

Static Software Watermarking Using

Graph-Reckoning: Piracy Control for Information

Systems

Sohail Sarwar
1
, Muhammad Safyan

2
, Zia Ul Qayyum

1
, Muddassir Iqbal

3
, Yasir

4
, and Farrukh Latif

5

1
 University of Gujrat, Pakistan

2
 GC University Lahore, Pakistan

3
 London South Bank University, England

4
 Iqra University

5
 Bahria University

Email: sohail.sarwar@seecs.edu.pk, m.safyan@gcul.edu.pk, ziaqayyum@uog.edu.pk, miqbal@lsbu.uk,

yasir@iqraisb.edu.pk, flatif@gmail.com

Abstract—Information Systems, as intellectual property,

ensures potential earning of businesses that have been

affected badly by software piracy. The impact of software

piracy can be languished through different techniques such

as obfuscation, birthmarks and watermarks etc. used to

counter pirated software. A watermarking approach has

been presented using data mining techniques. The

watermark generation exploits the program constructs (as

properties and their relations) in flow graphs. The

watermarks generated are embedded in methods for keeping

track of actual program ownership. The major advantage of

proposed technique is its improved degree for piracy

detection (at method level granularity). Also, the technique

presented is more resilient to major attacks such as additive,

distortive and removal attacks when compared with

prevalent watermarking techniques.

Index Terms—piracy, watermarking, graph mining,

resilience

I. INTRODUCTION

In this era of technical advancements, all aspects of

technology are observed to grow at a greater pace. Under

this revolutionary progress in software industry, threat of

software piracy is causing losses in billions of dollars

every year [1], [2]. In order to counter such losses,

software owners are striving hard for developing privacy

control techniques such as software watermarking,

software birthmarking, obfuscation, encryption and

tamper-proofing [3], [4]. However, focus of this work is to

devise a resilient software watermarking technique.

Software watermarking is the phenomenon of embedding

secret information called a “watermark” in the target

software for discouraging ownership theft of intellectual

property [3]. The watermark is extracted from the

suspected/pirated software to prove the software

ownership. Fingerprinting is specialized watermarking

Manuscript received May 6, 2019, revised September 26, 2019.

technique, in which information of software-user is

embedded into the software [5]. It helps to identify those

who propagate software piracy, in addition to proving

software ownership.

Software watermarking loomed here exploits data

mining techniques (especially graph mining) [6]. In order

to calculate the watermarks of each method and class, to

prove the ownership of that method or class, graph theory

as well as network science concepts have been employed

[7], [8]. Software watermarks are extracted from software

properties and elements of program methods and then

embedded into the software methods. Unlike using only

the method names for watermark, method information is

used to protect program methods through method elements

based watermark. The proposed technique works by

extracting the syntactic structure of program to compute

property value for each element and relation among those

elements. Graph theoretic properties such as clustering

coefficient have been used with property values to

compute watermarks based on method-elements. The data

then is transformed into graphs to identify if a

method/class has been copied through graph comparison.

Coupled class/method relation in the program is used for

the generation of program watermark. The watermarks of

incertitude code snippets have been extracted in order to

formulate the degree of resemblance among methods so

that similarity/dissimilarity may be asserted for

method/class.

The proposed technique is measured against major

watermarking attacks. The experiment results show that

proposed technique is resilient against additive,

subtractive, distortive and collusive attacks. Further,

evaluation of proposed technique is performed with

parameters of overhead, data-rate, and resilience.

Organization of paper is given below:

Section 2 provides a brief review of watermarking

techniques followed by proposed approach in section 3.

Section 4 furnishes conclusion and further potential

directions.

165© 2019 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 10, No. 4, November 2019

doi: 10.12720/jait.10.4.165-168

II. STATE OF THE ART LITERATURE

The preliminary concepts in watermarking techniques

as well as some effective watermarking techniques have

been discussed. Further, advantages of watermarking over

obfuscation are also discussed.

A. Software Watermarking

Software watermark is secret information that is

embedded into the distributed software (process

adding/extracting watermark is called as software

watermarking) [3]. It is a defensive and preventive

measure against software piracy [9]. The watermark in the

software is secret i.e. it should not be revealed by

anonymous person but can be extracted by the owner only.

There are two types of watermarking i.e. Static and

Dynamic watermarks.

B. Static Software Watermarking

Static watermark strategies embed the watermark W =

{w1, w2, w3,…. wn} in the information/or code [10] of

program P = {P1, P2, P3 …. Pn}. These types of

watermarks are embedded secretly in the software, mostly

as dead code. The watermark is extracted statically when it

is required from the code. The programs are not executed

to extract the watermark. The static watermarking is

further classified into data watermarking and code

watermarking [3].

C. Dynamic Software Watermarking

The watermark W = {w1, w2, w3,…. wn} is embedded

in the state of the program P = {P1, P2, P3 …. Pn}. These

types of watermarks require execution of program to

recognize the watermark [11]. Special inputs I = {I1, I2,

I3, …. In} are required so that the state of the watermark is

executed. When special set of inputs is provided the

program may produce special output, this type of dynamic

watermarks is called Easter Egg watermarks [3].

Sometimes special output is not produced instead

sequence of operation or data structure values, based on

special input is treated as dynamic watermarks.

D. Flow of Software Code

Flow-graph G = {G1, G2, G3, …. Gn} of the software

program P = {P1, P2, P3 …. Pn} have frequently been

used as preventive measure against piracy control. The

flow-graphs have been used in both static as well as

dynamic software watermarking. In static watermarking

methodology the flow-graph is used to embed watermark

[12], while in dynamic watermarking the control flow has

been used to compute the watermark [13]. In other than

watermarking the graph based techniques [14] have also

been frequently used for software birthmarking as well.

III. PROPOSED APPROACH

Software programs are composed of various program

methods and each method is composed of different

elements. The proposed technique based on static

watermarking uses Graph Reckoning; that identifies

intrinsic properties from program method (such as

variables, iterations, decisions and data) and relation

among the elements. The relation among the method

elements is hard to change and affects the output in

addition to effecting program performance. The relation

among the elements with their properties is transformed

into graph, where node is an element and edges represents

the relations.

Each of the nodes along with its properties alone is

inadequate to proffer substantiation in method piracy

control. Properties of all the methods in form of graph are

used to compute the watermark W = {w1, w2, w3,…. wn}

for program P = {P1, P2, P3 …. Pn}. These set of

watermarks are hint software origin. The elements and

their relations are identified in the form of nodes from the

method code. Two types of relations have been used in the

generation and hence computation of watermark for

method. Essential-relation represented with edge may be

in-relation to one node and out-relation with other node

based on the properties.

For example for a graph G with set of nodes N and

edges E is defined below.

G = {N, E}; N = {n1, n2, n3, …..nk};

E = {e1, e2, e3, ….em}

For any node i and j, there must be one

Essential-relation between them. ni → nj for i ≠ j

The looping constructs (or element) and relation among

method elements is given in Table I.

TABLE I. METHOD RELATIONS FOR COUPLING THE ELEMENTS

The computation and generation of watermark for

‘Program P’ has been illustrated in Fig. 1. Code

purification and designation reads elements along with

their properties that are assembled by collecting the

information and generate individual method graph

watermark.

If we have program

P = {P1, P2, P3 …. Pn}

Graph G = {N, E} is generated and

W = {w1, w2, w3,…. wn}

is computed from the G. The watermark W is embedded in

the program P.

Usually watermarking detects designated software as a

whole pirated but proposed technique for watermarking

detects if some portion of the program us pirated. This is

courtesy to generation and extraction of watermark (based

on method properties and relations).

166© 2019 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 10, No. 4, November 2019

Figure 1. Watermark computation and embedding

IV. RESULTS AND EVALUATION

The proposed watermarking technique was evaluated

over three code snippets from sourceforge.net [15]. The

proposed technique working on method code based

watermarks performed better since it takes into account

relation and properties of each of the node. The similarity

percentage between different and same methods was

calculated.

Accuracy computed for similar as well as non-similar

objects in the methods is 0.80 to 0.93 as tabulated in Table

II below.

TABLE II. CONFUSION MATRIX SIMILARITY CALCULATION FOR

MODIFIED PROGRAMS

Classes Similar

Objects’

Non-Similar

Objects’

Total % Accuracy

Detection of

Similar Objects 959 91 1050

0.93

Detection of

Non-Similar

Objects 235 827 1297

0.88

Total 1521 362 1883 0.80

In order to measure the performance of a watermark, the

resilience property is used that identifies the modified and

transformed programs as similar. It becomes important

when programs are modified to attack the existing

watermarks. Zero percent 0% means code is dissimilar,

while 100% indicates codes are perfect copy of each other.

Table III shows results for similarity classification with

focus on credibility and reliability for selected programs.

The similarity classification has been computed among

different programs and same (self) program. The results

show that self-programs has been classified as perfect

copy where as other programs show 0% classification

results. This detection suggests that watermarking

technique is fully resilient for detection of program copy.

TABLE III. SIMILARITY CLASSIFICATION FOR CREDIBILITY AND

RELIABILITY

Java

Software

Packages

ATM Library

System

Point of

Sale

Hospital

System

K-means

Algo.

ATM 100 0 0 0 0

Library

System

0 100 0 0 0

Point of Sale 0 0 100 0 0

Hospital

System

0 0 0 100 0

K-means

Algo.

0 0 0 0 100

V. CONCLUSION AND FUTURE WORK

A graph-based static software watermarking technique

has been proposed in this paper. It operates at method level

program constructs for identifying program element

properties and relations between those elements. These

element and relations are modeled in the graphs. The

resultant graphs are embedded in the code for detecting if

codes are original or modified. The detection accuracy

through watermark has shown an acceptable level with

resilience of watermark. We look forward to devise a

dynamic software watermarking technique with larger

repository of code snippets.

ACKNOWLEDGMENT

We hereby acknowledge the funds support under the

project PrivSoft sponsored by Higher Education

Commission under the grant number: 112116-Eg043. Also,

we acknowledge the contributions of Prof. Dr Muddesar

from LSBU England in coordinating the experiments and

write-ups among involved groups.

REFERENCES

[1] B. S. Alliance (BSA), “9th annual global piracy study,” 2013.
[2] C. S. Collberg and C. Thomborson, “Watermarking,

tamper-proofing, and obfuscation-tools for software protection,”

Softw. Eng. IEEE Trans., vol. 28, no. 8, pp. 735–746, 2002.
[3] B. Fu, G. Richard III, and Y. Chen, “Some new approaches for

preventing software tampering,” in Proc. the 44th Annual

Southeast Regional Conference, 2006, pp. 655–660.
[4] P. E. Solutions, “Dotfuscator, technical white paper, version 2,”

2004.

[5] S. K. Udupa, S. K. Debray, and M. Madou, “Obfuscation: Reverse
engineering obfuscated code,” in Proc. 12th Working Conference

on Reverse Engineering, 2005, p. 10.

[6] J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shao, and Y.
Zhang, “Experience with software watermarking,” in Proc. 16th

Conference Computer Security Applications, 2000, pp. 308-316.

[7] J. Nagra and C. Collberg, “Surreptitious software: Obfuscation,
watermarking, and tamper proofing for software protection,”

Pearson Education, 2009.

[8] C. S. Collberg, C. Thomborson, and G. M. Townsend, “Dynamic
graph-based software fingerprinting,” ACM Transaction on.

Programing Language System, vol. 29, no. 6, pp. 35-51, 2007.

[9] Y. Bai, X. Sun, G. Sun, X. Deng, and X. Zhou, “Dynamic k-gram
based software birthmark,” in Proc. 19th Australian Conference on

Software Engineering, 2008, pp. 644–649.

[10] D. Schuler, V. Dallmeier, and C. Lindig, “A dynamic birthmark for
java,” in Proc. the Twenty-second IEEE/ACM International

Conference on Automated Software Engineering, 2007, pp. 274–

283.

167© 2019 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 10, No. 4, November 2019

[11] J. Chen, K. Li, W. Wen, W. Chen, and C. Yan, “Software

watermarking for Java program based on method name encoding,”

in Proc. International Conference on Advanced Intelligent Systems

and Informatics, 2017, pp. 865–874.
[12] M. D. Preda and M. Pasqua, “Software watermarking: A

Semantics-based approach,” Electronic Notes on Theoretical

Comput. Sci., vol. 331, pp. 71–85, 2017.
[13] K. Kumar, V. Kehar, and P. Kaur, “An evaluation of dynamic Java

bytecode software watermarking algorithms,” Watermark, vol. 10,

no. 7, 2016.
[14] Z. Chen, C. Jia, and D. Xu, “Hidden path: Dynamic software

watermarking based on control flow obfuscation,” in Proc. IEEE

International Conference on Computational Science and
Engineering (CSE) and Embedded and Ubiquitous Computing

(EUC), 2017, vol. 2, pp. 443–450.

[15] Sourceforge. (Mar. 2018). [Online]. Available: Sourceforge.net

Dr. Sohail Sarwar received the PhD degree in
Computer Science from University of Gujrat,

Pakistan. His research interests include

machine learning techniques, piracy control,
vehicular technologies, semantic technologies

and knowledge engineering techniques in

different applications.

Dr. Muhammad Safyan is Assistant Professor

in Government College University (GCU)

Lahore. He received PhD degree from National
University of Sciences and Technology in 2018.

His area of interest is ontology alignment,

e-learning and semantic activity recognition.

Prof. Zia Ul Qayyum is currently a Professor

at University of Gujrat Pakistan. He received

his Ph.D. degree in Computer Science from

Leeds University UK in 2005. His research
interests include Artificial Intelligence,

Knowledge Engineering, Vehicular

technologies, Data mining, Semantic web and
e-learning.

Yasir is MS in Computer Science in Computer

Science 2008. His research interests include
semantic technologies, ontology engineering,

and ontology-based data integration.

Dr. Muddassir is professor at University of

Gujrat. He did PhD from Kingston University

UK. His research interests include CBT, V2X
technologies, Disaster Management and IoT.

Farrukh Latif is MS scholar in Bahria
University. He has more than 10 years of

experience in domain of software development.

His area of interest is software ethics, piracy
control and Stagnography.

168© 2019 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 10, No. 4, November 2019

