aforementioned three fungus decay apples even in 

cold storage, with these fungi capable of growing at 

temperatures below 0 degrees Celsius. While low 

temperatures slow down fruit spoilage, they do not 

completely stop it, as evidenced by prior research. 

Resnicow and Botvin [12] investigates three types of fungi, 

and the literature review focuses on these fungal species. 

Dutot et al. [3] described examines postharvest apple 

pathogens in the Okanagan region with the aim of 

preventing decay of apples in packinghouses. This 

research is a simulation-based study conducted using 

general observations of fungal pathogens, particularly P. 

Expansum and Botrytis cinerea and the simulated model is 

created using theoretical inquiries from data repositories, 

focusing on aspects like infection spread rate, pattern, and 

the influence of various parameters on disease incidence. 

A significant issue associated with solely relying on 

simulated models is that packinghouses are entirely sealed 

following apple storage and are opened only during the 

distribution of apples. 

In the research conducted by Lennox et al. [13], the 

population density of Bortrytis cinerea on pear pome fruit 

is measured. They found a strong linear correlation 

coefficient of 0.761 between the presence of the pathogen 

on the fruit surface and in the surrounding air, and 0.765 

between decaying fruit and air. It suggests that the 

pathogen's presence in soil and litter is less harmful 

compared to its presence on the fruit surface, which is a 

primary cause of decay.  Consequently, the proposed 

method entails performing swab tests on apple surfaces to 

detect the presence of infections. 

In numerous research articles, the Raman spectroscopy 

technique has been employed to detect fungal  

pores [14–16]. However, due to its weak signal generation 

in many fungi, dynamic surface-enhanced Raman 

spectroscopy was utilized in [17] along with machine 

learning algorithms for infection detection. For the 

Bortrytis cinerea fungi, the accuracy rates of prediction 

were RF 90.55%, KNN 93.88%, LeNet5 90.56%, ZFNet 

99.44%, and Inception 98.89%.  

Haghbin et al. [18] focused on detecting Botrytis 

cinerea contamination in kiwifruit samples using an 

electronic nose (e-nose) system. The e-nose comprised 

thirteen Metal Oxide Semiconductor (MOS) gas sensors, 

each extracting six features, resulting in a total of 78 

features. Correlation-based Feature Selection (CFS) and 

principal component analysis (PCA) were applied to 

optimize feature selection process. Subsequently, they 

applied various machine learning classification techniques, 

including Multilayer Perceptron Neural Network 

(MLPNN), Linear Discriminant Analysis (LDA), 

Bayesian Network (BN), Naive Bayes (NB), Radial Basis 

Function Neural Network (RBFNN), Support Vector 

Machine (SVM) [19, 20], and Decision Tree (DT). Of all 

the techniques, RBFNN achieved an accuracy of 98.9%. 

The high accuracy attained by machine learning 

algorithms underscores their efficacy in precisely 

identifying infected kiwis. This positive outcome is 

encouraging to apply machine learning algorithms for 

mass spectrometry results obtained for the proposed work. 

N. ditissima is observed to impact apple trees, leading 

to pre-harvest blossom-end rot or post-harvest infections. 

Weber [21] examines the occurrence of canker lesions in 

trees, the severity of fruit infections, and the timing of 

infection spread during spring and summer. It is suggested 

that the pathogen may have gained entry to the fruit stem 

while still on the tree leading to rot during storage and 

spreading within storage areas. Gelain et al. [22] 

conducted on N. ditissima infection, colonization, and 

reproduction in two apple fruit cultivars: Gala and Eva. It 

was determined that a minimum of 25 days was required 

for sporulation to occur on fruit subjected to incubation 

temperatures ranging from 16.8–21.7 °C. Therefore, early 

prediction is crucial for timely fruit preservation. 

Journal of Advances in Information Technology, Vol. 15, No. 10, 2024

1175



The literature extensively covers a variety of machine 

learning and deep learning algorithms for tasks like 

identifying rot on apple surfaces through image 

processing [23]. In contrast, there is a consistent focus on 

utilizing statistical methods and visualization techniques 

when analyzing mass spectrometer datasets, with minimal 

incorporation of ML algorithms. The restricted usage of 

ML algorithms in this scenario can be ascribed to the 

intrinsic high-dimensional complexity of mass 

spectrometer data, requiring expertise not only in the 

domain but also in farming, apple production, and 

spectrometer data analysis. Therefore, the current research 

is collaboratively conducted by experts from the three 

fields to explore the predictive accuracy concerning three 

common post-harvest fungal pathogens during early 

storage in pome fruits, especially apples, utilizing mass 

spectrometer datasets. Given the No Free Lunch 

Theorem’s [24] assertion that no single optimization 

algorithm universally excels, indicating algorithm 

effectiveness varies across problem domains, we intend to 

apply various ML algorithms to the mass spectrometer 

dataset. This approach allows us to evaluate their 

performance and identify the most suitable ones for our 

objectives and dataset. 

III. DATASET 

The mass spectrometry experiment was performed on 

Radian-ASAP manufactured by Waters Corporation direct 

analysis system. The Atmospheric Pressure Solids 

Analysis Probe (ASAP) ionisation methods were used to 

profile volatolome changes of apples infected with 

Monilinia laxa, Neonectria ditissima and Botrytis cinerea 

during pathogenesis. 
Gala and Braeburn fruit were collected and stored under 

a controlled atmosphere at the Natural Resources 
Institute’s Produce Quality Centre at East Malling, Kent 
belonging to University of Greenwich. Fruits were washed, 
residues removed and were then inoculated using 
sequenced strains of Monilinia laxa, Neonectria ditissima, 
and Botrytis cinerea cultured on Potato Dextrose Agar 
(PDA). A picture of the apples in the rack and their storage 
is shown in Fig. 1. Inoculated apples were separated into 
sample-sets comprising 10 apples per set, then placed into 
sterilised net sacking and stored in sterilised crates (Fig. 1). 
The inoculation process is carried our every week with 
crates of inoculated fruit stored under ambient conditions 
to maximise rate of disease progression until fruit rot had 
progressed to non-viability. Subsequently sampling is 
done on every inoculated sample (near the infected area 
which is the inoculated location and the uninfected part) in 
intervals and spectrometry values are recorded. 

The mass spectrometry data, focusing on both positive 
and negative ionization, is segregated for Braeburn and 
Gala apples and encompasses information related to three 
different types of fungal infections. Table I gives a detailed 
analysis on the number of records in each of the 
combinations. The data appears to be evenly spread 
between negative and positive ions as well as between 
infected and uninfected samples. Our experimental 
analysis involves utilizing these data values to apply 
machine learning algorithms. 

 

 
a)   b) 

Fig. 1. Apples stored for experimental purpose. a) Collected Apples in 

rack. b) Controlled storage. 

TABLE I. TABULATION OF NUMBER OF RECORD’S IN THE DATASET 

INVOLVING 2900 COLUMNS WITH 12 DIFFERENT APPLE-FUNGI-ION 

COMBINATION 

Apple Fungi 
+ve 

ion 

−ve 

ion 

File 

Name 
Infected 

Number 

of 

records 

Braeburn Bortrytis cinerea ✓  
BBB+ve 

✓ 50 

Braeburn Bortrytis cinerea ✓  
 45 

Braeburn Monilinia laxa ✓  
BBM+ve 

✓ 33 

Braeburn Monilinia laxa ✓  
 27 

Braeburn Neonectria ditissima ✓  
BBN+ve 

✓ 36 

Braeburn Neonectria ditissima ✓  
 45 

Gala Bortrytis cinerea ✓  
GAB+ve 

✓ 38 

Gala Bortrytis cinerea ✓  
 30 

Gala Monilinia laxa ✓  
GAM+ve 

✓ 36 

Gala Monilinia laxa ✓  
 32 

Gala Neonectria ditissima ✓  
GAN+ve 

✓ 30 

Gala Neonectria ditissima ✓  
 36 

Braeburn Bortrytis cinerea  
✓ 

BBB-ve 
✓ 50 

Braeburn Bortrytis cinerea  
✓  50 

Braeburn Monilinia laxa  
✓ 

BBM-ve 
✓ 30 

Braeburn Monilinia laxa  
✓  33 

Braeburn Neonectria ditissima  
✓ 

BBN-ve 
✓ 37 

Braeburn Neonectria ditissima  
✓  41 

Gala Bortrytis cinerea  
✓ 

GAB-ve 
✓ 38 

Gala Bortrytis cinerea  
✓  30 

Gala Monilinia laxa  
✓ 

GAM-ve 
✓ 39 

Gala Monilinia laxa  
✓  42 

Gala Neonectria ditissima  
✓ 

GAN-ve 
✓ 37 

Gala Neonectria ditissima  
✓  31 

IV. RESULT AND DISCUSSION 

A. Exploratory Analysis on the Data 

Since there is limited existing literature on applying 

different machine learning algorithms to analyze apple 

fungal infections and classify them, the initial approach 

involved conducting a thorough Exploratory Data 

Analysis (EDA) on the mass spectrometry dataset. A 

boxplot image on the BBB+ve infected 50 samples is 

shown in Fig. 2. It distinctly illustrates the values within 

the interquartile range for each sample and the dispersion 

of the outliers. 

From the boxplot of the BBB+ve ion, it’s found that 

only 1% of the data points falls under outlier. The lower 

quartile, upper quartile and the median value of almost all 

the samples falls under the similar range.  
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Fig. 2. Exploratory data analysis-box plot on the BBB+ve infected 50 samples. 

From the analysis recorded during the literature study, 

supervised algorithms like Support Vector Machine 

(SVM), K-Nearest Neighbor Classification (KNN), 

Artificial Neural Network (ANN), Decision Tree (DT), 

and Naive Bayes (NB) [25] are predominantly used for 

classification problems and have produced good 

classification results. With this understanding, five distinct 

Machine Learning algorithms were employed in this study 

including Logistic Regression, SVM-XGBoost Gridsearch 

with Linear Kernel, SVM-XGBoost Gridsearch with 

Polynomial Kernel, XGBoost, and Random Forest. 

Additionally, four customised Neural Network algorithms 

were designed, leveraging both Adaptive Moment 

Estimation (ADAM) and Stochastic Gradient Descent 

(SGD) classifiers. The Neural Network hyperparameters 

were fine-tuned, and their performance was subsequently 

assessed and recorded. The true positive, true negative, 

false positive, false negative, and accuracy metrics were 

documented for each of the 12 combinations involving 

Apple-Fungi-Ion in Table II. The 12 combinations include 

BBB+ve, BBM+ve, BBN+ve, GAB+ve, GAM+ve, 

GAN+ve, BBB-ve, BBM-ve, BBN-ve, GAB-ve, GAM-ve, 

GAN-ve. 

TABLE II. PERFORMANCE ANALYSIS OF THE ML ALGORITHMS ON THE 12 COMBINATIONS OF APPLE-FUNGI-ION. THE HIGHEST ACCURACY FOR EACH 

OF THE APPLE-FUNGI-ION ARE IN RED AND THE SECOND HIGHEST ARE IN BLUE 

Model 
BBB+ve Train:71, Test:24 BBM+ve Train:45, Test:15 BBN+ve Train:60, Test:21 

TP FP FN TN Accuracy TP FP FN TN Accuracy TP FP FN TN Accuracy 

Logistic Regression 13 0 1 10 95.8 6 2 0 7 86.6 8 0 0 13 100 

SVM–Linear 12 1 1 10 91.6 7 1 0 7 93.3 8 0 0 13 100 

SVM–Polynomial 13 0 8 3 66.6 6 2 0 7 86.6 5 3 0 13 85.7 

XGBoost 11 2 2 9 83.3 5 3 0 7 80 6 2 0 13 90.4 

Random Forest 11 2 3 8 79.1 6 2 2 5 73.3 6 2 0 13 90.4 

NN model 1 10 3 3 8 75 6 2 2 5 73.3 5 3 0 13 85.7 

NN model 2 10 3 3 8 75 6 2 2 5 73.3 8 0 1 12 95.2 

NN model 3 2 7 3 7 47.3 3 0 3 6 75 2 2 1 12 82.3 

NN model 4 7 2 3 7 73.6 2 1 4 5 58.3 3 1 1 12 88.2 
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Model 
GAB+ve Train:71, Test:24 GAM+ve Train:45, Test:15 GAN+ve Train:60, Test:21 

TP FP FN TN Accuracy TP FP FN TN Accuracy TP FP FN TN Accuracy 

Logistic Regression 6 1 0 10 94.1 7 0 0 10 100 4 1 0 12 94.1 

SVM–Linear 6 1 0 10 94.1 7 0 0 10 100 4 1 0 12 94.1 

SVM–Polynomial 6 1 7 3 52.9 7 0 5 5 70.5 5 0 5 7 70.5 

XGBoost 6 1 3 7 76.4 7 0 3 7 82.3 4 1 2 10 82.3 

Random Forest 6 1 2 8 82.3 7 0 2 8 88.2 5 0 0 12 100 

NN model 1 6 1 1 9 88.2 7 0 2 8 88.2 5 0 1 11 94.1 

NN model 2 6 1 0 10 94.1 6 1 1 9 88.2 4 1 0 12 94.1 

NN model 3 7 0 2 5 85.7 5 2 0 7 85.7 7 0 2 5 85.7 

NN model 4 7 0 0 7 100 6 1 1 6 85.7 7 0 2 5 85.7 

Model 
BBB-ve Train:71, Test:24 BBM-ve Train:45, Test:15 BBN-ve Train:60, Test:21 

TP FP FN TN Accuracy TP FP FN TN Accuracy TP FP FN TN Accuracy 

Logistic Regression 12 1 1 11 92 4 3 1 8 75 7 1 2 10 85 

SVM–Linear 12 1 1 11 92 4 3 1 8 75 7 1 2 10 85 

SVM–Polynomial 8 5 1 11 76 3 4 1 8 68.75 8 0 2 10 90 

XGBoost 11 2 0 12 92 2 5 1 8 62.5 6 2 1 11 85 

Random Forest 10 3 1 11 84 2 5 1 8 62.5 7 1 2 10 85 

NN model 1 6 7 0 12 72 3 4 3 6 56.25 7 1 3 9 80 

NN model 2 8 5 0 12 80 3 4 3 6 56.25 7 1 3 9 80 

NN model 3 6 3 1 10 80 2 4 1 6 61.5 5 0 3 8 81.25 

NN model 4 6 3 1 10 80 3 3 1 6 69.2 5 0 3 8 81.25 

Model 
GAB-ve Train:51, Test:17 GAM-ve Train:60, Test:21 GAN-ve Train:51, Test:17 

TP FP FN TN Accuracy TP FP FN TN Accuracy TP FP FN TN Accuracy 

Logistic Regression 4 3 2 8 70.5 8 0 0 13 100 7 0 0 10 100 

SVM–Linear 4 3 2 8 70.5 8 0 0 13 100 7 0 0 10 100 

SVM–Polynomial 6 1 6 4 58.8 8 0 3 10 85.7 7 0 2 8 88.2 

XGBoost 4 3 3 7 64.7 8 0 1 12 95.2 7 0 0 10 100 

Random Forest 4 3 3 7 64.7 8 0 0 13 100 7 0 0 10 100 

NN model 1 3 4 2 8 64.7 7 1 0 13 95.2 5 2 0 10 88.2 

NN model 2 4 3 1 9 76.4 7 1 0 13 95.2 7 0 1 9 94.1 

NN model 3 5 2 3 4 64.2 4 0 4 9 76.4 7 0 0 7 100 

NN model 4 5 2 2 5 71.4 4 0 4 9 76.4 7 0 1 6 92.8 
 

B. ML Model 1: Logistic Regression 

The model takes as input a set of 2,900 attributes 

derived from mass spectrometry data, represented as 

𝑥1, 𝑥2, … , 𝑥{2900}  with the response variable indicating a 

binary classification of {"infected"(0), "uninfected"(1)}. 

Applying logistic regression to classify the dataset yielded 

outstanding results, achieving the highest and second-

highest accuracy scores in 11 combinations of Apple-

Fungi-Ion (Fig. 3). 

 

 

Fig. 3. The total number of highest accuracy and second highest 
accuracy generated by each of the ML models. 

The reason behind the highest performance of the 

logistic model is that it follows a Sigmoid prediction curve 

represented by 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 =
1

1+𝑒{−𝑥} . The error 

function of the logistic regression is given by 

1

2𝑛𝑜_𝑜𝑓_𝑟𝑒𝑐𝑜𝑟𝑑𝑠
  ∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 −

𝑛𝑜_𝑜𝑓_𝑟𝑒𝑐𝑜𝑟𝑑𝑠
𝑖=1

                             𝑎𝑐𝑡𝑢𝑎𝑙_𝑣𝑎𝑙𝑢𝑒)2                                            (1) 

The logistic regression error value is calculated in two 

iterations as given below 

𝐸𝑟𝑟𝑜𝑟(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 −  𝑎𝑐𝑡𝑢𝑎𝑙_𝑣𝑎𝑙𝑢𝑒)  =

{
−𝑙𝑜𝑔(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒),                  𝑎𝑐𝑡𝑢𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 =  1

−𝑙𝑜𝑔(1 −  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒), 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 =  0
 (2) 

On applying Eq. (2) in Eq. (1), and by compressing the 

conditions in Eq. (2), the differentiated final error function 

of the logistic regression would be   

=
−1

𝑚
∑ 𝑎𝑐𝑡𝑢𝑎𝑙_𝑣𝑎𝑙𝑢𝑒

𝑛𝑜_𝑜𝑓_𝑟𝑒𝑐𝑜𝑟𝑑𝑠
𝑖=1 log(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑣𝑎𝑙𝑢𝑒) +

(1 − 𝑎𝑐𝑡𝑢𝑎𝑙_𝑣𝑎𝑙𝑢𝑒) log (1 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑣𝑎𝑙𝑢𝑒) (3) 

From the sample EDA boxplot in Fig. 2, outliers are 

seen in the spectrometry recordings which may disturb the 

behavior of the model causing it to be overfitting. Hence 

to combat the effect of overfitting caused by high variance 

in the data, regularisation is applied on them. The selection 

of regularisation over pruning stems from the fact that 

pruning features could result in data loss, potentially 

compromising the accuracy of predicting the extent of 

fungal infection. Hence the logistic function is further 

optimized applying the L1 regularisation (Eq. (4)) and L2 

regularisation (Eq. (5)) on it. L1 regularisation considers 

the absolute values of the weights, while L2 regularisation 

involves the squares of the weights. Upon experimenting 

with both L1 and L2 regularisation, we observe minimal 

deviations in the results obtained. 

 𝐸𝑟𝑟𝑜𝑟 𝑓𝑟𝑜𝑚 𝐸𝑞. (3) +
𝜆

2𝑛𝑜_𝑜𝑓_𝑟𝑒𝑐𝑜𝑟𝑑𝑠
∑ |𝑊𝑗|𝑛

𝑗=1  (4) 
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 𝐸𝑟𝑟𝑜𝑟 𝑓𝑟𝑜𝑚 𝐸𝑞. (3) +
𝜆

2𝑛𝑜_𝑜𝑓_𝑟𝑒𝑐𝑜𝑟𝑑𝑠
∑ |𝑊𝑗|

2𝑛
𝑗=1  (5) 

One significant aspect of the dataset that greatly 

contributed to logistic regression achieving outstanding 

outcomes is its minimal number of outliers, possibly only 

a few among the 2,900 samples. This could be attributed 

to the dataset's origin from real experiments, reducing the 

probability of outlier occurrences, and any outliers present 

were addressed during the regularisation process. 

Moreover, the cross-entropy loss function for logistic 

regression was consistently minimal across the 11 models, 

indicating its suitability for the dataset’s nature. The 

monotonicity of logistic regression aligned well with the 

dataset characteristics. Fig. 4(A) illustrates that logistic 

regression yielded excellent results for all combinations of 

Apple-Fungi-Ion except GAB-ve. 

 

 

Fig. 4. Comparison of the performance of each machine learning model in terms of achieving the highest and second highest. 

C. SVM–Linear and Polynomial regression 

Support Vector Machines (SVM) is a supervised 

learning algorithm used for classification and regression 

tasks, known as Support Vector Classification (SVC) and 

Support Vector Regression (SVR) respectively. It's 

particularly suitable for smaller datasets due to longer 

processing times. SVM aims to find an optimal hyperplane 

that effectively separates different classes, especially in 

binary classification scenarios. SVM can employ various 

kernels such as linear, polynomial, and Radial Basis 

Function (RBF). Typically, the linear kernel performs well 

for linear data, while the polynomial kernel is suitable for 

nonlinear data. The RBF kernel is preferred for more 

complex datasets. 
In general, Fig. 4(B) illustrates that the SVM with a 

linear kernel achieves high accuracy across all models 
except GAB-ve. Interestingly, the results of SVM with 
kernels closely resemble those of the logistic regression 
model. Fig. 4(F) depicts the outcomes of SVM with a 
polynomial kernel, indicating highest performance for 
only two models. This suggests that the data exhibits 
predominantly linear characteristics with slight non-linear 
deviations, despite having many dimensions in the labeled 

A B 

C D E 

F G H I 
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dataset. The initial linear equation is represented by 𝑦 =
𝑤0 + 𝑤1  𝑥1 + 𝑤2  𝑥2 + ⋯ + 𝑤𝑚  𝑥𝑚, where m is the 
dimensions. The mass spectrometry dataset has 2900 
attributes, hence the input equation would be 𝑦 = 𝑤0 +
𝑤1  𝑥1 + 𝑤2  𝑥2 + ⋯ + 𝑤{2900}  𝑥{2900}. This equation 

is hence reduced to a vector form as given below: 

𝑦 = 𝑤0 + ∑ 𝑤𝑖   𝑥𝑖
2900
𝑖=1 , 𝑦 = 𝑤0 + 𝑊𝑇  𝑋 𝑎𝑛𝑑 𝑦 = 𝑏 +

                                             𝑊𝑇  𝑋                                          (6) 

where W and X are weight and input vectors. 

SVM constructs three hyperplanes to create a decision 

surface that effectively separates the data. These 

hyperplanes are represented by the equations:  

𝑦 = 𝑤0 + 𝑊𝑇  𝑋 = 0, 𝑦+ = 𝑤0 + 𝑊𝑇  𝑋 = 1 

 𝑦− = 𝑤0 + 𝑊𝑇  𝑋 = −1 (7) 

The goal is to find the optimal hyperplane that best 

separates the data, which involves solving a specific 

optimization problem as given in equation below: 

 𝑚𝑖𝑛 𝜑(𝑤) =  
1

2
∣∣ 𝑤 ∣∣2, 𝑤ℎ𝑒𝑟𝑒, 𝜙: 𝑅𝑛 →  𝑅𝑛 (8) 

As per the above equation, a mapping is done from 

features in high dimensional feature space to low 

dimension, where these points can become linearly 

separable. Similarly for the polynomial kernel in SVM, the 

mapping function is represented by 𝑘(𝑥𝑖 , 𝑥𝑖) = (𝑥𝑗
𝑇  𝑥𝑖 +

𝑡)
𝑑
, where d is the higher order power of the polynomial 

term. Based on the above equations, the SVM kernel 

classifies the input data into two classes. 

D. XGBoost and Random Forest 

XGBoost and Random Forest are selected due to their 

respective strengths: Random Forest effectively captures 

dataset behavior with numerous features, while XGBoost 

optimally tunes hyperparameters to capture relationships 

within the data.  

Ensemble model: 

Let there be n data samples with 2900 features and 𝑦𝑖 =
{0,1}.  

Given that 𝐷 = {(𝑋𝑖 , 𝑦𝑖)}, (|𝐷|) = 𝑁, 𝑋𝑖 = {1,2900},
𝑦𝑖 = {0,1} The ensemble gradient boosting model uses B 

different functions to predict the output. The predicted 

output would be  

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒(𝑦_𝑖) = ∑ 𝑓𝑢𝑛𝑐𝑏(𝑋𝑖)
𝐵
𝑏=1 , 𝑓𝑢𝑛𝑐𝑏(𝑋𝑖) ∈ 𝐹𝑈𝑁𝐶

  (9) 

where 𝐹𝑈𝑁𝐶 = {𝑓𝑢𝑛𝑐(𝑥) = 𝑊𝑗}  and B different 

regression functions or Classification and Regression 

Trees (CART) are used. Each funcb corresponds to each 

individual tree, with weight 𝑤𝑗  and 𝑤 is the weight of the 

leaf nodes in the tree, if the tree has T leaf nodes. Each of 

the regression decision tree derives a continuous score for 

the leaves and sum of the values of the leaf values are 

added to obtain the predicted result. The 𝐹𝑈𝑁𝐶  are 

learned in an attempt by minimising the regularized 

objective: 

𝐿 =  ∑ 𝑙(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒, 𝑎𝑐𝑡𝑢𝑎𝑙_𝑣𝑎𝑙𝑢𝑒) 𝐵
𝑏=1 +

1

2
 𝜆‖𝑤‖2 (10) 

The function 𝑙  applied is a convex loss function 

representing the difference between 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 

and 𝑎𝑐𝑡𝑢𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 . The complexity of the model is 

decided by the 𝑤𝑒𝑖𝑔ℎ𝑡_𝑓𝑎𝑐𝑡𝑜𝑟. At the (𝑡)𝑡ℎ iteration the 

value of the regularisation objective depends on the value 

of (𝑡 − 1)𝑡ℎ regularisation objective denoted by 

 𝐿 = ∑ 𝑙(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒, 𝑎𝑐𝑡𝑢𝑎𝑙_𝑣𝑎𝑙𝑢𝑒)𝑡−1)𝐵
𝑏=1 +

1

2
 𝜆‖𝑤‖2 (11) 

This approach is a greedy method that incorporates the 

previous input values with the current one to enhance the 

model’s performance. 

Further down the model, the second layer optimization 

is done in XGBoost to optimize the results. In the proposed 

case the optimal results are the weights are calculated in 

reduced optimization steps using the following weight 

adjustment: 

 𝑊 =
∑ 𝑑1𝑖𝑖

∑ 𝑑2𝑖𝑖 +𝜆
 (12) 

The i in the above equation spans across all the leaf 

nodes, where 𝑑1𝑖  and 𝑑2𝑖  refers to the first order and 

second order differentiated values of the loss function l. 

Therefore, the optimization function simplifies to  

 𝐿 =
−1

2
∑

∑ 𝑑1𝑖𝑖

∑ 𝑑2𝑖𝑖 +𝜆

𝑛𝑜_𝑜𝑓_𝑡𝑟𝑒𝑒𝑠
𝑗=1  (13) 

The values produced by the above equation measures 

the impurity of the tree. The XGBoost algorithm proposed 

in this solution is run until it converges to reach a minimal 

score but carefully stopped at a stage to prevent overfitting. 

The XGBoost algorithm is designed with a greedy 

approach to handle both local and global optimization 

efficiently, capable of processing sparse input data and 

executing parallel operations simultaneously. 

The Random Forest algorithm however is not affected 

by loss function hence there is no option to minimize the 

loss as we could do in the XGBoost. However, 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 = ∑ (
1

𝑛𝑜𝑜𝑓𝑡𝑟𝑒𝑒𝑠

∑ 𝑊
𝑛𝑜𝑜𝑓𝑡𝑟𝑒𝑒𝑠

𝑗=1
𝑋
𝑖=1 )  𝑎𝑐𝑡𝑢𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 (14) 

where 𝑋  is the number of attributes in the dataset. The 

random forest is trained by passing each of the data item 

as input and the weights are adjusted. Subsequently, the 

entropy (impurity value) is measured. The training process 

iterates until the entropy reaches a minimal value and at 

the point of convergence the algorithm is stopped. On 

average both the XGBoost and Random Forest were 

trained by generating 500-600 tress for each potential 

Apple-Fungi-Ion combination. 

Both XGBoost and Random Forest demonstrated 

exceptional performance, achieving the highest and 

second-highest scores for four Apple-Fungi-Ion 

combinations and attaining a perfect 100% score on GAN-

ve (Fig. 4(D) and Fig. 4(E)). 

E. Neural Network Model 

The neural network model architecture for the proposed 

system is illustrated in Fig. 5. It consists of four layers, 

with Rectified Linear Unit (ReLU) activation functions 

applied to the three hidden layers and a Sigmoid activation 

function used for the output layer. The model takes 2900 
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features as input and generates a binary output indicating 

whether the specified sample is infected or uninfected. 

 

 

Fig. 5. Architecture of the Neural Network model. 

Algorithm 1. Structure of the proposed Neural Network 

Algorithm 

1. The input layer in the neural network has 2900 neurons 

denoted by, 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, … … . , 𝑥{2900}} . The output 𝑂𝑋 

from the neurons in the input layer is passed to all the neurons 

in the hidden layer 1 forming a fully connected network. 

2. The hidden layer-1 has 2900 neurons. The input to each 

neuron in the hidden layer-1 is given by 𝐼ℎ1 = ∑ 𝑂𝐼𝑖
2900
𝑖=1 , where 

𝑂𝑖  is the output from the ith neuron in the input layer. 

Subsequently, the neurons in hidden layer-1 processes the inputs 

by computing the sum of all inputs, applies the ReLU activation 

function and generates an output as given below: 

𝑂ℎ1 = {
𝐼ℎ1, 𝐼ℎ1 > 0
0, 𝐼ℎ1 ≤ 0 

 

3. The output of the 2900 neurons in the hidden layer-1 is 

passed to the neurons in the hidden layer-2 forming a fully 

connected network. The hidden layer-2 has 500 neurons and 

input to each neuron is the sum of all inputs from the hidden 

layer-1, 𝐼ℎ2 = ∑ 𝑂ℎ1
2900
𝑖=1 , applies the RELU activation function 

and generates an output as given below: 

𝑂ℎ2 = {
𝐼ℎ2, 𝐼ℎ2 > 0
0, 𝐼ℎ2 ≤ 0 

 

4. The output of the 500 neurons in the hidden layer-2 is 

passed to the neurons in the hidden layer-3 forming a fully 

connected neural network. The hidden layer-3 has 10 neurons 

and the input to each neuron is the sum of all the inputs from the 

hidden layer-2, 𝐼ℎ3 = ∑ 𝑂ℎ2
500
𝑖=1  applies the RELU activation 

function and generates an output as given below: 

𝑂ℎ3 = {
𝐼ℎ3, 𝐼ℎ3 > 0
0, 𝐼ℎ3 ≤ 0 

 

5. The output of the 10 neurons in the hidden layer-3 is passed 

to the neuron in the output layer. The output layer has one 

neuron and the input to the neuron is the sum of all the inputs 

from the hidden layer-3, 𝐼𝑂 = ∑ 𝑂ℎ3
10
𝑖=1 , applies the SIGMOID 

activation function and generates an output as given below: 

𝑂𝑜 =
1

(1 + e−𝐼𝑜)2 

6. The output neuron generates a binary output corresponding 

to infected or uninfected apples. 

7. Following each iteration, the error is computed, and 

subsequently, backpropagation is performed to adjust the 

weights. The parameters and hyperparameters of the neural 

network, including optimizers and epochs, are systematically 

varied. Four unique neural network models are developed, and 

their individual results are recorded. 

 

Neural Network Model-1 and Neural Network Model-2 

utilize the ADAM optimizer and undergo training for 10 

epochs and 100 epochs, respectively, on the training 

dataset for each Apple-Fungi-Ion combination. After 

training, each combination is evaluated using the 

corresponding test dataset. Model-1 successfully achieved 

the highest and second-highest scores for three 

combinations of Apple-Fungi-Ion (Fig. 4(G)). Model-2 

achieved the highest and second-highest scores for eight 

combinations of Apple-Fungi-Ion (Fig. 4(C)). The unique 

property of the ADAM optimiser is that it corrects the bias 

error as it combines the effects of two different optimisers 

AdaGrad and RMSProp and hence converges early to 

reach the global minima. The Adam optimiser is unique 

for the reason that it captures the first moment and the 

second moment, the mean and the variance of the gradients, 

enabling faster convergence. Let 𝜃 be the parameter of the 

model, 𝑙  be the learning rate and the cost calculated at 

time/iteration 𝑖 is given by  

 𝜃 = 𝜃 − 𝑙  𝑔𝑟𝑎𝑑𝑐𝑜𝑠𝑡_𝑖 (15) 

The objective is to navigate 𝜃  in the direction to 

minimize the cost function. The step width of the 

navigation is decided by 𝑙 . The two main internal 

parameters of the Adam are momentum which speeds up 

the gradient and the step size. The version of the Adam that 

works on the mean and the variance are  

𝑚𝑒𝑎𝑛𝑖 = ℎ𝑝1𝑚𝑒𝑎𝑛{𝑖−1} + (1 − ℎ𝑝1)𝑔𝑟𝑎𝑑𝑐𝑜𝑠𝑡_𝑖  

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖 = ℎ𝑝2𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒{𝑖−1} + (1 − ℎ𝑝2)(𝑔𝑟𝑎𝑑𝑐𝑜𝑠𝑡_𝑖)
2
(16) 

The hp1 and hp2  signifies the hyperparameters, 

grad𝑐𝑜𝑠𝑡_𝑖 represents the gradient of the cost function. 

The parameter 𝜃  is adjusted as per the following 

Eq.  (17):  

 𝜃 = 𝜃 − (𝑙  
𝑚𝑒𝑎𝑛𝑖

√{𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒_𝑖+𝑚𝑖𝑛𝑐𝑜𝑛𝑠𝑡}
) (17) 

where 𝑚𝑖𝑛𝑐𝑜𝑛𝑠𝑡  represents a minimal value of constant 

aimed at preventing the denominator from approaching 

zero. Adam makes a warm start and keeps updating the 

value of 𝑚𝑒𝑎𝑛𝑖 and 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖 until N step which leads to 

convergence as shown below: 

 𝑚𝑒𝑎𝑛𝑖̂ =
𝑚𝑒𝑎𝑛𝑖

1−ℎ𝑝1𝑖

 (18) 

 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖̂ =
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖

1−ℎ𝑝2𝑖

 (19) 

Further down, the 𝜃 value is adjusted based on the new 

capped mean and variance.  

 𝜃 = 𝜃 − (𝑙  
𝑚𝑒𝑎𝑛𝑖̂

√{𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒_𝑖̂ +𝑚𝑖𝑛𝑐𝑜𝑛𝑠𝑡}
) (20) 

By the 10𝑡ℎ  epoch the model reaches a convergence 

value.  

The Neural Network Model 3 is constructed with the 

ADAM optimizer and undergoes training over 100 epochs 

on the training datasets. This model is designed to be a 3-

layer NN model with 6 neurons in each of the hidden layer 

and 1 neuron in the output layer. It is validated on a 
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separate validation dataset and subsequently tested on a 

test dataset. Despite this extensive training, the model 

achieved the highest and second-highest scores for one 

combination of Apple-Fungi-Ion. Unfortunately, the 

performance wasn’t better than the other models 

(Fig.  4(H)), achieving outstanding results only for the 

GAN-negative combination. 

Neural Network Model 4 is built using the SGD 

optimizer and trained over 10 epochs. This model achieved 

the highest and second-highest scores for two 

combinations of Apple-Fungi-Ion (Fig. 4(I)). The 𝜃  in 

SGD optimizer is calculated by: 

 𝜃𝑖+1 = 𝜃𝑖 − 𝑙  𝑔𝑟𝑎𝑑𝑙𝑜𝑠𝑠_𝑖  (21) 

Asper the above equation, the training parameter 𝜃 is 

updated every iteration where 𝑔𝑟𝑎𝑑𝑙𝑜𝑠𝑠_𝑖  represents the 

gradient of the loss function. In SGD, the weight and the 

bias are updated using the below formulae: 

 𝑊𝑒𝑖𝑔ℎ𝑡{𝑖+1} = 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 − 𝑙  𝑔𝑟𝑎𝑑𝑙𝑜𝑠𝑠_𝑖 (22) 

 𝐵𝑖𝑎𝑠{𝑖+1} = 𝐵𝑖𝑎𝑠𝑖 − 𝑙  𝑔𝑟𝑎𝑑{𝑙𝑜𝑠𝑠_𝑖} (23) 

The 𝑔𝑟𝑎𝑑{𝑙𝑜𝑠𝑠_𝑖}  is the differentiated value of the loss 

calculated at the iteration 𝑖 by applying 

 𝑔𝑟𝑎𝑑{𝑙𝑜𝑠𝑠_𝑖} =
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑒𝑖𝑔ℎ𝑡_𝑖
 (24) 

SGD updates the weight and bias and other parameters 

ater processing each record, resulting in a slower 

convergence to the global minima where the path becomes 

rough rather smooth. Comparing both optimizers, ADAM 

and SGD, ADAM showcased superior performance due to 

its quicker narrowing down to the global minima 

compared to SGD, and its effectiveness in optimization 

during training. 

Based on the comprehensive study and analysis 

conducted, it has been demonstrated that out of the nine 

models developed, both Logistic Regression and SVM 

with linear kernels consistently yielded the best results for 

around 11 combinations of Apple-Fungi-Ion. 

V. CONCLUSION 

This research is a significant contribution to the field of 

food safety following the sustainable practices, with 

potential implications for the global scientific community 

and the apple industry.  

Non-destructive approach to detection of fungal 

infections: The developed method utilizes mass 

spectrometry data and machine learning algorithms to 

detect fungal infections in apples without causing physical 

damage to the fruit. This non-destructive approach is 

significant to the apple industry, as it saves a lot of apples 

from being cut for testing. 

Comprehensive analysis: This research conducted a 

thorough analysis by evaluating the performance of nine 

different supervised machine learning models, including 

logistic regression, Support Vector Machines (SVMs), 

XGBoost, Random Forest, and four customised neural 

networks. This comprehensive approach learns the linear 

nature of the mass spectrometry dataset as evidenced by 

the excellent performance of logistic regression and SVM 

with linear kernels for accurately classifying infected and 

uninfected apples across various combinations of apple 

varieties and fungal pathogens. The logistic regression and 

SVM models achieved over 90% accuracy across 11 

different Apple-Fungi-Ion combinations demonstrating 

the robustness and reliability of the developed method, 

which is essential for practical implementation in the apple 

industry.  This approach being rapid and produces quick 

results, offers time-saving benefits in the fast-paced 

agricultural and food industry. 

Building on the initial extensive results, this study is set 

to evolve into a proposed funded project aimed at uniting 

academia, industry professionals, and stakeholders and is 

designed to benefit the apple industry and consumers, with 

the aim of providing significant economic and societal 

advantages to a wide range of people. 

The research acknowledges the potential for future 

iterations of the project, such as quantifying the extent of 

infection and determining the apple's edibility duration or 

shelf life. Further down, it can also be extended to other 

stone fruits like pears or berry fruits like strawberry, 

raspberry, etc., thus opening avenues for further 

exploration and refinement. 

Overall, this research also demonstrates the power of 

interdisciplinary collaboration between analytical 

techniques, machine learning, and agricultural sciences. 

By providing a reliable, non-destructive, and cost-effective 

method for detecting fungal infections in apples, this study 

has the potential to significantly impact the global 

scientific community, particularly in the areas of food 

security, agricultural productivity, and sustainable 

practices. 
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