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Abstract—Electroencephalogram (EEG) signals are widely 
applied in emotion recognition, sentiment analysis, disease 
classification, sleep disorder identification, and fatigue 
detection. Recent research has highlighted the active 
exploration of neurological disease analysis using EEG 
signals. Various machine learning and deep learning 
techniques, using feature-based and Euclidean approaches, 
have been employed to analyse these EEG signals. However, 
non-Euclidean approaches have proven more effective than 
Euclidean methods in EEG signal research. This superiority 
may stem from the nonlinear and dynamic characteristics of 
EEG signals, intricate interplay among brain regions, and 
resilience to common EEG signal noise. Unfortunately, 
limited studies on the graph representation of EEG signals 
exist due to constraints such as insufficient datasets, 
unavailable source code, and the complexity of graph 
representation. Hence, we aim to conduct a survey on various 
graph representation techniques, graph neural networks, 
existing methods, and available resources for EEG signal 
analysis using the non-Euclidean approach. In addition, 
visibility graph-based methods have been applied to single-
channel EEG signals, while graph neural networks have been 
shown to have promising outcomes in multichannel EEG 
signal analysis. Thus, the survey concluded that the non-
Euclidean approach uses a graph to map more with the brain 
structure than with the Euclidean structure. Additionally, the 
inclusion of visibility graphs in multichannel EEG signals 
and graph neural networks would justify the robustness of 
the non-Euclidean approach in EEG signal analysis. 
 
Keywords—electroencephalogram signals, graph 
representation, graph neural network, intelligent processing, 
deep analytics 
 

I. INTRODUCTION 

According to the World Health Organization, 
approximately one billion people worldwide have 

experienced Neurological Disorders (NDs), and a 
study [1] indicated that one out of every six individuals has 
suffered from some form of ND. The incidence of 
neurological disorders has been massively increasing; in 
2022, the Neuroepidemiology Editorial [2] reported that 
every one in three people globally is suffering from NDs. 
Electroencephalography (EEG) [3, 4] is the most versatile, 
economical, nondestructive, painless, and side effect-free 
solution for studying brain function and diagnosing NDs. 
EEG signals are obtained by placing electrodes on the 
scalp, which detect the electrical activity of neurons in the 
brain. These signals are then transformed and stored in an 
external device such as a computer, generating a graph of 
brain activity over time. EEG signals are valuable for 
studying a variety of brain processes, such as perception, 
attention, emotion, memory, and motor control. Moreover, 
EEG signals can be used to diagnose conditions such as 
epilepsy, sleep disorders, and brain injuries. 

Electroencephalography (EEG) is a powerful tool for 
revealing novel insights into brain function and dynamics. 
By detecting intricate patterns, identifying biomarkers, 
exploring brain connectivity, and facilitating real-time 
monitoring, EEG contributes significantly to advancing 
our understanding of brain structure, function, and 
dynamics. This not only advances neuroscience research 
but also enhances clinical diagnosis and informs 
therapeutic interventions. Moreover, the classical visibility 
graph approach, particularly its effectiveness in single-
channel EEG signal analysis, underscores its potential. 
With technological advancements enabling the 
incorporation of multiple signals for visibility graphs and 
the application of data-driven approaches, the field 
presents exciting opportunities for future research. These 
advancements align with our conclusions, highlighting the 
profound implications of EEG findings in bridging the gap 
between new results and established domain knowledge.  
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However, identifying NDs from nonlinear temporal 
signal frequencies has been a meticulous task [5]. Experts 
usually require hours of EEG signals to detect abnormal 
signals from epileptic seizures, despite the seizure duration 
of abnormal EEG signals being only a matter of 
seconds [6]. This may explain why half of patients appear 
normal to the naked eye of an expert, and the consequences 
can be irreversible. Using GNNs for EEG signal 
processing is a suitable approach for comprehending the 
nonlinear and non-Euclidean nature of signals. The non-
Euclidean data can be represented as graphs or networks, 
where the distance between two nodes is not a Euclidean 
distance but a graph-theoretic distance such as the shortest 
path. 

GNNs are a type of deep learning model specifically 
designed to process data represented in the form of graphs. 
In a graph, nodes signify entities, and edges represent the 
relationships or connections between them. The primary 
advantage of GNNs is their ability to handle data with 
intricate relationships, such as social networks, molecular 
structures, and brain connectivity networks. Thus, GNNs 
are well suited for capturing the spatial and temporal 
relationships between different brain regions and reducing 
the dimensionality of EEG data. Moreover, GNNs are 
robust to noise, artifacts, and other sources of interference 
that often affect EEG signals. Therefore, over the last few 
years, machine learning on graphs has gained much 
attention and achieved remarkable success in various 
fields, including computer vision, particle physics, 
medical imaging, social sciences, chemistry, and 
recommendation systems. The success of machine 
learning in these fields can be attributed to the availability 
of graph-structured data and the effective use of GNNs. 

GNNs are a type of neural network designed to handle 
graph-structured data and are considered an extension of 
Convolutional Neural Networks (CNNs) from Euclidean 
to non-Euclidean data. GNNs are capable of processing 
information from nonlinear signals that are supported on 
graphs and leveraging topologically distant information in 
a nonlinear manner [7, 8]. GNNs transmit messages to 
neighboring nodes via the edges of graphs and aggregate 
them to generate node embeddings, which can be utilized 
for tasks such as node classification, edge prediction, and 
graph classification [9]. 

Previous researches [10–13] on EEG signals has 
focused primarily on feature extraction strategies, 
including statistical feature extraction methods [14], EEG 
waveform analysis [15], data collection and processing 
techniques, and software for handling EEG data [16, 17]. 
Survey papers have mostly concentrated on algorithms for 
selecting channels to extract features [18], different 
processing methods, acquisition types, and applications of 
EEG signals [19]. Lotte et al. [20] and Hosseini et al. [21] 
conducted reviews of classification algorithms for EEG 
signal analysis, and some papers have reviewed machine 
learning methods [22–24] for EEG signal analysis, such as 
Support Vector Machines (SVMs), k-means methods, 
Artificial Neural Networks (ANNs), linear classifiers, and 
deep learningmethods [25, 26], e.g., Deep Neural 
Networks (DNNs), Recurrent Neural Networks (RNNs), 
and CNNs, using Euclidean data processing approaches. 

However, to the best of our knowledge, there has been 
no analytical study on non-Euclidean data processing 
approaches in EEG signal analysis using machine learning 
or deep learning technology. This paper aims to fill that 
gap by surveying the methods developed between 2012 
and 2023 for EEG signal processing using graph-based 
neural networks. This paper presents a complete pipeline, 
from the basic graph representation to the implementation 
of the GNN. The paper also discusses the proposed 
methods, dataset, source code, challenges, and future 
directions for research in EEG signal processing using 
GNNs. 

The paper is structured as follows. Section II explains 
the materials and methods, and Section III describes the 
graph representation techniques. Section IV presents the 
frameworks for graph neural networks, which have been 
used for EEG signal analysis. In Section V, brief EEG 
signal analysis approaches are illustrated with a 
comparative study. Section VI describes the dataset, and 
Section VII describes the challenges and future research 
scopes. Finally, Section VIII presents concluding remarks. 

II. MATERIALS AND METHODS 

For this work, we selected various survey/review 
papers, journals, conference proceedings and public 
websites from 2012 to 2023 through the Google Scholar 
(https://scholar.google.com/) and PubMed 
(https://pubmed.ncbi.nlm.nih.gov/) search engines. The 
choice of search engines is not random. Google Scholar’s 
extensive coverage, including books, articles, and 
conference papers, coupled with its user-friendly interface, 
makes it an invaluable resource. Additionally, its citation 
tracking feature aids in assessing the impact and 
significance of research papers. On the other hand, 
PubMed’s specialization in biomedical and life sciences 
literature, along with its provision of direct links to full-
text articles, streamlines the process of accessing pertinent 
research materials, particularly for studies in the field of 
EEG signal analysis. Initially, we searched for papers with 
the key phrase “EEG signals and graph neural networks”. 
During the process, many EEG signal analysis techniques 
involve visibility graphs, so we slightly changed the 
strategy and collected the papers with the following three 
key phrases: 

 Visibility graph and EEG signal analysis 
 EEG signal and graph neural networks 
 Graph learning on EEG 

Using the phrase “visibility graph and EEG signal”, we 
considered the articles after the year 2012, and for the 
remaining two phrases, only the articles after 2016 were 
considered to be graph neural network-based learning after 
the work of the graph convolution network paper [27]. 
Initially, 299 articles were identified using specific 
keywords and databases. Of these, 94 articles were 
inaccessible either publicly or through third-party 
websites. Additionally, 81 papers were eliminated because 
their titles did not align with the scope of the study. Further 
screening based on abstracts resulted in the exclusion of an 
additional 56 papers, leaving a refined selection for 
analysis. After removing duplications among the selected 
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articles, only 53 were considered for this work. Table I 
provides information about the screening methods and the 
selected number of articles. 

TABLE I. ARTICLE SELECTION AND SCREENING CRITERIA 

Screening 
Methods 

Visibility 
graph and 
EEG signal 

analysis 

EEG signals 
and graph 

neural 
networks 

Graph 
learning 
on EEG 

Total collected 
articles 

100 109 90 

Not freely 
available 

22 37 35 

Abstract reading 20 22 14 
Selected 18 32 18 

III. GRAPH REPRESENTATION 

A graph is a kind of non-Euclidean data structure that 
shows the relationships between entities; such entities are 
known as nodes, and relationships are the edges of the 
graph. Formally, a graph can be defined as 𝐺 = (𝑉, 𝐸), 
where 𝑉 = {𝑣 , 𝑣 , … , 𝑣 }  is the set of 𝑛  vertices and 
𝐸 =  {𝑒 , 𝑒 , … , 𝑒 } is the set of 𝑚 edges. If the edges on 
the graph are directed from one node to another, then the 
resulting graph is the directed graph. Additionally, if the 
strengths of the relationships between nodes are not the 
same, such graphs are weighted graphs. The graph defined 
above is an undirected and unweighted graph. 

The graph density 𝐷 of an undirected graph 𝐺 = (𝑉, 𝐸) 
is given by the ratio of the number of edges to the 
maximum possible number of edges in the graph. That is, 

𝐷 =
|𝐸|

|𝑉|(|𝑉| − 1)
2

=
2|𝐸|

|𝑉|(|𝑉| − 1)
 

If 𝐷 = 0, the graph is an empty graph or discrete graph, 
and if D = 1, the graph is a fully connected or complete 
graph. 

Based on this density, graphs can be classified as sparse 
graphs or dense graphs, i.e., if 𝐷 < threshold, the graph 
is a sparse graph; otherwise, it is a dense graph. The 
common rule of thumb is that the threshold is usually equal 
to 0.5. An EEG signal is a complex temporal signal from 
multiple electrodes on the scalp. To reduce the complexity 
of graph feature engineering, some have attempted to 
reduce the number of nodes or electrodes, while others 
have attempted to reduce the connectivity between EEG 
channels based on the notion of graph density. 

In the real-world context, different graph variants are 
common in practice: dynamic graphs [28, 29], signed 
graphs [30], hypergraphs [31, 32], heterogeneous 
graphs [33, 34], bipartite graphs [35, 36], and visibility 
graphs [37]. The details of all those graphs are not within 
the scope of this paper, so we focus only on the graphs that 
have been used in practice for EEG signal analysis. 

A. Temporal Representation 

Visibility graphs can be used to transform time series 
data into scale-free graphs, and these graphs exhibit long-
term temporal dependencies and chaotic properties of time 
series data [38]. Since the introduction of visibility graphs 

by Lacasa [33] in 2008, visibility graphs have been used 
for EEG signal analysis. Therefore, this section describes 
the chronological development of EEG signal analysis 
based on the concept of visibility graphs. 

1) Visibility graph 
For EEG signal analysis, the structure of such a 

nonlinear and nonstationary signal is crucial. However, the 
visual structure of large temporal sequences is often 
difficult for human experts to observe. Thus, it is essential 
to map such a temporal sequence into a domain that 
preserves the structure of the sequence with minimum cost 
and minimum information loss. Since the introduction of a 
visibility graph in 2008 by Lacasa [37], many researchers 
have implemented this concept in EEG signal analysis. 

For a temporal sequence 𝑥 = [𝑥 , 𝑥 , … , 𝑥 ] of 𝑁 data 
points, a Visibility Graph (VG) of 𝑥  is a graph 𝐺 =
 (𝑉, 𝐸) where 𝑉 = {1, 2, … , 𝑁} and 

𝐸 =  𝑡 , 𝑡 : 𝑥  −  𝑥  <
𝑡 − 𝑡

𝑡 − 𝑡
𝑥 − 𝑥 , 𝑤ℎ𝑒𝑛  𝑡

< 𝑡 < 𝑡  

The VG of temporal points is the graph whose nodes are 
the temporal points, and the edges are formed between 
these temporal points if a straight line can be drawn in the 
bar chart of the temporal sequence without the blockage of 
middle bars. 

To the left of Fig. 1 is the bar chart of the temporal data 
𝑥 = [10, 5, 3, 7, 10, 5, 4, 8], and the right figure is the bar 
with the corresponding visibility graph. 

 

 
Fig. 1. A bar chart and the visibility graph on top of the bar chart. 

EEGs are highly fluctuating, and a measure of such 
fluctuations is fractality. Ahmadlou et al. [39] used the 
notion of fractality to diagnose autism spectrum disorder 
with the help of VG. In the expression of the probability 
distribution of nodes in the VG, 𝑃(𝑘)  =  𝑘 , where 𝑘 is 
the degree of the node and 𝑟 is the fractality measure. This 
fractality can be measured as the slope of a least square 

line of log (𝑃(𝑘)) against log . 

Ji et al. [40] used the degree distribution of nodes of 
VGs obtained from EEG signals of normal people as well 
as those experiencing occupational stress. They showed 
that their degree distributions differ according to 
occupational stress. Similarly, Hao et al. [41] used VG 
signals to classify EEG signals into ictal and interictal 
signals. 

VGs can be large, and in real life, working with large 
VGs is not preferable because of their high complexity. To 
reduce (sparsify) the connection and still preserve the 
structure of the temporal sequence, Luque et al. [42] 
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introduced the concept of a Horizontal Visibility Graph 
(HVG). 

2) Horizontal visibility graph 
For the temporal sequence 𝑥 = [𝑥 , 𝑥 , … , 𝑥 ] , the 

HVG of 𝑥 is denoted by 𝐻𝑉𝐺(𝑥)  = (𝑉, 𝐸), where the set 
of vertices is exactly the same as that of VG and 

𝐸 =  𝑡 , 𝑡 : 𝑥 , 𝑥 > 𝑥  𝑤ℎ𝑒𝑛 1 ≤  𝑖 <  𝑘 <  𝑗 ≤  𝑁  

Zhu et al. [43] applied the concept of the VG similarity 
score using the Graph Synchronization (GS) score as a 
feature of the Horizontal Visibility Directed Graph 
(HVDG) to classify sleep stages from EEG signals. The 
synchronization score of two temporal sequences 𝑥(𝑡) and 
𝑦(𝑡) is measured as 

𝑆(𝑥, 𝑦) =
𝑐𝑜𝑣 𝐷 , 𝐷  

𝜎 𝜎
 

where 𝐷  is the degree of the degree sequence of VG of 𝑥, 
𝑐𝑜𝑣(𝑥, 𝑦) is the covariance between 𝑥 and 𝑦, and 𝜎  is the 
standard deviation of 𝑥.  Here, the range of the 
synchronization score is [0, 1]. 

This Visibility Graph Synchronization (VGS) method is 
more powerful than coherence methods. On the other hand, 
VGS is not appropriate for time series signals that produce 
the same degree of sequence, and the same degree of 
sequence production is possible because VGs are shift- and 
scale-invariant. To overcome this limitation, the author 
used the HVDG similarity method. The synchronization is 
calculated from the degree sequence of the HVDG as 

𝑆(𝑥, 𝑦)  =
𝑐𝑜𝑣 𝐷 , 𝐷

𝜎 𝜎
 

where the range is between −1 and 1. A value close to −1 
indicates that 𝑥 and 𝑦 are desynchronized, and a value of 
1 indicates synchronization. 

The VGS concept was applied by the author of [44] in a 
slightly different way. First, the given temporal signal is 
transformed in state space with multiple concepts [45] with 
different embedding dimensions. Then, the resulting 
trajectories are mapped into VGs. Then, the 
synchronization score is measured as 

𝑆(𝑥, 𝑦)  = 𝑐𝑜𝑣 𝐷𝑆 , 𝐷𝑆 /𝜎 𝜎  

where 𝐷𝑆  is the degree sequence of trajectory 𝑥 . The 
advantage of this approach is that it permits the 
incorporation of multichannel signal analysis. 
Sengupta et al. [46] used this concept to construct a brain 
network and observe various stages of sleep-deprived 
fatigue. It first calculates the synchronization score 
between the signals from every pair of electrodes to form 
an adjacency matrix called the VGS matrix. Then, a 
threshold is applied to decide whether to form an edge 
between them. The various functional brain stages were 
observed through the VGS matrix. It has been observed 
that the greater the number of edges is, the greater the 
fatigue level and the lower the degree of connection fatigue. 

On the other hand, Ahmadi and Pechenizkiy [47] 
suggested that as VGs are nonlinear transformations of 

signals into graphs, the notion of state space is not required 
because of the use of VGs. The author verified that the 
synchronization score classifies healthy and unhealthy 
signals. 

In 2014, a new concept was introduced by Zhu et al. [48] 
to sparsify the edges of the Visibility Graph (VG) derived 
from a temporal sequence, called the difference VG. This 
was used to analyze and classify sleep stages from a single-
channel EEG signal. 

3) Difference visibility graph 
Let 𝐺 (𝑉, 𝐸 ) and 𝐺 (𝑉, 𝐸 )  be the VG and HVG 

obtained from time series 𝑥 = [𝑥 , 𝑥 , … , 𝑥 ] , 
respectively, where 𝑉  is the set of vertices {1, 2, … , N} 
and E  and E  are the sets of edges of the VG and HVG, 
respectively. Then, the Difference Visibility Graph (DVG) 
is the graph 𝐺 (𝑉, 𝐸 ) , where 𝐸  is the difference 
between the set of edges 𝐸  of the VG and 𝐸  of the HVG. 

Experimentally, Zhu et al. [48] verified that DVG 
extracts more essential features than VG and HVG. The 
features from the DVG were sent as input to the SVM to 
classify sleep stages. The mean degree of DVGs in the 
deep sleep stage was greater than that in the light sleep 
stage. Wang et al. [49] used the mean degree and degree 
entropy from the VG, HVG and DVG to analyse seizure 
patterns. 

Another way to control sparsifying the edges of VGs 
was introduced in [50] in terms of a Weighted Horizontal 
Visibility Graph (WHVG). The author did so based on the 
fact that if HVGs obtained from time series are 
consistently monotonic, it is difficult to distinguish them. 

4) Weighted horizontal visibility graph 
The WHVG of 𝑥 = [𝑥 , 𝑥 , … , 𝑥 ]  is a graph 

𝐺(𝑉, 𝐸, 𝑊) where 𝑉 and 𝐸 behave exactly the same as the 
HVG and 𝑊 =  𝑤  and 𝑤  are the edge weights 
between nodes 𝑖 and j given by 

𝑤 =

𝑥 − 𝑥

𝑖 − 𝑗
+ 1 𝑖𝑓 𝑒 ∈ 𝐸

         0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where, the degree (strength) of node 𝑖  of WHVG 𝑆  =
𝛴  𝑤  creates a difference even for monotonic time series. 
Finally, the features extracted from the WHVG were input 
to the KNN classifier for epileptic seizure detection 
corresponding to the EEG signals. 

Supriya et al. [51] introduced the concept of WVG 
similar to that of Zhu et al. [50] but for VG and with the 
weight defined differently as 

𝑤   =
𝑥(𝑗) − 𝑥(𝑖)

𝑗 − 𝑖
   𝑗 > 𝑖. 

This approach of measuring edge weight helps to record 
sudden changes in EEG signals for the duration of seizure 
activity. It helps to recognize fluctuations in EEG signals. 
Mohammadpoory et al. [52] also used WVG with the edge 
weight given by 

𝑤 =
tan

𝑥 − 𝑥

𝑖 − 𝑗
, 𝑖 < 𝑗 𝑖𝑓 𝑒 ∈ 𝐸

     0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Cai et al. [53] also used the WVG from the theta band 
for characterizing spontaneous activity in the AD and 
control groups. 

In contrast to sparsifying graph edges, Wang et al. [54] 
proposed the notion of a Limited Penetrable Visibility 
Graph (LPVG), which adds more edges than VG does. The 
notion was based on the assumption that VGs cannot detect 
the spatial location of inverse bifurcation in a chaotic 
dynamical system. 

5) Limited penetrable visibility graph 
An LPVG is a generalization of a VG in which two 

nodes are connected if and only if 

𝑥  <  𝑥  +
𝑛 − (𝑚 + 𝑗)

𝑛 − 𝑚
(𝑥 − 𝑥 ) ∀  𝑗 ∈ ℤ ,

𝑗 <  𝑛 − 𝑚  

An edge can be formed between two temporal signal 
time points even if the maximum number of predefined 
bars blocks their visibility. 

Gao et al. [55] generalized the LPHVG to a multiplex 
limited penetrable horizontal visibility graph. It first 
transforms the time series 𝑥 = [𝑥 , 𝑥 , … , 𝑥 ] into a coarse 

time series {𝑦 : 𝑗 = 1, 2, … , } by 

𝑦 =
1

𝑠
 𝑥

( )

 1 ≤  𝑗 ≤
𝑁

𝑠
 

where 𝑠 is the scale factor. 
Gao et al. [56] generalizes the concept of VG to time-

frequency domain representation for epileptiform 
classification. First, the EEG signal was transformed into 
a time-frequency representation by an adaptive optimal 
kernel, and a VG was formed before extracting features 
and sending them to the classifier. This time-frequency 
representation enables the mapping of nonstationary 
signals to the time-frequency plane with a diagnostic 
energy distribution. Supriya et al. [57] formed WVG from 
Fourier transformed series to analyse sleep stage 
classification. 

Samanta et al. [58] incorporated multichannel EEG 
signals and created a WVG for each channel. Then, 
another graph was created by considering each channel as 
nodes, and edge connectivity was measured based on the 
correlation between the CCs of each VG. 

A similar concept was used in a previous paper [59]. For 

multichannel EEG signals 𝑥 ,  and 𝛼 =  1, 2, … , 𝑀, 

𝑀 is the number of channels, and 𝑁 is the length of each 
EEG signal. First, the LPVG is created for each channel 
separately, which is denoted by {𝐴 } . Then, coherence 
between a pair of EEG channels was measured by 𝑤 =

∑ ∑ ∑ ,  

∑ ∑
,∑ ,  

, where 𝛿 is Kronecker’s delta and 𝑎  

is the edge between nodes 𝑖  and 𝑗  of the LPHVG of 

channel 𝛼 . Here, 𝑤 ∈ , 1 , where 𝑤  close to  

indicates that the edge is unique in each channel, and 𝑤 =
1 means that 𝑀 channels are identical. 

Based on the degree distribution of the LPHVG for each 
layer, the interconnection between pairs of channels is 
calculated as 

𝐼 , = 𝑃 𝐾 , 𝐾 log
𝑃 𝐾 , 𝐾

𝑃(𝐾 )𝑃(𝐾 )
 

where 𝑃 𝐾 , 𝐾 = ,  and 𝑁 ,  is the number of 

nodes with degree 𝐾  in channel 𝛼. 
This matrix 𝐼 ,  gives the brain network from which 

graph statistics were computed to classify EEG signals. 

B. Spatial Representation 

Structurally, the graph representation has been the same 
for multiple electrode EEG signal analysis. Almost all 
existing EEG signal paradigms use different brain regions 
(electrode/channel positions) as the nodes of the graph and 
the relationships between the signals from these regions as 
the edges of the graph. However, the number of electrodes 
from which the signals are extracted is not uniform; some 
use random numbers of electrodes, and some use random 
numbers based on prior knowledge. 

Incorporating signals from all possible electrodes is a 
challenging machine learning task because of its high 
complexity. To reduce the complexity, many authors have 
used different approaches involving sparsifying 
techniques. Therefore, in this section, the article will 
briefly discuss these techniques, which are commonly 
used. 

Lin et al. [60] introduced the concept of edge weight 
based on a two-dimensional vector representation of 
electrodes given by 

𝑊  =  
𝑑 = 𝐶 , − 𝐶 ,

𝑑 = 𝐶 , − 𝐶 ,

 

where 𝐶 , , 𝐶 ,  and 𝐶 , , 𝐶 ,  are the coordinates of 
electrodes 𝑥  and 𝑦 , respectively. The concept was 
generalized by [61–63] 3D coordinates of electrodes, 
where the Euclidean distance between the electrodes was 
considered to be the weight of the graph edge. As the 
human head has a manifold-like structure, Wagh et al. [64] 
and Jia et al. [65] incorporated the geodesic distance 
between two electrodes given by 

𝑤 = cos
𝑥 𝑦 + 𝑥 𝑦 + 𝑧 𝑧

𝑟
  

where (𝑥 , 𝑥 , 𝑥 )  and (𝑦 , 𝑦 , 𝑦 )  are the Cartesian 
coordinates of the electrodes and is the edge weight. 

Tang et al. [66] generalized and computed edge weights 
by applying a threshold on a Gaussian kernel to the 
Euclidean distance between two electrodes, i.e., 

𝑤 =
𝑒𝑥𝑝 −

𝑑𝑖𝑠𝑡(𝑥, 𝑦)

𝜎
    𝑖𝑓    𝑑𝑖𝑠𝑡(𝑥, 𝑦) ≤ 𝜅 

       0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝜎 is the standard deviation of the distances and 𝜅 is 
the threshold. 

Based on the assumption that the strength of 
connections between brain regions attenuates as an inverse 
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square function of physical distance, Zhong et al. [67] and 
Cai et al. [68] generalized the edge weight of a graph to 

𝑊  =  𝑚𝑖𝑛 1,
𝛿

𝑞
 

where 𝛿 > 0 denotes the calibration constant and 𝑞  is 
the physical distance between channels 𝑥 and 𝑦. 

Zhang et al. [69] generalized the distance-based graph 
in the following three ways: 

 N-Graph: 
First, it considers the natural neighboring electrodes 

from brain regions (up, down, left, right, upleft, upright, 
downleft and downright) as the set of local connectivity 𝐸  
of the node 𝑣. Then, the edge weight is given by 

𝑤 =
1   𝑖𝑓 𝑥, 𝑦 ∈ 𝐸

   0                  𝑒𝑙𝑠𝑒
 

This equation gives the connection between nodes 𝑥 
and 𝑦. 

 D-Graph: 
In this case, the graph topology is exactly the same as 

that of the N-graph topology but with weighted edge 
connectivity 

𝑤 =

⎩
⎪
⎨

⎪
⎧

1

𝑑
                       𝑖𝑓 𝑑 < 𝐸(𝐿)

 0                          𝑖𝑓 𝑑 ≥ 𝐸(𝐿)

1

𝐸 𝑑 : 𝑑 < 𝐸(𝐿), 𝑞 ∈ [1,2, … 𝑛]
 𝑖𝑓 𝑥 = 𝑦

 

 S-Graph: 
It is obtained by slight modification of the D-Graph 

edge weight between nodes 𝑥 and 𝑦 as follows: 

𝑤 =

⎩
⎪
⎨

⎪
⎧

1

𝑑
                       𝑖𝑓 𝑑 < 𝐸(𝐿)

 0                          𝑖𝑓 𝑑 ≥ 𝐸(𝐿)

1

𝑚𝑖𝑛 𝑑 : 𝑞 ∈ [1,2, … 𝑛]
 𝑖𝑓 𝑥 = 𝑦

 

C. Functional Representation 

The functional representation of a graph is based on the 
functional connectivity of the brain. The functional 
connectivity in EEG signals indicates several measures of 
how electrical activity in one brain region differs from 
electrical activity in another brain region. Some familiar 
functional graph representations are discussed below. 

1) Correlation-based graph 
For the signals 𝑥(𝑡) and y(t) from two electrodes 𝑥 and 

𝑦 at time 𝑡, the edge weight of the graph is given by 

𝑤 =
∑ 𝑥(𝑡) − �̅�(𝑡) 𝑦(𝑡) − 𝑦(𝑡)

∑ 𝑥(𝑡) − �̅�(𝑡) ∑ 𝑦(𝑡) − 𝑦(𝑡)

  

The absolute value is taken here to make the graph 
undirected so that the weights from 𝑥  to 𝑦  and 𝑦  to 𝑥 . 
Zhong et al. [68] also used correlation coefficients as edge 

weights. Lun et al. [70] generalized correlation-based edge 
to 

𝑤 =
     𝑟            𝑖𝑓   𝑥 ≠ 𝑦

𝑟 − 1     𝑖𝑓 𝑥 = 𝑦
 

where 𝑟  is the correlation coefficient between 𝑥 and 𝑦. 
2) Phase locking value-based graph 
The proposed approach is sensitive to artifacts. To 

minimize the effect of artefacts, a PLV-based approach 
was introduced [71–74]. 

The edge weight of the graph based on the PLV is given 
by 

𝑤 =
1

𝑇
𝑒

( ) ( )  

where 𝜙 (𝑡)  is the instantaneous phase of signal 𝑥(𝑡) 
obtained from the Hilbert transform. It quantifies the 
consistency of phase differences between signals. 

Klepl et al. [71] also mentioned the weighted PLV 

𝑤 =
1

𝑇
 

sin 𝜙 (𝑡) − 𝜙 (𝑡)

sin 𝜙 (𝑡) − 𝜙 (𝑡)
 

which removes the effect of amplitude and volume 
conduction by maximally weighting the ±90 degree phase 
differences and helps to remove uniformly driven 
differences. Additionally, Samanta et al. [58] mentioned 
that the relative PLV given by 

𝑤 =
1

𝑇
𝑒 ( )  

where 𝜙 (𝑡) is the relative phase between EEG signals 
from electrodes 𝑥 and 𝑦, 𝑁 is the number of sample points 

and  is the sampling frequency. 

3) Phase lag index-based graph 
The phase and amplitude of an EEG signal at time “t” 

can be calculated from the analytic representation 

𝑧(𝑡) = 𝑥(𝑡) + 𝑥(𝑡) 

where 𝑥(𝑡)  is the Hilbert transform of 𝑥(𝑡) . Then, the 
phase and amplitude can be defined as 

𝜙(𝑡) = tan
𝑥(𝑡)

𝑥(𝑡)
 

and 

𝑎𝑚𝑝(𝑡)  = 𝑥(𝑡) + 𝑥(𝑡)  

Then, the edge weight based on the phase lag index 
(PLI) is given by 

𝑤 =
1

𝑇
𝑠𝑖𝑔𝑛 sin 𝜙 (𝑡) − 𝜙 (𝑡)  

where 𝜙 (𝑡) is the phase of the signal from electrode 𝑥. 
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The concept of a PLI-based graph was introduced [57] 
using the cross-spectrum density is given by 

𝑤 =
∑ 𝐼𝑚𝑔 𝑆 ,  𝑠𝑖𝑔𝑛 (𝐼𝑚𝑔 𝑆 ,

∑ 𝐼𝑚𝑔 𝑆 ,  
 

where  𝐼𝑚𝑔 𝑆 ,  is the imaginary component of the 
cross-spectrum 𝑆 ,  of two signals from two electrodes 𝑥 
and 𝑦  at time 𝑡 . Liu et al. [75] discussed the weighted 
phase lag index between the cross-spectra of two signals. 

Hasanzadeh et al. [76] used the concept of phase 
transfer entropy to quantify edge weights in brain network 
graphs. 

4) Coherance-based graph 
The weight edge for the signals from two electrodes 𝑥 

and 𝑦 is given by 

𝑤 =
𝑆 (𝑓)

𝑆 (𝑓)𝑆 (𝑓)
 

where 𝑆 (𝑓) is the cross-spectral density and 𝑆 (𝑓) is 
the power spectral density at frequency 𝑓. The coherence 
within the frequency band is calculated as the mean. 

5) Imaginary coherence-based graph 
The weight matrix is 

𝑤 =
𝐼𝑚𝑔 𝑆 (𝑓)

𝑆 (𝑓) 𝑆 (𝑓)
  

where 𝐼𝑚𝑔  is the imaginary component. Similar to the 
previous approach, the frequency within the band is the 
mean. 

It measures phase consistency exactly as the coherence-
based graph and describes the volume conduction effect. 
This is the effect of recording electrical activities at a 
distance from the source generator. 

6) Partial directed coherence-based graph 
It is a frequency domain-based analysis method for 

multichannel EEG signals, and it is suitable for 
information transformation between multichannel EEG 
signals [77]. The p-th autoregression 

𝑥 (𝑛) = 𝑎 𝑥 (𝑛 − 𝑖) + 𝑒 (𝑛) 

where 𝑖 and 𝑑  represent channels, 𝑎 } is the coefficient 
from the i-th to the j-th channel, 𝑒 is the deviation, and 
𝑥 (𝑛) is the state value of the variable at time 𝑛 and is used 
to represent each EEG signal. Then, 

𝐴 (𝑓) =
1 − ∑ 𝑎 (𝑟)𝑒    𝑖𝑓 𝑖 = 𝑗

− ∑ 𝑎 (𝑟)𝑒    𝑖𝑓 𝑖 ≠ 𝑗
  

where 𝑟 is the order, 𝑓  is the frequency, and the partial 
directed coherence is defined as 

𝑃 (𝑓) =
𝐴 (𝑓)

𝑎 (𝑓)𝑎 (𝑓)

 

𝐻 is the conjugate transpose. 

7) Amplitude envelope correlation-based graph 
The graph based on the amplitude envelope correlation 

has an edge weight 

𝑤 =
∑ 𝜙 (𝑡) − 𝜙 (𝑡) 𝜙 (𝑡) − 𝜙 (𝑡)

∑ 𝜙 (𝑡) − 𝜙 (𝑡) ∑ 𝜙 (𝑡) − 𝜙 (𝑡)

 

This quantifies the coupling based on the amplitude of 
signals. 

8) Mutual information-based graph 
The mutual information-based [71] graph has an edge 

weight 

𝑤 = Σ ,  𝑃 log
𝑃 𝑥 , 𝑦

𝑃 (𝑥 )𝑃 𝑦
  

where 𝑃  is a joint probability distribution and 𝑃  is a 
marginal probability distribution. It quantifies the amount 
of known information about a second signal by observing 
the first signal. 

9) Lagged linear coherence-based graph 
The lagged linear coherence-based graph [78] has an 

edge weight related to the value given by 

𝑤 =
[𝐼𝑚𝑔 𝐶𝑜𝑣(𝑥, 𝑦)]

𝑉𝑎𝑟(𝑥)𝑉𝑎𝑟(𝑦) − [𝑅𝑒 𝐶𝑜𝑣(𝑥, 𝑦)]
 

It provides a measure of true physiological connectivity 
not affected by volume conduction and low spatial 
resolution. 

10) Attention-based graph 
The learnable attention-based edge weight of the 

graph [79] is given by 

𝑤 =
𝑒𝑥𝑝 (𝑅𝑒𝐿𝑈 𝜔  𝐹  − 𝐹

∑ 𝑒𝑥𝑝 (𝑅𝑒𝐿𝑈 𝜔  𝐹  −  𝐹
 

where 𝐹  is the input feature of a node and 𝜔 is a learnable 
vector that is updated by the following loss function 

∑ 𝐹 − 𝐹  𝑤  , + 𝜆 |𝑊| .  Here, a larger 

𝐹 − 𝐹  implies a smaller 𝑤 . 

The idea of generating such a graph is due to limited 
understanding of the brain. 𝜆  in the above expression 
controls the sparsity of the brain network graph. 

Li et al. [80] used the same learnable attention edge 
weight but with different activation functions tan ℎ. 

11) Neural network-based graph 
The edge weight of the GNN-based graph [81] is 

defined as 

𝑤 = exp
𝑒𝑥𝑝 𝜖 ∗ 𝑃 − 1

𝜎
  

where 𝜖, 𝜎  are hyperparameters used to control the 
strength and 𝑃  is the connection probability between 
channels 𝑥 and 𝑦 given by the GNN. 

Fig. 2 comprises three images that depict different 
aspects of network graphs. The first image shows the brain 
locations where electrodes are systematically placed to 
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collect brain signals. The second image displays a spatio-
functional network graph with nodes representing a 
subsample of the electrodes and edges representing 
physical distances and/or functional relationships between 
them. The colors of the edges indicate the strength of 
connectivity among the nodes. The third image represents 
the spatiotemporal graph of brain networks, which 

captures how the network evolves over time. It is 
challenging to incorporate brain signals from all channels 
in EEG data, so researchers select a sample of the best 
representative channels for a specific task and create 
multiple graphs. However, single graph creation based on 
labels is a laborious task. 

 

 
Fig. 2. (Left): Electrode placement on the head based on the international 10-20 system. (Middle): Functional graph considering only eight electrodes 

as the nodes of the graph. (Right): spatiotemporal graph as the stack of multiple spatiotemporal graphs. 

Based on the papers discussed in this section, Fig. 3 
gives the detailed classification of graph representation 
methods for EEG signal analysis. 
 

 
Fig. 3. Graph representation approaches for EEG signals. 

From close observation of the different types of graphs, 
graph representation techniques are summarized in Fig. 3, 
to analyse and visualize brain connectivity networks. 

In this section, we provide an overview of the different 
approaches that can be used to represent EGG signals in 
network graphs. These methods may vary depending on 
the problem being addressed, the metadata available in the 
data, and the hardware dependencies. In the next section, 
we discuss several potential techniques for processing 
graph representations of EEG signals using neural 
networks. We have conducted a comparative analysis of 
various existing methods, highlighting their advantages 
and limitations. To assist newcomers to this field, we have 

included the methods, datasets, and code materials used in 
some existing studies. 

IV. GRAPH NEURAL NETWORKS 

Graph Neural Networks (GNNs) are a category of 
neural network that can learn representations of nodes and 
edges in a graph and can use this information to perform 
various tasks on the graph, such as node classification, link 
prediction, and graph classification. Basically, GNNs 
contain two major steps, namely, aggregation and 
updating, which assemble to form a message passing step 
in graphs. Graph Convolutional Networks (GCNs) are a 
specific type of GNN that are designed for graphs with a 
regular structure, such as grids or lattices. GCNs use 
convolutional operations, similar to those used in image 
processing, to perform message passing between nodes in 
a graph. This allows GCNs to learn hierarchical 
representations of the graph structure, which can be used 
for various tasks, such as node classification and link 
prediction. There are abundant GNN variants because of 
their widespread applicability, and here, we included 
several methods that are commonly used for EEG signal 
analysis. 

Mathematically, for a hidden representation in the 𝑘  
layer, ℎ  for each node 𝑢 ∈  𝑉, a new embedding ℎ  in 
the (𝑘 + 1)  layer can be obtained as 

ℎ = 𝑓 ℎ , 𝑓  ({ℎ , ∀ 𝑣 ∈  𝒩(𝑢)})

= 𝑓 ℎ , 𝑚𝒩( )   

where 𝑓  and 𝑓  are arbitrary differentiable 
functions and 𝑚𝒩( ) = 𝑓  ({ℎ , ∀ 𝑣 ∈  𝒩(𝑢)}). 

The choice of 𝑓  and 𝑓_𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒  provides the 
different variants of GNNs. The basic message passing 
through the GNN at the node level is 

Journal of Advances in Information Technology, Vol. 15, No. 10, 2024

1096



 

𝑚𝒩( ) = 𝑓  ({ℎ , ∀ 𝑣 ∈  𝒩(𝑢)}) = ℎ

∈𝒩( )

 

and 

ℎ = 𝑓 ℎ , 𝑚𝒩( ) = 𝜎(𝑊  ℎ + 𝑊𝒩( )𝑚𝒩( ) 

where 𝜎 is nonlinear, such as ReLU, and 𝑊  and 𝑊
𝒩( )

 

are trainable parameters. 
Additionally, graph-level message passing can be 

written as 

𝐻 = 𝜎(𝐴𝐻 𝑊 + 𝐻 𝑊 )  

where 𝐻 ∈ ℝ| |×  is the node representation at layer 𝑘 
of the entire graph, 𝐴 is the adjacency matrix and 𝑊 , 𝑊  
are the trainable parameters. 

Another variant is 

𝑚𝒩( ) = 𝑓  ({ℎ , ∀ 𝑣 ∈  𝒩(𝑢)}) ∪ {𝑢}} )  

which excludes the explicit update step, and the matrix-
level expression is 

𝐻 = 𝜎( (𝐴 + 𝐼)𝐻 𝑊 ) 

There are different variants of GNNs based on the 
aggregation function 𝑓 , some of which are as 
follows: 

 GraphSAGE [59] uses the aggregation function 
that normalizes the aggregation function based on 
the connectivity of nodes. 

𝑚𝒩( ) =
ℎ

|𝒩(𝑢)|
∈𝒩( )

 

 The graph convolutional network (GCN)[60] is a 
symmetric normalization function; hence, the 
updated node feature on the (𝑘 + 1)  layer is 

ℎ  = 𝜎 𝑊
ℎ

|𝒩(𝑢)||𝒩(𝑣)|
∈𝒩( )

 

 The aggregation function of the graph attention 
network [82, 83] 

𝑚𝒩( ) = 𝜎 𝑊 𝛼 , ℎ

∈𝒩( )

 

where 𝛼 , =
 ( 𝑊ℎ |𝑊ℎ )  

∑  ( 𝑊ℎ |𝑊ℎ )
∈𝒩( )

, 𝑎  is the 

trainable attention vector and 𝑊 is the trainable parameter. 
 A graph isomorphism network has used the 

following aggregation function [83, 84]: 

ℎ = 𝑀𝐿𝑃 (1 + 𝜖 ). ℎ + ℎ

∈𝒩( )

 

where 𝑀𝐿𝑃  is a multilayer perceptron and 𝜖  is a 
hyperparameter. 

The methods discussed above are all static graphs, but 
the EEG signal is a temporal signal. Thus, to incorporate 

the temporal dimension, some authors have attempted 
dynamic graph convolution [85, 86] and temporal graph 
convolutions [87]. 

V. EEG SIGNAL ANALYSIS METHODS BASED ON 

GRAPHS 

The fundamental aspect of machine learning and deep 
learning pipelines is the representation of data as vectors 
or tensors. Real numbers are typically used for this 
purpose, and classical machine learning and deep learning 
approaches rely on Euclidean geometry for data 
processing. This Euclidean approach includes frameworks 
such as ANNs, CNNs, and RNNs. However, due to the 
irregular shape of the brain and the nonuniform 
distribution of data generated by EEG electrodes, non-
Euclidean methods are considered better for EEG signal 
analysis. As a result, this survey paper focuses only on 
non-Euclidean methods for EEG signal processing using 
neural networks. We broadly categorized various EEG 
signal processing techniques and illustrated them in Fig. 4. 
In this section, we described some data-driven approaches 
proposed in the past and the datasets they used for specific 
purposes. The details of the datasets are described in 
Section VI. 

 

 
Fig. 4. Structure of the EEG signal analysis methods. 

Over time, various handcrafted and automated methods 
have been proposed for EEG signal analysis. This paper 
focuses on data-driven automated methods that utilize 
neural network architectures for specific tasks. In previous 
work, machine learning methods such as linear SVM, 
LDA, logistic regression, and KNN have been utilized for 
EEG signal classification, as demonstrated in previous 
studies [88, 89]. However, with the rise of deep learning, 
several deep neural architectures have been introduced for 
EEG signal analysis for diverse applications. For instance, 
in Refs. [77, 88, 90], deep graph convolutional networks 
(GCNs) were utilized for fatigue driving experiments, 
where the authors proposed a driving fatigue detection 
dataset and used a Partial Directed Coherence Graph 
Convolutional Neural Network (PDC-GCNN) to study 
mental fatigue. In another study [66], a GCN was used to 
decode EEG Motor Imagery (MI) signals. To evaluate the 
effectiveness and robustness of the proposed GCN, two 
benchmark datasets, namely, the PhysioNet dataset 
(available at https://physionet.org/data/) and the High 
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Gamma dataset (available at 
https://www.bbci.de/competition/iv/), are utilized. 
Furthermore, in Ref. [91], a GCN was employed for EEG 
signal classification on two public datasets, Error-related 
Potentials (ErrP) (available at 
https://www.kaggle.com/c/inria-bci-challenge/) and Rapid 
Serial Visual Presentation (RSVP) (available at 
http://bci.med.tsinghua.edu.cn/download.htm). For 
abnormality detection in EEG signals, Lin et al. [60] 
proposed a GCN and validated their system on the Temple 
University Hospital EEG (TUH EEG). A GCN was used 
for Alzheimer’s disease classification on their own 
Alzheimer’s disease dataset. Using the CHB-MIT 
(available at https://physionet.org/content/chbmit/1.0.0/) 
dataset, Raeisi et al. [61] proposed a GCN with three GCN 
convolution layers, one global average pooling layer, and 
three Fully Connected (FC) layers for Band Energy and 
Hjorth. All of the discussed GNNs have similar structures, 
i.e., convolutions followed by flatten or global average 
pooling, and fully connected layers at the head of the 
neural network for EEG signal classification. 

GCNs are a popular choice for geometric behavior 
analysis of EEG signals. The hybrid form of GCNs with 
Convolutional Neural Networks (CNNs) and Recurrent 
Neural Networks (RNNs) has also been used. To 
effectively capture both the spatial and temporal behavior 
of EEG signals, some studies have proposed multistream 
neural network architectures. For instance, a two-stream 
neural network was introduced [92], where one branch 
employs a graph convolutional neural network for spatial 
feature extraction and the other branch uses a channelwise 
convolutional neural network for temporal feature 
understanding. The proposed model was evaluated on two 
public datasets, namely, the Stanford University dataset 
(SU DB) (available at 
https://purl.stanford.edu/bq914sc3730) and the Max 
Planck Institute dataset (MPI DB) (available at 
https://www.mpib-berlin.mpg.de/research-data/data-sets). 
In addition, Liu et al. [75] proposed the use of multiview 
spatial-temporal graph convolutional networks to extract 
spatial-temporal features on the ISRUC-S3 (available at 
https://sleeptight.isr.uc.pt/) and MASS-SS3 (available at 
http://massdb.herokuapp.com/en/) datasets. Furthermore, 
a dynamical graph convolutional neural network was 
proposed by Li et al. [93] to perform emotion recognition 
using multichannel EEG signals on the SJTU emotion 
EEG dataset (SEED) (available at 
https://bcmi.sjtu.edu.cn/home/seed/) and DREAMER 
(available at 
https://zenodo.org/record/546113#.ZEtoPHZBxD8) 
dataset. The hierarchical features of neural networks were 
leveraged by the GCN proposed in Awais et al. [94], while 
the study by Liu et al. [95] used EEG signals as a graph 
based on within-frequency and cross-frequency data. 
Additionally, regularized graph neural networks [58] and 
self-organized graph neural networks [76] have been used 
for EEG classification on the SEED and SEED-IV 
datasets. 

In addition to the previously mentioned studies, a recent 
study [81] explored the use of unsupervised graph 

convolutional networks for EEG signal analysis. The 
authors utilized an entropy-based dynamic graph 
embedding model to cluster the graphs. Raeisi et al. [62] 
proposed a self-supervised GCN for seizure detection and 
used the public Temple University Hospital EEG Seizure 
Corpus (TUSZ) v1.5.2 dataset (available at 
https://isip.piconepress.com/projects/tuh_eeg/) in their 
experiments. Neural attention is another widely used 
technique in deep learning that enables a neural network to 
selectively focus on specific parts of its input while making 
decisions or predictions. In the context of EEG signal 
classification, a previous Jia et al. [65] introduced a graph-
based convolutional recurrent attention model that 
explores EEG features across different subjects for motor 
imagery classification. This GCN network is designed to 
gather positioning information from EEG nodes, while the 
convolutional recurrent attention model learns EEG 
features from both spatial and temporal dimensions. 
Zhang et al. [96] proposed a graph attention network that 
incorporates an attention-based layer into a graph neural 
network to identify the brain regions (associated with 
individual electrodes) that are most critical for accurate 
classification. This study conducted the experiment on 
their own dataset. 

To conduct a comparative analysis of various 
approaches used for EEG analysis, we excluded methods 
based on a VG that rely on statistical features of the signal 
and use classical Euclidean-based techniques. Instead, we 
only considered the graph learning approach in Table II, 
along with its reported advantages and disadvantages from 
multiple sources. 

The comparative analysis performed in Table II clearly 
indicates that (A) there is a lack of guidelines for large 
datasets, (B) most of the recent studies carried out fluctuate 
over their accuracy results, and (C) they lack cross-subject 
EEG variations. 

For the empirical study, the performance of the VG 
approach is excluded because it is based only on single-
channel EEG signals. From the comparative study, we 
observe that GNNs for EEG signal analysis have used 
different EEG datasets according to various application 
areas. This clearly indicates that the performances of 
graph-based EEG signal analysis models are not 
consistent. The deviation is very high depending on the 
architectures and datasets. In addition, the proportions of 
different graphs in these works can be seen in Fig. 5. 

 
 

 
Fig. 5. Graphs involved in EEG signal analysis. 
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TABLE II. COMPARATIVE STUDY 

Proposed Methods Pros/Cons 
Method: Machine learning methods (Linear SVM, LDA, 
Logistic Regression, and KNN) [99] 
Dataset: EEG Dataset (n =18) 
Accuracy: 97.2% 
AUC Score: 0.90 

Pros: Proposed graph-to-signal transform method to quantify the strength of relationship with weighted 
functional connectivity of brain network. It preserves the Euclidean distance between the channels. 
Cons: Tested on only small-scale dataset. No specific guidelines to implement on large-scale dataset. 

Method: Directed differential connectivity graphs (dDCGs) 
using KNN [99] 
Dataset: Own dataset (n = 26+23) 
Accuracy: 92% 

Pros: Proposed a directed functional network for the classification of major depressive disorder patients. 
Found these patients have more random brain network in compared to normal person. 
Cons: Tested on only small-scale dataset. No specific guidelines to generalize it on large scale dataset. 

Method: GCNN [99] 
Dataset: Fatigue driving recognition dataset (n=600) 
Accuracy: 97.38% 

Pros: Combine classical deep network and GNN for fatigue driving detection. Created functional brain 
network based on singular value entropy and fractal dimension. GNN based on B-spline curve spatial 
convolution. 
Cons: Small dataset. No specific guidelines to generalize it on large scale dataset. Use of conventional 
Euclidean for feature extraction. 

Method: Partial directed coherence graph convolutional 
neural network (PDC-GCNN) [99] 
Dataset: Own dataset (n=600) 
Accuracy: 96.01% 

Pros: Implemented PDC for relationship between electrodes. Implemented GCNN for local electrode area 
information and connection information. 

Cons: Rare chance of model reproduction because of generalization ability.: Implemented PDC for 
relationship between electrodes. Implemented GCNN for local electrode area information and connection 
information. Cons: Rare chance of model reproduction because of generalization ability. 

Method: Correlation based GCN [99] 
Dataset: The PhysioNet Dataset (n=64 and accuracy: 
93.06%) and The High Gamma Dataset (n=44) Accuracy: 
96.24% 

Pros: Proposed a graph convolutional neural network model on Pearson’s correlation based graph for task 
classification. 
Cons: Tested on moderate datasets and model performance is decreasing as the sample size increasing. 

Method: GNN [99] 
Dataset: Error-related Potentials (ErrP) and Rapid Serial 
Visual Presentation (RSVP) Accuracies: 76.73% and 93.49% 

Pros: Implemented GNN based model for EEG signal classification. Helpful for electrodes selection to 
reduce computational cost. Implemented different strategies for edge formation in EEG graph. 
Cons: Models are tested on very small datasets, so lack generalization ability. Model performance decreases 
very fast as the sample size decreases. 

Method: EEG-GCNN [99] 
Dataset: Temple University Hospital EEG (TUH EEG) (n= 
1385) and Max Planck Institute Leipzig MindBrainBody 
(MPI LEMON) (n= 208) Accuracy: 0.85% 
https://github.com/ neerajwagh/eeg-gcnn 

Pros: GCN based on spatial and functional graph for neurological disease classification model. Incorporated 
large scale datasets 
Cons: Although it has incorporated local temporal dependencies through graph, it assumed signals are 
temporally independent. Implemented on two different dataset for normal and abnormal patients. 

Method: GCN [99] 
Dataset: Alzheimer’s disease dataset (own) (n=20+20) 
Accuracy: 91.996% 

Pros: Implemented GNN based model for EEG signal classification for Alzheimer’s Disease. Discussed 8 
different functional connectivity based graph. 
Cons: Small dataset Generalization ability Physical topology of brain regions 

Method: GCN [61] 
Dataset: CHB-MIT (n=18) 
Accuracy: 96.51% 

Pros: GCN for seizure classification. Features are combined to reduce the computational cost. 
Cons: Small dataset No specific guidelines to generalize it on large scale dataset. Details on computational 
cost 

Method: GCN+CNN [57] 
Dataset: Stanford University dataset (SU DB) (n=10, ) and 
Max-Planck Institute dataset (MPI DB) (n=24) 
Accuracies: 54.28 and 84.40% 

Pros: GCN+CNN with spatiotemporal graph and channelwise convolution to classification visual stimuli 
from EEG signals. 
Cons: Small datasets Use of CNN for feature extraction. Use of wPLI measure the functional connectivity 
between channel. 

Method: Multiview spatialtemporal GCN (MSTGCN) [75] 
Dataset: ISRUC-S3 (n=10) and MASS-SS3 (n=62) 
Accuracies: 82.10 and 89.5% 
 https://github.com/ziyujia/ MSTGCN 

Pros: GCN for Spatial feature extraction and temporal convolution for transition rule in different sleep stages 
and apply these for sleep stage classification. 
Cons: Adequate detail Moderate sample sizes Different graphs variants are discussed but physical 
interpretation is not sufficient. 

Method: Dynamic graph convolutional neural network [82] 
Dataset: SJTU emotion EEG dataset (SEED) (n=15) and 
DREAMER (n=23) 
Accuracies: 90.4 and 84.54% 

Pros: GCN to adaptively learn the intrinsic relationship among the EEG channels by training neural network 
and use it to learn more discriminative features for emotion recognition. 
Cons: The proposed method is implemented on comparatively small scale dataset. 

Method: GCN with hierarchical feature [95] 
Dataset: SJTU emotion EEG dataset (SEED) (n=15) and 
DREAMER (n=23) 
Accuracies: 94.24 and 89.32% 

Pros: Proposed a graph convolutional broad network for deeper information of graph structured EEG-data 
for emotion recognition. 
Cons: The model is not generalizable as it is tested on very small dataset. 

Method: GCN for diverse frequency of EEG Signal for 
person identification [70] 
Dataset: Multiple datasets and comparisons 
Accuracy: varies 

Pros: GCN for biometric identification using EEG collected from diverse set of task Address the issues on 
using univariate signal 
Cons: Usually, person identification requires multisessions of EEG signals but performance is tested on 
single session Model is unsure about large-scale dataset. 

Method: Regularized graph neural network [63] 
Dataset: SEED (n=15) and SEED-IV (n=15) 
Accuracies: 94.24% and 79.37% 
https://github.com/ zhongpeixiang/RGNN 

Pros: GCN for emotion recognition. For cross subject EEG variations it incorporated novel concept of 
regularizes: nodewise domain adversarial training (NodeDAT) and emotion-aware distribution learning 
(EmotionDL) 
Cons: Tested on only small scale dataset No specific guidelines to implement on large-scale dataset. 

Method: Unsupervised GCN [83] 
Dataset: CHB-MIT scalp EEG database (n=23) 
ROC-AUC Score: 97.1 F1 Score: 45.0 

Pros: Proposed a temporal graph convolutional network to incorporate temporal and structural information 
with only few parameters 
Cons: Method is implemented only on small temporal window (96 seconds) but real life data might be much 
lengthier. 

Method: Self-supervised graph neural networks [62] 
Dataset: Temple University Hospital EEG Seizure Corpus 
(TUSZ) v1.5.2 (n= 5,499) 
Accuracy: 74% 

Pros: GCN for seizure detection. Self-supervised pretraining predicts signals for the next time period for 
model performance improvement. Implemented on large dataset. Cons: Model perform low accuracy. Self-
supervised model for labelled data. Physical interpretation of the model is limited. 

Method: Graph-based Convolutional Recurrent Attention 
Model (G-CRAM) [65] 
Dataset: BCI Competition 
https://www.bbci.de/ competition/ and PhysioNet EEG 
https://physionet.org/content/?topic=eeg  
Accuracies: 74.71% and 60.11% 

Pros: GCN spatiotemporal graph attention for motor imagery classification New concept of recurrent 
attention is applied to value the most distinguishable time period. Cons: Tested on moderate datasets Model 
performance is average. Gave theoretical foundation to robustness to artifact but real implementation not 
provided. 

Method: Graph attention network [67] 
Dataset: Own dataset (n=8) 
ROC-AUC: 79.56 

Pros: Implemented GNN with attention mechanism for unsupervised seizure localization. Use graph for 
automatic detection of the brain region on localizing seizure onsets. 
 Cons: Lacks generalization ability as the model is tested on very small sample. Provided the experimental 
comparison on threshold for edge scarification but did not provide theoretical framework. 
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Understanding and implementing an EEG signal 
analysis system is a complex task for new researchers 
because the programmer first needs a strong foundation for 
the graph and its connectivity, a lack of labelled datasets 
and less availability of code materials. Second, appropriate 
features and evaluation metrics are needed. The field of 
EEG signal analysis encompasses a diverse array of 
performance metrics, each tailored to specific applications 
such as regression, classification, detection, and 
segmentation. In this regard, Botchkarev’s [97] work 
serves as a comprehensive reference, providing valuable 
insights applicable across various domains. 

Moreover, the realm of feature selection in EEG signal 
analysis remains a fertile ground for research, 
characterized by a lack of universal guidelines or 
established rules of thumb. While efforts have been made 
in this area, researchers are encouraged to explore and 
develop their own approaches to feature engineering, as in 
the work of Naser et al. [98]. This presents an exciting 
opportunity for innovative contributions and 
advancements in the field. 

Therefore, in this paper, we tried to provide a list of 
publicly available codes for EEG signal analysis based on 
GNNs. Table II lists some articles, the datasets they have 
experimented with and GitHub repository links for 
reproduction. 

VI. DATASETS 

In this section, we provide a brief summary of 
commonly used EEG datasets generated by GNNs. The 
reference indicates the paper that was implemented on 
these datasets. 

 MPI LEMON EEG Dataset [99] 
The MPI LEMON dataset is a collection of EEG 

recordings from 216 healthy participants from Leipzig, 
Germany, consisting of two age groups: young adults 
(aged 20–35) and older adults (aged 59–77). The EEG 
recordings were taken using 62 electrodes in the 10-10 
sensor configuration with a sampling rate of 2,500 Hz. 
Each participant completed 16 trials, 8 with their eyes 
closed and 8 with their eyes open, each lasting 60 seconds 

 THE Datasets [60] 
The TUH EEG dataset is a large collection of more than 

30,000 EEG recordings collected at Temple University 
Hospital (TUH) since 2002. These recordings vary in 
terms of patient ages, diagnoses, medications, channel 
configurations, and sampling frequencies. However, a 
subset of the recordings in TUH EEG have been expertly 
annotated as either “normal” or “abnormal” and have been 
released as a derived dataset called the TUH EEG 
Abnormal Corpus (TUAB). 

 MASS-SS3 [75] 
The Montreal Archive of Sleep Studies (MASS) is a 

publicly available database that includes sleep data from 
more than 2,000 participants. SS3, a subset of the MASS 
dataset, comprises PSG recordings from 62 healthy 
participants (28 males and 34 females), each of which 
includes 20 EEG channels, 2 EOG channels, 3 EMG 
channels, and 1 ECG channel, all of which are standard 
PSG signals. The dataset also provides sleep stage 

classifications for each recording, based on the AASM 
standard, which defines specific criteria for each of the five 
sleep stages (W, N1, N2, N3, and REM) based on observed 
brain waves, eye movements, and muscle tone. This 
standardization allows for consistent comparisons and 
analysis of PSG recordings. The dataset can be used by 
researchers and clinicians to create and test automated 
sleep stage classification algorithms, examine the 
physiological characteristics of sleep stages, and 
investigate the relationship between sleep and various 
health outcomes. 

 CHB-MIT Dataset [100] 
The Children’s Hospital Boston (CHB) and the 

Massachusetts Institute of Technology (MIT) created the 
CHB-MIT Scalp EEG Database, which is a compilation of 
EEG recordings from 23 individuals experiencing 
uncontrollable seizures. The EEG recordings were 
acquired using scalp electrodes based on the international 
10–20 system, a standardized approach for electrode 
placement in EEG recordings. The dataset consists of 
extended EEG recordings sampled at 256 Hz, which are 
marked with the beginning and end times of seizure 
activity. The dataset is publicly accessible and widely 
utilized for scientific investigations involving the 
prediction and identification of seizures. 

 The PhysioNet Dataset [70] 
The EEG Motor Movement/Imagery Dataset is a 

collection of more than 1,500 EEG records from 109 
subjects. The dataset includes 64 electrodes based on the 
international 10–10 system, and each subject performed 84 
trials, including 3 runs, 7 trials per run, and 4 tasks per trial 
related to motor imagery. The tasks are identified as L, R, 
B, and F, which involve imagining the movement of the 
left fist, right fist, both fists, and both feet, respectively. 
The EEG signals were sampled at a rate of 160 Hz, and 
each signal had a duration of 4 s, which translates to 640 
time points per trial. This dataset can be useful for 
researchers studying motor imagery and its impact on 
brain activity and for developing algorithms and 
techniques for analysing EEG signals. 

 The PhysioNet Dataset [70] 
The EEG Motor Movement/Imagery Dataset is a 

collection of more than 1,500 EEG records from 109 
subjects. The dataset includes 64 electrodes based on the 
international 10–10 system, and each subject performed 84 
trials, including 3 runs, 7 trials per run, and 4 tasks per trial 
related to motor imagery. The tasks are identified as L, R, 
B, and F, which involve imagining the movement of the 
left fist, right fist, both fists, and both feet, respectively. 
The EEG signals were sampled at a rate of 160 Hz, and 
each signal had a duration of 4 s, which translates to 640 
time points per trial. This dataset can be useful for 
researchers studying motor imagery and its impact on 
brain activity and for developing algorithms and 
techniques for analysing EEG signals. 

 The High Gamma Dataset [101] 
The High Gamma Dataset, gathered from 14 

participants, consists of data from four EEG tasks that 
pertain to movement and rest, specifically involving the 
left hand, right hand, both feet, and rest. The EEG signals 
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were captured using 44 electrodes and had a frequency 
range between 0–125 Hz. 

 TUSZ v1.5.2 [66] 
The Temple University Hospital EEG Seizure Corpus 

(TUSZ) v1.5.2 is the largest publicly available database of 
EEG seizures, containing 5,612 EEG recordings, including 
3,050 clinically annotated seizures representing eight 
different seizure types. The corpus includes recordings 
from both pediatric and adult patients with epilepsy, and 
the EEG activity was recorded using various EEG systems 
and sampling rates. The TUSZ corpus is publicly available 
for download from the International Epilepsy 
Electrophysiology Portal (IEEG Portal) and has been used 
in numerous studies aimed at developing new methods for 
seizure detection and classification and investigating the 
neural mechanisms underlying seizures. 

 RSVP dataset [102] 
The Rapid Serial Visual Presentation (RSVP) dataset is 

a collection of EEG recordings from 10 healthy subjects 
that were collected to develop a Brain-Computer Interface 
(BCI) system based on the Rapid Serial Visual 
Presentation (RSVP) paradigm. The dataset contains a 
total of 41,400 trials of 16-channel EEG data, which were 
recorded using a g.USBamp biosignal amplifier with 
active electrodes. The trials were recorded during RSVP 
keyboard operations and were associated with one of four 
labels: emotion elicitation, resting-state, or motor 
imagery/execution tasks. Each trial has 128 time samples, 
and the dataset is publicly available for download through 
a repository. 

 ErrP dataset [103] 
The ErrP dataset is a collection of EEG recordings from 

16 healthy subjects that are aimed at detecting error-related 
potentials (ErrP) to improve the accuracy of P300-based 
Brain-Computer Interfaces (BCIs). The dataset was 
recorded during an offline P300 spelling task, where each 
subject performed 340 trials using a fast mode (each item 
was flashed 4 times) or a slow mode (each item was 
flashed 8 times). The goal was to detect the ErrP when 
there was an inconsistency between the subject’s intention 
and the BCI system. The EEG data were recorded from 56 
channels and downsampled to a rate of 200 Hz. The dataset 
is available for download through a publicly accessible 
repository and has been used to develop and evaluate 
various methods for detecting ErrP, which can be used to 
improve the accuracy of P300-based BCI spellers. 

 The Stanford University EEG dataset [104] 
The Stanford University EEG dataset includes a total of 

12 EEG recordings from 12 patients with epilepsy that 
were recorded during a 10-minute period while the patient 
was experiencing a seizure. Each recording in the dataset 
consists of 23 channels of EEG data sampled at 500 Hz. 
The dataset is publicly available for research purposes and 
includes information on the type and location of the 
seizure. It has been widely used in studies related to the 
diagnosis and treatment of epilepsy, as well as for 
developing algorithms for automatic seizure detection and 
exploring the neural mechanisms underlying seizures. 

VII. CHALLENGES AND FUTURE RESEARCH SCOPES 

EEG signal analysis using GNNs has many constraints 
and has much open space. Some of the most prominent 
challenges and future research directions are discussed 
here. 

EEG signals are temporal and depend on the position of 
the electrode that captures brain activity. Typically, 64 or 
more electrodes are used to capture these signals [105]. 
However, in practical applications, only signals from a few 
electrodes are utilized in experiments for simplification. It 
is a challenging task to identify the most influential EEG 
signal for accurate analysis. 

Graph learning is a widely interdisciplinary research 
field with numerous applications, such as Recommender 
System [106, 107], Neutrino Detection [108], Large 
Hadron Collider (LHC) [109], Fake News Detection [110], 
Drug Repurposing [111], Particle Physics and 
Chemistry [108], Computer Vision and 
Graphics [107,  112], Robotics and Autonomous 
Driving  [113], Medicine [60], and Drug Design [114]. 
However, each application requires specific domain 
knowledge outside the realm of graph learning, and 
interpreting the graph data structure for these diverse fields 
of study can be challenging. As a result, there may be a gap 
between programmers and domain experts when 
developing a system for EEG signal analysis. 

The original EEG signal cannot be processed directly 
using ML technology because of its high dimensionality. 
Therefore, several feature extraction methods, such as 
Time Frequency Distribution (TFD), Fourier Transform 
(FT), the Autoregressive Method (ARM), Eigenvector 
Methods (EMs), and Wavelet Transform (WT), have been 
proposed [115]. However, selecting the optimal feature 
extraction method for a specific problem can be a 
challenge. 

Various forms of Visibility Graphs (VGs) have been 
used for analysing short temporal signals in EEGs. VGs 
can map time series data to scale-free graphs, enabling the 
capture of long-term dependencies and chaotic 
properties  [38] However, applying VGs to multichannel 
EEG signals even for an average time signal can result in 
billions of nodes and edges for a single subject. Learning 
such colossal graphs poses significant challenges, such as 
bottlenecks and oversmoothing [116]. Therefore, reducing 
the size of VGs is an additional challenge to consider. 

Currently, dynamic graph classification remains an 
open problem due to scalability issues with large temporal 
graph datasets. While dynamic graph convolutional neural 
networks have been used for temporal data, most 
applications involve link prediction tasks involving graph 
snapshots [117, 118], dynamic link prediction [28, 119], 
and node classification [120, 121] in dynamic graphs. 
However, we are not aware of any successful applications 
of dynamic graph classification at this time. 

To extract features for deep learning, conventional 
methods involve reshaping data into vectors or matrices 
and performing principal component analysis, independent 
component analysis, and other similar techniques [122]. 
However, these methods do not preserve the original 
structure of the data. Currently, selecting attributes and 

Journal of Advances in Information Technology, Vol. 15, No. 10, 2024

1101



 

classifying signals are intricate tasks, particularly when 
dealing with EEG signals that are more complex than other 
medical signals and images. In fact, even expert clinicians 
can correctly identify only 50% of abnormal signals as 
abnormal [123]. Thus, generating EEG signals at the local 
level is exceptionally challenging. On the other hand, deep 
learning models are data-hungry and require large-scale 
datasets [124]. 

Interpreting EEG signals is a challenging task, and using 
graph ML and DL techniques requires significant effort to 
achieve successful results. Therefore, it is crucial to have 
references to guide the analysis of EEG signals using graph 
learning methods. Table II provides a list of publicly 
available repositories with codes for reproduction, but for 
new researchers entering the field of EEG signal analysis, 
this can still be a daunting challenge. 

VIII. CONCLUSION 

This paper explores the mathematical approaches of 
graph representation for EEG signal analysis. We conduct 
a comparative and empirical analysis of GNN methods 
based on EEG signals. This survey of graph representation 
in EEG signal analysis from 2012 revealed that most 
research was conducted on small datasets, and there were 
no specific guidelines for generalizing for larger datasets 
to adopt a data-driven approach. 

The survey also highlighted several challenges in the 
field, including the selection of the most important EEG 
signal for analysis and the extraction of appropriate 
features for graph learning. We concluded that domain 
knowledge and appropriate graph interpretation are 
essential for this research domain. Research on EEG signal 
analysis is in the early stage; hence, we identified several 
opportunities, such as the use of visibility graphs and 
dynamic graphs and the development of large labelled 
datasets for deep learning approaches. Visibility graphs 
offer an excellent way to represent temporal data in a 
scale-free manner, but our survey shows that they have 
only been used for single-channel EEG signals. The results 
using existing datasets can be improved in two different 
approaches: first, in graph representation, and second, in 
graph model training. Multichannel EEG involves the 
incorporation of a variety of information for EEG signal 
analysis. This approach is lacking for existing visibility 
graphs and dynamic graph representations. However, 
dealing with dynamic graphs is not cost efficient, so 
multichannel EEGs on visibility graphs may be one 
possible way to leverage more information. 

As the existing methods either address small datasets or 
large datasets with only a few distinct datasets, the latter 
can be improved by including EEG signals from multiple 
subjects. Therefore, incorporating multichannel EEG 
signals into VGs could be an exciting area for future 
research.  
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